
1 INTRODUCTION 

Structural health monitoring (SHM) is a process of 
damage identification (detection, localization and 
quantification) in a structure. It is of paramount 
importance for reasons associated with proper 
operation, increased safety, and reduced maintenance 
costs (Makki Alamdari et al. 2015). During last two 
decades, extensive research activities have been 
conducted on vibration-based SHM methods. Many 
articles have been published in this subject recently, 
are either in model-driven approaches or in data-
driven approaches (Fan & Qiao 2011). 

A typical model-driven approach in SHM adopts a 

numerical model of the structure, usually based on finite 

element analysis, which relates differences between 

measured data and the data generated by the model to 

the damage identification. However, a numerical model 

may not be always available in practice and does not 

always correctly capture the exact behavior of the real 

structure. On the other hand, a data-driven approach 

establishes a model by learning from measured data and 

then makes a comparison between the model and 

measured responses to detect damage. This approach 

uses techniques in pattern recognition, or more broadly, 

in machine learning (Worden & Manson 2007). 

Support Vector Machine (SVM) (Cortes & Vapnik 

1995) is a supervised learning technique with strong 

theoretical foundations based on the Vapnik-

Chervonenkis theory. It has a strong regularization 

property which is the ability to generalize the model to 

new data. These characteristics help it overcome 

overfitting, which is a common issue for neural 

Characterization of Gradually Evolving Structural Deterioration in Jack 
Arch Bridges Using Support Vector Machine  

M. Makki Alamdari & N.L.D. Khoa & P. Runcie  
National ICT (NICTA), Eveleigh NSW, Australia 

J. Li 
University of Technology, Sydney, Australia 

S. Mustapha  
American University of Beirut, Beirut, Lebanon 
 

 
 

 
 

 

 

 
 

ABSTRACT: The main objective of structural health monitoring is to provide reliable information about the 
health state of the critical structures by implementing a damage characterization strategy to detect the presence of 
damage, location, severity as possibly failure prediction as soon as the damage occurs. This paper presents a 
robust approach to detect and characterize a gradually evolving damage based on time responses data captured 
from a steel reinforced concrete structure. The presented method is in the context of unsupervised and non-
model-based approaches, hence, there is no need for any representative numerical/finite element model of the 
structure to be built. In this work, we propose one-class support vector machine as an anomaly detection 
method. One-class support vector machine fits well for damage diagnosis in structural health monitoring since 
there may exist many damaged patterns and one-class support vector machine can detect all of them as 
anomalies. To demonstrate the feasibility of the method in the detection and assessment of a gradually 
evolving deterioration, a test bed was established to replicate a concrete jack arch which is a main structural 
component on the Sydney Harbour Bridge – one of Australia’s iconic structures. The structure is a concrete 
cantilever beam with an arch section which is located on the eastern side of the bridge underneath the bus lane. It 
is assumed that the structure is subjected to Gaussian white noise excitation. A crack is introduced in the structure 
using a cutting saw and its length is progressively increased in four stages while the depth was constant; these 
four damage cases correspond to less than 0.5% reduction in the first three modes of the structure. The damage 
identification results using the presented approach demonstrated the feasibility of applying support vector 
machine as a learning technique for damage characterization in structural health monitoring. The method 
accurately separated two states of the structure and it was also capable to identify progressively increasing 
damage.    



networks. Furthermore, SVM can unify different types 

of discriminant functions such as linear, polynomial, 

radial basic functions in the same framework. 

Application of supervised techniques for damage 

identification has been widely reported in the literature 

(Farrar et al. 2000). The major problem with supervised 

approaches is that, in practice, events corresponding to 

damaged states are often unavailable for supervised 

learning. On the contrary, unsupervised methods train 

the model using only healthy data and the classification 

problem becomes the anomaly detection problem. Data 

objects which significantly deviate from the normal 

behavior of the trained model are considered as 

anomalies or damage. One-class SVM is a robust 

technique for this purpose (Schölkopf et al. 2001).  
This work is part of the efforts which have applied 

SHM to the Sydney Harbour Bridge. Anomalies and 
failure patterns of the jack arch supports are learned 
from the data in an unsupervised manner using one-
class SVM. This suits real situations where the data 
for damaged state are not available for supervised 
learning. The learned models will be used to generate 
real-time health scores for every jack arch support. It 
avoids the time and cost of creating a numerical model 
and provides the flexibility of model updating. The 
main objective of this study is to characterize any 
possible damage in the jack arches using unsupervised 
learning. It includes detection of damage as at early 
stage as possible along with damage assessment to 
monitor its possible progression.  

2 SUPPORT VECTOR MACHINE 
 

SVM is a robust supervised learning technique. Denote 

x a feature vector extracted from sensor data, 𝑦 ∈
{−1,1} the label of x, where y = −1 means that x is 

recorded from a damaged bridge component and y = +1 

means that x is measured from a healthy component. 

We want to find a hyperplane with maximum margin 

that separates the points with labels y = +1 from those 

having  y = −1. 

The classification model is a function, f : 𝑅𝑑 →
{−1,1}. It is in the form: 𝑓(𝐱) = 𝑠𝑔𝑛(𝐰 ∙ 𝐱 − 𝑏) where 

‘.’ is the dot product, sgn(x) = +1 if x > 0 and sgn(x) = 

−1 otherwise. w and b are the parameters of the model 

and can be learned from a training process. Given a set 

of n training samples, {(𝐱𝐢, 𝑦𝑖)}𝑖=1
𝑛 , the training process 

determines the model parameters w and b by making 

sure that the classification error of the obtained model 

on the training set is minimized while still maximizing 

the margin. Mathematically, the training process is 

equivalent to the following minimization problem: 

 

      min𝐰,𝝃,𝑏
1

2
‖𝐰‖2 + 𝐶 ∑ 𝜉𝑖

𝑛
𝑖=1                       (1)

                          

such that     𝑦𝑖(𝐰 ∙ 𝐱𝐢 − 𝑏) ≥ 1 − 𝜉𝑖,   𝜉𝑖 ≥ 0,   𝑖 =
1, ⋯ , 𝑛,                          (2) 

where 𝜉𝑖  is a slack variable for controlling how much 

training error is allowed and 𝐶  is the variable for 

controlling the balance between 𝜉𝑖  (the training error) 

and w (the margin). The problem can be transformed to 

the dual form using Lagrangian multiplier: 

 

max𝛼1,⋯,𝛼𝑛
∑ 𝛼𝑖 −

1

2

𝑛
𝑖=1 ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐱𝐢∙𝐱𝐣𝑖,𝑗            (3)

              

such that     ∑ 𝛼𝑖𝑦𝑖𝑖 = 0,   0 ≤ 𝛼𝑖 ≤ 𝐶,   𝑖 = 1, ⋯ , 𝑛.
                                              (4)  

This problem can be solved using quadratic 

programming. Once the classification model 𝑓(𝐱) =

𝑠𝑔𝑛(𝐰 ∙ 𝐱 − 𝑏) = 𝑠𝑔𝑛(∑ 𝛼𝑖𝑦𝑖𝑖 𝐱𝐢𝐱 − 𝑏) is learned, a 

health score for a new vibration record, denoted as xnew, 

can be generated as ∑ 𝛼𝑖𝑦𝑖𝑖 𝐱𝐢𝐱𝐧𝐞𝐰 − 𝑏. 

3 ONE-CLASS SUPPORT VECTOR MACHINE 
 

Due to the limitation of damaged samples available for 

supervised learning, unsupervised or one-class approach 

is more practical. In this work, we use one-class SVM 

as an unsupervised approach for damage detection. It 

assumes that all positive examples share some common 

properties to form one class. And negative examples can 

have very different properties without any commonness. 

It fits damage detection in structural health monitoring, 

since there may exist many failure patterns and one-

class SVM can detect all of them as anomalies. 

The algorithm in finds a small region containing 

most of healthy data points. They do that by mapping 

data into a feature space using a kernel function and 

then separating them from the origin with maximum 

margin. Kernel function is a function that corresponds 

to an inner product in the feature space. This makes the 

algorithm to fit the hyperplane in a transformed high-

dimensional feature space. Using the settings of 

supervised SVM learning, the unsupervised learning 

process can be formed as the following optimization 

problem: 

 



min𝒘,𝝃,𝑏
1

2
‖𝒘‖2 +

1

𝑣𝑛
∑ 𝜉𝑖

𝑛
𝑖=1 − 𝜌        (5) 

            

such that     𝑤 ∙ 𝑥𝑖 ≥ 𝜌 − 𝜉𝑖,   𝜉𝑖 ≥ 0,   𝑖 = 1, ⋯ , 𝑛,  
            (6) 

where v has similar function as C in supervised SVM 

and n represents the number of training examples. 

It is worth noting that the training dataset {𝐱𝐢}𝑖=1
𝑛  in 

this case only contains feature vectors and no label 

information is provided. Once the model is obtained, 

health score can be created in the same way as the 

supervised learning as 𝑓(𝐱) = 𝑠𝑔𝑛(∑ 𝛼𝑖𝑖 𝐱𝐢𝐱 − 𝜌). A 

negative health score from a new data instance will 

indicate it is an anomaly, which is likely damage. 

4 EXPERIMENTAL CASE STUDY 
 

The experimental set-up for this study is a reinforced 

concrete jack arch which is one of the major structural 

components of the Sydney Harbour Bridge. There are 

800 concrete jack arches on the underside of the deck of 

the bus lane and it is very critical to detect any structural 

deterioration in the arches at as early stage as possible in 

order to schedule the required inspection and repair.  

A steel reinforced concrete beam was manufactured 

with a similar geometry to those on the Sydney Harbour 

Bridge. The length of the specimen was 2000 mm, the 

width was 1000 mm and the depth was 374 mm, see 

Figure.1 and Figure.2. 

The excitation was made using an impact hammer; 

it was applied on the top surface of the specimen just 

above the sensor A9, see Figure.1.  

The response of the structure was collected by 10 

uniaxial accelerometers placed in frontal face of the jack 

arch named A1, A2, …, A10, see Figure.1.  The 

measurement was conducted for 2 seconds at a 

sampling rate of 8 kHz, resulting in 16000 samples for 

each event.  

After testing the benchmark in a healthy condition, a 

crack was gradually introduced into the specimen 

between sensors A2 and A3 with four level of crack 

dimensions: (75 × 50) mm, (150 × 50) mm, (225 × 50) 

mm and (270 × 50) mm, see Figure.3, Figure.4, 

Figure.5 and Figure.6.  

The responses of 190 impact tests were collected in 

healthy condition and in each level of damage severity. 

In order to investigate the impact of damage on 

natural frequencies, at each damage case, a 

comparison was made on the measured frequency 

responses. Figure.7 compares the frequency response 

functions of four damage cases and the healthy state. 

As expected, the discrepancy is more obvious at 

higher frequencies, higher than 500 Hz, in this case, 

and there is not much distinguishable difference in 

frequencies lower than 500 Hz. It was realized that the 

change in the first three natural frequencies between 

the healthy state and all damage cases was less than 

0.5% which corresponds to a very small damage.  

5 DAMAGE IDENTIFICATION RESULTS 
 

For each sensor location and for all events, 190×5 (190 

events for each state of the structure including one 

healthy state and four damage states), the features in the 

frequency domain were created as follows. For every 

vibration event, the data from each accelerometer were 

standardized to have zero mean and one standard 

deviation. Then the data were converted to the 

frequency domain to generate the power spectral 

density. Only half of the samples (8000) are used since 

the frequency spectra will be mirrored with respect to 

the Nyquist frequency; hence, there are 8000 feature 

elements for each event.  

An investigation was carried out to evaluate the 

suitable size for training data in order to save 

computational time while still maintaining the detection 

accuracy. The results showed that a training size of 150 

randomly selected events from healthy events is 

adequate for training purpose.  

The remaining 40 evens from the healthy state and 

190 events from each damage case were used for the 

testing. Table 1 presents the obtained accuracy for all 

sensors for the healthy state testing. 

 

Figure 1. Test bed, intact with the arrow indicating the direction 

of the cut. 

In order to reduce the false positive and negative 

rates, we used a technique called multiple testing. That 

is we make a decision if a joint is healthy or not based 

on a block of multiple sequential events. We average 

the joint health score based on 5 sequential events (38 



blocks of 5 events) and make the decision. The false 

positive and negative rates are significantly reduced 

with multiple testing. Figure.8 to Figure.13 shows the 

decision values obtained by using this technique for 

sensors A1, A3, A4, A6, A8 and A9, respectively. As 

seen, events with more severe damage have lower 

decision values. Therefore, it suggests that we can use 

the decision values obtained by one-class SVM as 

structural health scores to evaluate the damage severity 

in an unsupervised manner. The same behaviour was 

obtained for other sensors. 

 

 

Figure 2. Test bed, illustration of the cantilever at one end of the 

specimen. 

 
Figure 3. Damage case 1, (75 × 50) mm cut in the concrete 

 

Figure 4. Damage case 2, (150 × 50) mm cut in the concrete 

Figure.14 presents the average of all decision values 

obtained from all sensors for healthy state and different 

damage states. As seen, the method is able to 

successfully separate the healthy state from the damage 

states and as the severity of damage increases, higher 

negative decision values are obtained. 

 

Figure 5. Damage case 3, (225 × 50) mm cut in the concrete 

 

Figure 6. Damage case 4, (270 × 50) mm cut in the concrete 

 

 
Figure 7. Comparison of the measured frequency response 

functions in the healthy state and four damage states. 

 

 

Table 1. The accuracy of testing for all sensor locations 

in the healthy state 
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Event index 

Figure 8. Damage estimation using decision values 

obtained by one-class SVM from sensor 1. 
 

 
Event index 

 

Figure 9. Damage estimation using decision values 

obtained by one-class SVM from sensor 3. 
 

 
Event index 

 

Figure 10. Damage estimation using decision values 

obtained by one-class SVM from sensor 4. 
 

 
Event index 

 

Figure 11. Damage estimation using decision values 

obtained by one-class SVM from sensor 6. 

 

6 CONCLUSION 

This work presented a damage detection 

methodology using machine learning algorithm.  A 

structural benchmark model was learnt using one-class 

SVM on a structural component of the Sydney Harbour 

Bridge. This approach suits real situations where the 

data for damaged state are not available for supervised 

learning.  An artificial damage was created in the 

structure and its severity was increased in four stages. 

Then new events were tested against the benchmark 

model to detect damage. The approach was shown to 

work very well to identify a progressively increasing 

crack in the structure. It was demonstrated by using 

unsupervised learning and implementing one-class 

SVM, we are able to detect damage by separating two 

states of the structure and successfully evaluate the 

progression of damage.   

 
Event index 

   

Figure 12. Damage estimation using decision values 

obtained by one-class SVM from sensor 8. 
 

 
Event index 

 

Figure 13. Damage estimation using decision values 

obtained by one-class SVM from sensor 9. 
 

 

 
Figure 14. Damage detection using decision values of all 

test events. 
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