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extending the method developed by Meyer (1998) for the case of jump-diffusion dy-

namics. The accuracy of the method is tested against two numerical methods that
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to the jump-diffusion situation of the componentwise splitting method of Ikonen &

Toivanen (2007). The second method is a Crank-Nicolson scheme that is solved using
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The relative efficiency of these methods for computing the American call option price,
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the methods considered.
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1. Introduction

Derivative securities are commonly written on underlying assets with return dynamics

that are not sufficiently well described by the geometric Brownian motion process pro-

posed by Black & Scholes (1973) and Merton (1973). There have been numerous efforts

to develop alternative asset return models that are capable of capturing the leptokurtic

features found in financial market data, and subsequently use these models to develop

option prices that accurately reflect the volatility smiles and skews found in market

traded options. There are two classical ways of developing option pricing models that

are capable of generating such behaviour; the first is to add jumps into the price process

for the underlying asset, as originally proposed by Merton (1976); the second is to allow

the volatility to evolve stochastically, for instance according to the square-root process

introduced by Heston (1993).

While both alternative models have proven valuable in capturing the leptokurtosis found

in realised market returns, Cont & Tankov (2003) indicate that a model combining both

jump-diffusion and stochastic volatility features can lead to even better results. Such

a model is proposed by Bates (1996), combining the features of the models by Merton

(1976) and Heston (1993). A similar model is considered by Scott (1997), generalised to

allow for stochastic interest rates. Scott explores the pricing of European options under

these dynamics, but he does not consider American options.

Apart from the work of Yan & Hanson (2006) and Hanson & Yan (2007), there seems to

have been very little research on American option pricing under both stochastic volatil-

ity and jump-diffusion dynamics, despite the fact that many traded options contain

early exercise features. In this paper we consider the problem of numerically evaluating

American options under the combined stochastic volatility and jump-diffusion model of

Bates (1996).

There exists a considerable amount of work on the numerical evaluation of American

options under either jump-diffusion or stochastic volatility. For the jump-diffusion case,

several numerical methods have been proposed. There are numerous examples of finite

difference methods, including Carr & Hirsa (2003), d’Halluin, Forsyth & Vetzal (2003),



AMERICAN OPTIONS - STOCHASTIC VOLATILITY AND JUMP-DIFFUSION 3

d’Halluin, Forsyth & Labahn (2004), Briani, Chioma & Natalini (2004) and Andersen

& Andreasen (2000). Other methods include numerical integration (Chiarella & Ziogas,

2008), finite elements (Matache, Schwab & Wihler, 2004), tree methods (Amin, 1993)

and the method of lines (Meyer, 1998).

Numerical methods for American option pricing under stochastic volatility are less fre-

quently encountered in the current literature. Tzavalis & Wang (2003) use a numerical

integration approach, facilitated by the assumption that the early exercise surface is an

exponential-linear function of the volatility. Adolfsson, Chiarella & Ziogas (2007) have

also implemented a version of this method. Ikonen & Toivanen (2004, 2007) use a finite

difference approach featuring operator splitting, and there are several examples featur-

ing multi-grid finite difference methods, including Clarke & Parrott (1999), Oosterlee

(2003) and Reisinger & Wittum (2004). The method of lines has also been applied to

this problem by Adolfsson, Chiarella & Ziogas (2007).

To date there does not seem to be a great deal of literature on numerical methods

for dealing with American options under both stochastic volatility and jump-diffusion

dynamics. In this paper we extend the method of lines solution proposed by Meyer

(1998) for American option pricing under jump-diffusion dynamics to allow for stochastic

volatility. One of the strengths of this method is that the option price, delta, gamma

and free boundary are all computed as part of the solution process. As a benchmark for

the method of lines, we consider two finite difference schemes. The first is a standard

two-dimensional Crank-Nicholson implicit scheme solved using projected successive over-

relaxation (PSOR) techniques, with appropriate adjustments to deal with the integral

over the jumps term. We use this algorithm with a large order of discretisation as the

“true” solution for the option price. The second method we consider is a generalisation of

the componentwise splitting algorithm of Ikonen & Toivanen (2007) to include jumps.

We use these finite difference methods to verify the accuracy of the method of lines

algorithm, and then explore the impact that stochastic volatility and jump-diffusion has

on the early exercise boundary for the American call.

The remainder of the paper is structured as follows. Section 2 outlines the free bound-

ary problem that arises from pricing an American call option under stochastic volatility
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and jump-diffusion dynamics. Section 3 outlines in detail the method of lines for an

American call option under stochastic volatility and jump-diffusion. Section 4 sum-

marises our implementation of the componentwise splitting algorithm, which basically

extends Ikonen & Toivanen (2007) to incorporate the integral over the jumps term.

Under the assumption that jump sizes are log-normally distributed, we implement the

method of lines and provide some numerical examples in Section 5. We benchmark

the accuracy of the method of lines against a Crank-Nicholson finite difference scheme

and the componentwise splitting approach. In Section 6, we explore the impact of both

jump-diffusion and stochastic volatility on the early exercise boundary and American

call prices. Concluding remarks are presented in Section 7.

2. Problem Statement - the Merton-Heston Model

Let C(S, v, τ) be the price of an American call option written on a stock of price S

with time to expiry τ1and strike price K. For the underlying dynamics, we assume that

the stochastic differential equation (SDE) for S is given by the jump-diffusion process

proposed by Merton (1976), in conjunction with the square root volatility process by

Heston (1993). Thus the dynamics for S under the so-called historical measure Q are

governed by the SDE system

dS = (µ − λk)Sdt +
√

vSdZ1 + (Y − 1)SdN, (1)

dv = κv(θ − v)dt + σ
√

vdZ2. (2)

In (1), µ is the instantaneous stock return per unit time, v is the instantaneous squared

stock volatility per unit time, and Z1 is a standard Wiener process under Q. Further-

more, we define the Poisson jump arrival process N by

dN =











1, with probability λdt,

0, with probability (1 − λdt),

1Note that τ = T − t, where T is the maturity date of the option and t is time.
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and set

k = EQ[(Y − 1)] =

∫

∞

0
(Y − 1)G(Y )dY,

where G(Y ) is the continuous probability density function for the multiplicative jump

sizes, Y , generated by the measure Q. In (2), θ is the long-run mean for v, κv is the

rate of mean reversion, σ is the instantaneous volatility of v per unit time, and Z2 is a

standard Wiener process under Q correlated with Z1 such that E[dZ1dZ2] = ρdt. Note

that dN , Y , dZ1 and dZ2 are otherwise uncorrelated.

Let r be the risk-free rate of interest, and assume that the stock pays a continuously

compounded dividend yield at rate q. Here we assume that r and q are both constant,

although the results which follow can be readily generalised to facilitate the case where r

and q are deterministic functions of time. We assume, following Heston (1993), that the

market price of volatility risk is proportional to
√

v, and is of the form λv

√
v, where λv

is a constant. Using standard hedging arguments and an application of Ito’s lemma for

jump-diffusion processes, it can be shown2 that C satisfies the integro-partial differential

equation (IPDE)

∂C

∂τ
=

vS2

2

∂2C

∂S2
+ ρσvS

∂2C

∂S∂v
+

σ2v

2

∂2C

∂v2

+

(

r − q − λ

∫

∞

0
(1 − λJ(Y ))(Y − 1)G(Y )dY

)

S
∂C

∂S
+ (κvθ − (κv + λv)v)

∂C

∂v

− rC + λ

∫

∞

0
(1 − λJ(Y ))[C(SY, v, τ) − C(S, v, τ)]G(Y )dY, (3)

in the region 0 ≤ τ ≤ T , 0 < S ≤ b(v, τ), and 0 ≤ v < ∞, where b(v, τ) denotes the

early exercise boundary at time to maturity τ and volatility level v, and λJ(Y ) denotes

the market price of risk associated with a jump in the value of the stock with magnitude

Y (that is a jump from S to SY ). The initial condition for (3) is the American call

payoff function, given by

C(S, v, 0) ≡ c(S, v) = max(S − K, 0). (4)

2See for example Cheang, Chiarella & Ziogas (2008). This paper also discusses the role the assumptions
concerning the market prices of volatility risk and jump risk play in choosing a risk-neutral pricing
measure Q∗.
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The boundary condition at v = 0 is less obvious. Some authors (such as Clarke &

Parrott (1999), Ikonen & Toivanen (2007)) prefer to use the exercise payoff condition

C(S, 0, τ) = max(S − K, 0). Alternatively we note that by setting v = 0 in (3) we find

that C(S, 0, τ) is given by the solution of the IPDE

∂C(S, 0, τ)

∂τ
=

(

r − q − λ

∫

∞

0
(1 − λJ(Y ))(Y − 1)G(Y )dY

)

S
∂C(S, 0, τ)

∂S

+ κvθ
∂C(S, 0, τ)

∂v
− rC(S, 0, τ)

+ λ

∫

∞

0
(1 − λJ(Y ))[C(SY, 0, τ) − C(S, 0, τ)]G(Y )dY. (5)

In this paper, we have preferred to, in a sense, let the model itself yield the boundary

condition by extrapolating the solution for v ≈ 0 to v = 0 as detailed in Section 3. This

procedure is justified by the fact that the boundary condition at v = 0 is an outflow

condition as is demonstrated in Appendix 1. Also we have found that it yields the same

solution as solving (5) but is computationally more efficient to implement.

In the limit as v → ∞ the option price becomes insensitive to the variance and so we

have the condition

lim
v→∞

∂C

∂v
(S, v, τ) = 0. (6)

In the asset domain, the boundary conditions are

C(0, v, τ) = 0, (7)

C(b(v, τ), v, τ) = b(v, τ) − K. (8)

Condition (7) is the trivial condition that the option is worthless when the stock price

falls to zero. Condition (8) is the value-matching condition, and follows because the

option value is equal to the payoff at the free boundary. Finally, to avoid arbitrage

opportunities, we require two additional conditions along the early exercise surface,
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namely

lim
S→b(v,τ)

∂C

∂S
= 1, lim

S→b(v,τ)

∂C

∂v
= 0. (9)

The boundary conditions (9) are referred to in the literature as the smooth-pasting

conditions, and these follow by assuming that option holders will select their exercise

strategy so as to maximise the value of the American call option. Mathematically, this

is equivalent to ensuring that ∂C/∂S and ∂C/∂v will be continuous for all values of

S. Figure 1 demonstrates the payoff, price profile and early exercise boundary for the

American call under consideration.

C(S, v, τ)

K b(v, τ) S

Continuation region Stopping region

Figure 1. Continuation region for the American call option, for a given
value of v.

The IPDE (3) may be written in the form

∂C

∂τ
=

vS2

2

∂2C

∂S2
+ ρσvS

∂2C

∂S∂v
+

σ2v

2

∂2C

∂v2
+ (r − q − λ∗k∗)S

∂C

∂S

+ (α − βv)
∂C

∂v
− (r + λ∗)C + λ∗

∫

∞

0
C(SY, v, τ)G∗(Y )dY, (10)

where

λ∗EQ∗[F (Y )] = λ∗

∫

∞

0
F (Y )G∗(Y )dY ≡ λ

∫

∞

0
F (Y )(1 − λJ(Y ))G(Y )dY, (11)

and

k∗ ≡ EQ∗[(Y − 1)], (12)
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with α ≡ κvθ and β ≡ κv + λv, and we note that

∫

∞

0
C(S, v, τ)G∗(Y )dY = C(S, v, τ),

where G∗ is a density function under the risk-neutral pricing measure Q∗. The relevant

boundary conditions are (4)-(8), and the domain for the problem is 0 ≤ τ ≤ T , 0 ≤ S ≤

b(v, τ) and 0 ≤ v < ∞.

Option pricing under stochastic volatility and jump-diffusion dynamics of course involves

market incompleteness since both the volatility risk and the jump risk are not priced

in the market. When the market is incomplete option pricing formulae are not unique.

In (10) the non uniqueness is reflected in the market price of volatility risk parameter

λv (embedded in the parameter β) and the market price of jump risk λJ(Y ) that is

embedded in the parameter λ∗ and jump-size distribution under the adjusted measure

Q∗ (see equation (11)). There is a large literature on how these parameters may be

chosen, for instance by minimising the variance of hedging cost or some entropy measure.

Here we shall simply assume that the parameters λv, λ
∗ as well as the parameters of

the distribution G∗ have somehow been obtained either by the methods referred to or

simply by calibration to market data.

Our task is to develop a numerical scheme to solve the IPDE (10) subject to the bound-

ary conditions (4)-(9). The main numerical challenges arise from, (i) the two spatial

dimensions (S and v) so that we are seeking an early exercise surface, and (ii) the in-

tegral term over the jump-size distribution which will involve the unknown option price

over a whole set of values of S.

3. Numerical Solution using the Method of Lines

A wide range of finite difference and finite element methods in the literature are used

to price American options under stochastic volatility or jump-diffusion. Our task is to

adapt some of these methods to the situation of combined stochastic volatility/ jump

diffusion dynamics. One method that seems interesting to so adapt is the method of

lines, which has been applied to American options with constant volatility by Meyer &
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van der Hoek (1997), with extensions to the jump-diffusion setting by Meyer (1998),

and to the stochastic volatility case by Adolfsson, Chiarella & Ziogas (2007). The

method of lines has several advantages when dealing with American options; the main

one perhaps being that the price, free boundary, delta and gamma are all found as

part of the computation. The method discretises the IPDE in an intuitive manner, and

is readily adapted to be second order accurate in time. In this section we adapt the

implementations of Meyer (1998) to also incorporate stochastic volatility.

The key idea behind the method of lines is to replace an IPDE with an equivalent system

of one-dimensional integro-differential equations (IDEs), whose solution is more readily

obtained using numerical techniques. When volatility is constant, the system of IDEs is

developed by discretising the time derivative. For the IPDE (10), we must also discretise

the derivative terms involving the volatility, v, and provide a means of dealing with the

integral term. We begin by setting vm = m∆v, where m = 0, 1, 2, ...,M . Typically we

will set the maximum volatility to be vM = 100%. Furthermore, we disctretise the time

to expiry according to τn = n∆τ , where τN = T . We denote the option price along the

volatility line vm and time line τn by C(S, vm, τn) ≡ Cn
m(S), and set

V (S, vm, τn) =
∂C(S, vm, τn)

∂S
≡ V n

m(S), (13)

which is of course the option delta at the grid point.

We now select finite difference approximations for the derivative terms with respect to

v. For the second order term, at the grid point (S, vm, τn) we use the standard central

difference scheme

∂2C

∂v2
=

Cn
m+1 − 2Cn

m + Cn
m−1

(∆v)2
, (14)

and for the cross-derivative term at the grid point (S, vm, τn) we use the central difference

approximation

∂2C

∂S∂v
=

V n
m+1 − V n

m−1

2∆v
. (15)
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Since the coefficients of the second order derivative terms go to zero as v → 0, we use

an upwinding finite difference scheme (see Duffy (2006), Chapter 8) for the first order

derivative term, such that, at the grid point (S, vm, τn) we have

∂C

∂v
=



















Cn
m+1 − Cn

m

∆v
if v ≤ α

β
,

Cn
m − Cn

m−1

∆v
if v > α

β
.

(16)

Since the second order derivative terms both vanish as v → 0, upwinding helps to

stabilise the finite difference scheme with respect to v.

The integral term in (10) at each grid point is estimated using numerical integration.

We assume that the jump sizes are lognormally distributed, with

G∗(Y ) =
1

Y δ
√

2π
exp











−

[

ln Y − (γ − δ2

2 )
]2

2δ2











. (17)

Lognormal jumps sizes were considered by Merton (1976) and remain a popular choice

for jump-size distributions. However the method developed here could allow a wide

range of choices for G∗(Y ), for instance the double exponential distribution of Kou

(2002). Making the change of variable X = [ln Y − (γ − δ2/2)]/
√

2δ, the integral term

in (10) becomes

I(S, v, τ) =
1√
π

∫

∞

−∞

e−X2
C

(

S exp
{

(γ − δ2/2) +
√

2δX
}

, v, τ
)

dX. (18)

We approximate (18) of the grid point (vm, τn) with the discretisation obtained by

applying the Hermite Gauss-quadrature scheme, namely

In
m =

1√
π

J
∑

j=0

wH
j Cn

m

(

S exp
{

(γ − δ2/2) +
√

2δXH
j

})

, (19)

where wH
j and XH

j are the weights and abscissas for the Hermite Gauss-quadrature

scheme with J integration points. Computation of the weights and abscissas for this

scheme are given by Abramowitz & Stegun (1970). We interpolate for the required non

grid point values of Cn
m using cubic splines fitted in S along the line at the grid point

(vm, τn).
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Next we must select a discretisation for the time derivative. Initially we use a standard

backward difference scheme, given at the grid point (S, vm, τn) by

∂C

∂τ
=

Cn
m − Cn−1

m

∆τ
. (20)

This approximation is only first order accurate with respect to time. For the case of

the standard American put option, Meyer & van der Hoek (1997) demonstrate that

the accuracy of the method of lines increases considerably by using a second order

approximation for the time derivative, specifically

∂C

∂τ
=

3

2

Cn
m − Cn−1

m

∆τ
− 1

2

Cn−1
m − Cn−2

m

∆τ
. (21)

Thus we initiate the method of lines solution by using (20) for the first several time

steps, and then switching to (21) for all subsequent time steps.

Applying (14)-(21) to the IPDE (10), we must now solve a system of second order IDEs

at each time step and volatility grid point. For the first few time steps, the IDE at the

grid point v = vm and τ = τn is

vmS2

2

d2Cn
m

dS2
+ ρσvmS

V n
m+1 − V n

m−1

2∆v
+

σ2vm

2

Cn
m+1 − 2Cn

m + Cn
m−1

(∆v)2

+
α − βv

2

Cn
m+1 − Cn

m−1

∆v
+

|α − βv|
2

Cn
m+1 − 2Cn

m + Cn
m−1

∆v

+ (r − q − λ∗k∗)S
dCn

m

dS
− (r + λ∗)Cn

m + λ∗In
m − Cn

m − Cn−1
m

∆τ
= 0, (22)

and for all subsequent time steps the IDE is

vmS2

2

d2Cn
m

dS2
+ ρσvmS

V n
m+1 − V n

m−1

2∆z
+

σ2vm

2

Cn
m+1 − 2Cn

m + Cn
m−1

(∆v)2

+
α − βv

2

Cn
m+1 − Cn

m−1

∆v
+

|α − βv|
2

Cn
m+1 − 2Cn

m + Cn
m−1

∆v

+ (r − q − λ∗k∗)S
dCn

m

dS
− (r + λ∗)Cn

m + λ∗In
m

− 3

2

Cn
m − Cn−1

m

∆τ
+

1

2

Cn−1
m − Cn−2

m

∆τ
= 0. (23)

We require two boundary conditions in the v direction, one at v0 and the other at vM .

For large values of v, the rate of change of the option price with respect to v diminishes.
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So for sufficiently large values of v, one can treat this rate of change as zero without any

impact on the accuracy of the solution at other values of v. Thus we set ∂C/∂v = 0 along

the volatility boundary v = vM . When v is zero, we fit a quadratic polynomial through

the option prices at v1, v2 and v3, and then use this to extrapolate an approximation of

the price at v0. This provides us with a satisfactory estimate of the price along v0 for

the purpose of generating a stable solution for small values of v.

After taking the boundary conditions into consideration, at each time step n we must

solve a system of M−1 second order IDEs along the volatility lines. This is done using a

two stage iterative scheme. First, we treat the IDEs as ODEs by using Cn−1
m as an initial

approximation for Cn
m in the integral term In

m. We then solve the ODEs for increasing

values of v, using the latest available estimates for Cn
m+1, Cn

m−1, V n
m+1 and V n

m−1. The

initial estimates for Cn
m and V n

m are simply Cn−1
m and V n−1

m . Otherwise we use the

latest estimates for Cn
m and V n

m found during the current iteration through the volatility

lines. We iterate until the price profile converges to a desired level of accuracy. Second,

once the price has converged, we update the estimate of the integral term In
m using the

current price profile estimate, and repeat the process until convergence is obtained for

both levels of iteration. We then proceed to the next time step.

The generic first order form for (22) and (23) is

dCn
m

dS
= V n

m, (24)

dV n
m

dS
= Am(S)Cn

m + Bm(S)V n
m + Pn

m(S), (25)

where Pn
m(S) is a function of Cn

m+1, Cn
m−1, V n

m+1, V n
m−1, Cn−1

m , Cn−2
m and In

m. We solve

(24)-(25) using the Riccati transform, full details of which are provided by Meyer &

van der Hoek (1997).3 Note that we are only able to apply the Riccati transform to

the system (24)-(25) provided that both equations are treated as ODEs. This is made

possible by approximating In
m using the values Cn−1

m of the previous time step, as stated

earlier, and then using an iterative technique in which the integral term is updated until

the price converges, as in Meyer (1998). For later use we note that the right hand sides

3The Ricatti transform basically replaces a given differential system (here (24) and (25)) with an equiv-
alent set of uncoupled equations of lower dimension (here (27), (28) and (29) below).
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of equations (24) and (25) respectively yield the delta and gamma at each point of the

grid.

The Riccati transformation is given by

Cn
m(S) = Rm(S)V n

m(S) + W n
m(S), (26)

where R and W are solutions to the initial value problems

dRm

dS
= 1 − Bm(S)Rm(S) − Am(S)(Rm(S))2, Rm(0) = 0, (27)

dW n
m

dS
= −Am(S)Rm(S)W n

m − Rm(S)Pn
m(S), W n

m(0) = 0, (28)

and V is the solution to

dV n
m

dS
= Am(S)(Rm(S)V n

m + W n
m(S)) + Bm(S)V n

m + Pn
m(S), V n

m(bn
m) = 1, (29)

where we denote the free boundary at grid point (vm, τn) by b(vm, τn) = bn
m.4 Since

Rm is independent of τ , we begin by solving (27) and storing the solution. Next we

solve (28) for increasing values of S, ranging from 0 < S < Smax, where we select Smax

sufficiently large such that Smax > bn
m will be guaranteed. We then step forward in S

using the generated values of Rm and W n
m until we encounter the value S∗ such that5

S∗ − K = Rm(S∗) + W n
m(S∗), (30)

and thus S∗ is the value of the free boundary at grid point (vm, τn)6. Once bn
m has been

determined we then solve (29) starting at S = bn
m and sweeping back to S = 0. Finally

we use the calculated values of Rm,W n
m and V n

m in (26) to determine the option price

at each grid point along the volatility lines at time to maturity τn.

4All ODEs have been solved by use of the implicit trapezoidal rule (see Shampine (1994))
5We test equation (30) at each grid point and find the grid points at which S − K − Rm(S) − W n

m(S)
changes sign. We then use Newton’s method to search for the value of S∗ by fitting a cubic spline
through four points around of this point.
6We remind the reader that at S∗ the first of the free boundary conditions (9) becomes V n

m(S∗) = 1.
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Figure 2. One sweep of the solution scheme on the v − τ grid with the
integral term of the jump size distribution approximated as discussed in
the text. The stencil for the typical point o is displayed in Figure 3.

b

b
Cn−2

m
Cn−1

m

o Cn
m

b
Cn

m+1

b

Cn
m−1

Figure 3. Stencil for the typical grid point o of Figure 2. The stencil
for Cn

m depends on (Cn
m−1, C

n
m, Cn

m+1, C
n−1
m , Cn−2

m ).

In Figure 2 we illustrate one sweep through the grid points on the v−τ plane. In Figure

3 we show the stencil for the typical grid point in Figure 2; this essentially shows the

grid point values of C that enter the right-hand side of (25). Figure 4 then illustrates
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Figure 4. Solving for the free boundary point along a (vm, τn) line.

the solution of (28) along a line in the S direction from a typical grid point in the v − τ

plane.

4. Numerical Solution using the Componentwise Splitting Method

Ikonen & Toivanen (2007) have proposed a non-standard finite difference method that

involves discretisation of the spot price on nonuniform grids in order to solve the Amer-

ican option pricing problems under stochastic volatility. We employ the same method

and with the only difference being that we extend it to handle the integral over jumps

term. Here, we give the basic details of the componentwise splitting method in order

to make clear how the jump term is incorporated. We refer the reader to Ikonen &

Toivanen (2007) (henceforth IT) for full details.

For a reference grid point (S, v), we have neighbouring grid points at (S − hl, v, τ) and

at (S + hr, v, τ), where hl and hr are the local left and right grid step sizes for the spot

price, respectively. The choice of these step sizes is discussed later. In the volatility
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direction we employ a uniform grid with the step size h and, hence, neighboring grid

points are at (S, v − h, τ) and at (S, v + h, τ).

By use of the Taylor expansions at (S − hl, v, τ) and (S + hr, v, τ), the first-order and

second-order derivatives in the S-direction are given by the finite difference approxima-

tions

∂C

∂S
≈ 1

hl + hr

(

hl

hr
C(S + hr, v, τ) −

(

hl

hr
− hr

hl

)

C − hr

hl

C(S − hl, v, τ)

)

, (31)

and

∂2C

∂S2
≈ 2

hl + hr

(

1

hl

C(S − hl, v, τ) −
(

1

hl

+
1

hr

)

C +
1

hr
C(S + hr, v, τ)

)

. (32)

The first-order and second-order derivatives in the v-direction are handled in the usual

way with a central difference for the first-order derivative.

IT discuss the second-order cross derivative terms when the correlation is positive, how-

ever we wish to handle both the positive and negative correlation cases. Hence, here we

detail the negative correlation case and refer the reader to IT for the positive correlation

case. By considering Taylor expansions at (S + hr, v − h, τ) and (S − hl, v + h, τ) IT

obtain for the second-order cross derivative terms the approximations

∂2C

∂S∂v
≈ 1

hrh

(

−C(S + hr, v − h, τ) + C + hr
∂C

∂S
− h

∂C

∂v
+

1

2
h2

r

∂2C

∂S2
+

1

2
h2 ∂2C

∂v2

)

,

(33)

and

∂2C

∂S∂v
≈ 1

hlh

(

−C(S − hl, v + h, τ) + C − hl
∂C

∂S
+ h

∂C

∂v
+

1

2
h2

l

∂2C

∂S2
+

1

2
h2 ∂2C

∂v2

)

,(34)

which involve derivatives only in the S- and v-directions. In order to obtain a dis-

cretisation with the desired so called M -Matrix properties (that is, positive diagonal

elements and negative sub-diagonal and super-diagonal elements) IT suggest the convex
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combination

∂2C

∂S∂v
≈ w

hlh

(

−C(S − hl, v + h, τ) + C − hl
∂C

∂S
+ h

∂C

∂v
+

1

2
h2

l

∂2C

∂S2
+

1

2
h2 ∂2C

∂v2

)

+
1 − w

hrh

(

−C(S + hr, v − h, τ) + C + hr
∂C

∂S
− h

∂C

∂v
+

1

2
h2

r

∂2C

∂S2
+

1

2
h2 ∂2C

∂v2

)

(35)

of (33) and (34) for the second-order cross derivative. The weighting parameter w has a

value between zero and one. For most of the grid points we use the weight w = 0.5. On

the boundaries7 [0, SL]×{vM} where the boundary condition (6) is posed we use w = 0

to avoid crossing the boundary in the v direction. On the boundaries {SL} × [0, vM )

where the boundary condition (8) is posed we use the weight w = 1 to avoid crossing

the boundary in the S direction. For small S the weight is set to zero to obtain the

M -Matrix properties. We refer the reader to IT for a discussion analogous to the above

for the positive correlation case.

Using the approximation (35) for the cross-derivative in the partial differential equation

(10), we obtain a form which contains only the partial derivatives in the S direction and

in the v direction. This intermediate form reads

∂C

∂τ
−

[

1

2
vS2 + wρσvS

hl

2h
+ (1 − w)ρσvS

hr

2h

]

∂2C

∂S2

−
[

1

2
σ2v + wρσvS

h

2hl

+ (1 − w)ρσvS
h

2hr

]

∂2C

∂v2

−
[

rS − wρσvS
1

h
+ (1 − w)ρσvS

1

h

]

∂C

∂S

−
[

κ(θ − v) − wρσvS
1

hl

+ (1 − w)ρσvS
1

hr

]

∂C

∂v

−
[

−r + wρσvS
1

hlh
+ (1 − w)ρσvS

1

hrh

]

C

+ wρσvS
1

hlh
C(S − hl, v + h, τ) + (1 − w)ρσvS

1

hrh
C(S + hr, v − h, τ)

− I(S, v, τ) = 0.

(36)

where the last item I(S, v, τ) is the jump term from (18) which is approximated as in

(19) in Section 3.

7Note that L and M are the number of S steps and the number of v steps respectively whilst N is the
number of τ steps.



18 CARL CHIARELLA, BODA KANG, GUNTER H. MEYER AND ANDREW ZIOGAS

A seven point finite difference stencil around the typical (S, v, τ) point, which is displayed

in Figure 5, is obtained by using the finite difference approximations introduced in the

previous part of this section for the spatial derivatives appearing in (36). We will

discretise and solve (36) without jumps first and then we will add the jump term back

later. The spatial discretisation leads to a semi-discrete equation which has the matrix

representation
∂C

∂τ
+ AC = 0 (37)

where A is a block tridiagonal (L+1)(M +1)× (L+1)(M +1) matrix and C is a vector

of length (L + 1)(M + 1).

(S, v−h, τ)

(S, v, τ)

(S, v+h, τ)

(S−h
l
, v, τ)

(S+h
r
, v, τ)

(S+h
r
, v−h, τ)

(S−h
l
, v+h, τ)

Figure 5. Seven point stencil when the correlation is negative, at time to
maturity τ .

Next, we implement the Crank-Nicolson method to discretise the semi-discrete problem

(37) as
(

I +
1

2
∆τA

)

C
(k+1) =

(

I − 1

2
∆τA

)

C
(k), k = 0, . . . , N − 1, (38)

where N is the number of time steps and I is the identity matrix.

After the discretisation of the underlying IPDE with two spatial variables an approx-

imate price of an American option can be obtained by solving a sequence of linear



AMERICAN OPTIONS - STOCHASTIC VOLATILITY AND JUMP-DIFFUSION 19

complementarity problems (LCPs) (see Wilmott, Dewynne & Howison (1993))











BC
(k+1) ≥ DC

(k), C
(k+1) ≥ c,

(

BC
(k+1) − DC

(k)
)T (

C
(k+1) − c

)

= 0,

(39)

for k = 0, . . . , N − 1. The matrices B and D in (39) are defined by (38) for the Crank-

Nicolson method. The initial value C
(0) is given by the discrete form c of the payoff

function c of the option, so that the ith element of C
(0) is given by

C
(0)
i = max(Si − K, 0). (40)

In order to solve the sequence (39) of LCPs more efficiently, we implement the compo-

nentwise splitting method for LCPs based on the decomposition of the matrix A in (37)

according to

A = AS + ASv + Av. (41)

The matrices AS,ASv,Av contain the couplings of the finite difference stencil in the

S-direction, in the Sv-direction, and in the v-direction, respectively. We refer the reader

to IT for the full details of this decomposition.

We follow IT in using a second-order accurate splitting method by performing a Strang

symmetrisation (see Strang (1968)) for the splitting method which uses the Crank-

Nicolson method. We choose to perform first a half time step with AS and then with

Av, a full time step with ASv, and finally a half time step with Av and then with AS.

The notations used are

BS/2 = I +
1

4
∆τAS, Bv/2 = I +

1

4
∆τAv,

BSv = I +
1

2
∆τASv, DSv = I − 1

2
∆τASv,

DS/2 = I − 1

4
∆τAS, Dv/2 = I − 1

4
∆τAv,

(42)

in terms of which, the original LCP (39) is approximated by following five LCPs in

successive directions:
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BxC(j+ 1
5) ≥ DxC(j), C(j+ 1

5) ≥ c, (43)

(BxC(j+ 1
5) − DxC(j))T (C(j+ 1

5) − c) = 0, (44)

where j and x run successively over the values

j =

(

k, k +
1

5
, k +

2

5
, k +

3

5
, k +

4

5

)

,

and

x =
S

2
,
v

2
, Sv,

v

2
,
S

2
,

while k runs over the values k = 0, 1, 2, . . . , N − 1.

We will omit the details of the implementations8 of the above system but again refer

the reader to IT.

To be consistent with the Strang symmetrisation given by (43) and (44), the evaluation

of the integral term should also be decomposed and distributed amongst the five partial

time steps. In fact, we add the integral term I(S, v, τ) to the explicit terms9 of (43)

separately and it is evaluated in a similar way as it is in Section 3 by using a cubic

spline interpolation on the stock prices from the previous time step. Through iterations

at each time step the integral jump term converges. More precisely the integral jump

term is handled in the following way: first, we evaluate I(S, v, τ) at payoff from the

previous time step or the result from the latest iteration; then we add 1/6 of I(S, v, τ)

to the S direction which is the explicit term of LCPs (43) for j = k and x = S/2; we

add another 1/6 of I(S, v, τ) to the v direction which is the explicit term of LCPs (43)

for j = k + 1/5 and x = v/2; next we add 1/3 of I(S, v, τ) to the Sv direction which is

the explicit term of LCPs (43) for j = k + 2/5 and x = Sv; and we add 1/6 of I(S, v, τ)

to the v direction which is the explicit term of LCPs (43) for j = k + 3/5 and x = v/2;

finally we add 1/6 of I(S, v, τ) to the S direction which is the explicit term of LCPs

8In our implementation the boundary condition at v = 0 is handled in the same way as those described
in Section 3 which is different from IT, as has previously been discussed in Section 2.
9By the explicit term we mean the term on the right hand side of each of the inequalities (43), which
are at the most recent time iteration step.
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(43) for j = k + 4/5 and x = S/2 . Now we have added a full time step integral to the

original LCP (39). Next, we evaluate the integral term with cubic spline interpolation

based on the new price and calculate the average difference of the successive iterations

in the grid. We continue to add the integral terms to LCPs and to calculate the new

price based on the new integral if the difference is larger than some tolerance, otherwise

we will proceed to the next time step.

5. Numerical Results

To demonstrate the performance of the method of lines algorithm outlined in Section 3

we implement the method for a given set of parameter values, chosen in order to best

illustrate the impact that stochastic volatility and jump-diffusion may have on the early

exercise boundary for an American call option. The parameter values used are listed in

Table 1.

Parameter Value SV Parameter Value JD Parameter Value
T 0.50 θ 0.04 λ∗ 5.00
r 0.03 κv 2.00 γ 0.00
q 0.05 σ 0.40 δ 0.10
K 100 λv 0.00

ρ ±0.50
Table 1. Parameter values used for the American call option. The
stochastic volatility (SV) parameters correspond to the Heston model.
The jump-diffusion (JD) parameters correspond to the Merton model
with log-normal jump sizes.

We consider the case where r < q, and a time to maturity of 6 months, as this best

demonstrates the changes that arise in the free boundary when jumps are introduced.

The value of σ is chosen intentionally large in order to emphasize the impact of stochastic

volatility on the free boundary. We assume that jump sizes are log-normally distributed

about a mean value of Y = 1 so that in a sense the jumps up and down average out.

This allows us to focus on the impact that the Wiener correlation, ρ, has on the free

boundary. In addition, the small value of δ has been chosen so as to avoid further

increases to the overall variance of S.
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When implementing the method of lines we take the following case as an example to

show its convergence pattern. We use N = 50 time-steps and M = 100 volatility lines,

with maximum volatility vM = 100%. We take a non-uniform grid in S, splitting the

domain into three intervals. Given that the strike price is K = 100, the maximum value

for S is set to 400, with a total of 1138 grid points (denoted by Spts), distributed between

the three intervals such that there are 40 points for 0.5 ≤ S ≤ 1, there are 198 points

for 1 ≤ S ≤ 100, and finally 900 grid points for 100 ≤ S ≤ 400.

For the Hermite Gauss-quadrature scheme in (19) we use J = 50 abscissa points. All

iterative calculations utilise the stopping condition that the maximum over all S of

|Cn
m(S)(i) − Cn

m(S)(i−1)| is less than 10−8, where the subscript i denotes the solution at

the ith iteration. We note that for the parameter values given in Table 1, the solution

along the volatility lines typically converges for less than 85 iterations, and convergence

with respect to updating the integral term (18) generally needs no more than 6 iterations.

Furthermore, the number of iterations along the volatility lines reduce by more than a

quarter after the first time the integral term is updated and continues to reduce by more

than a half each time the integral term is updated. A typical sequence is provided in

Table 2. It is also of interest to observe how the total number of volatility iterations

changes as the number of volatility lines changes, this effect is shown in Table 3. It

seems that the number of volatility iterations increases faster than the number of lines

in the v direction. This deterioration in convergence is similar to that observed in a

standard Gauss-Seidel scheme, and is probably due to the fact that as in Gauss-Seidel

iteration we are using the latest updates for the values as we step through the (τ, v)

grid. It is also worth noting that of all the components within the iterative scheme,

computing the integral term (19) is the most computationally intensive, since we must

perform J extrapolations of C(S, v, τ) with respect to S at every point in the S-v grid.

Thus we are required to fit a total of M cubic splines at each iteration with respect to

the integral term, and each spline is fitted using every grid point in S.

A sample early exercise surface is provided in Figure 6, generated using the method

of lines for the case where ρ = −0.5. The value of the free boundary at expiry is

independent of v. The free surface, b(v, τ), is an increasing function of v, and along a
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Integral Iteration Volatility Iterations
1st 82
2nd 61
3rd 39
4th 18
5th 3
6th 1

Total SV iterations 204

Table 2. Sample convergence pattern for the method of lines iterative
procedures. Parameter values are as given in Table 1.

No. of points in the v direction No. of total volatility iterations
30 41
50 75
60 96
90 174
100 204
120 274

Table 3. The changes of the number of required “volatility iterations”
with respect to the changes of the number of points in the v direction.

given value of v we observe an early exercise boundary of the form typically found for

American call options. It is worth noting that the free surface generated by the method

of lines is smooth, even when jumps are present, a feature not often displayed in the

free boundary estimates generated using finite difference methods, such as Ikonen &

Toivanen (2004).

We contrast the relative pricing accuracy of both the method of lines (MOL) and com-

ponent wise splitting (CS) methods. Using the parameter values in Table 1, and setting

the spot volatility to v = 0.04, we generate American call option prices for S values of

80, 90, 100, 110 and 120 using the three numerical methods discussed above; the method

of lines as outlined in Section 3, the componentwise splitting approach which is detailed

in Section 4, and a Crank-Nicolson scheme where the system of difference equations is

solved using PSOR. The integral term is approximated in the same manner as for the

MOL and CS, and we iterate at each time step, updating the integral term until the
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Figure 6. Early exercise surface for a 6-month American call option,
generated using the method of lines. Parameter values are as listed in
Table 1 and ρ = −0.5.

price profile converges10. We use J = 50 abscissa points for the integral term in all

methods. We experimented with each of the above methods with an increase in the

number of abscissa points from 50 to 100, but this led to a significant increase in the

run time with no significant change in the option prices.

For both finite difference methods, we find that it is more efficient to update the integral

term external to solving the system of difference equations11. Note that while we do not

prove convergence for these iterative schemes with respect to value of the integral term,

convergence is always observed in practice for the parameter values under consideration.

The source code for all methods was implemented using NAG Fortran with the IMSL

library running on the UTS, Faculty of Business F&E HPC Linux Cluster which consists

10Specifically, the system of difference equations is solved using PSOR for a given estimate of the integral
term. The system of difference equations is then solved again using an updated estimate for the integral
term. This is repeated until the price profile converges.
11For the componentwise splitting method, the five tridiagonal systems are solved sequentially for a
given estimate of the integral term. The integral term is then updated, and the tridiagonal system
solved again, repeating the procedure until the price profile converges.
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of 8 nodes running Red Hat Enterprise Linux 4.0 (64bit) with 2 × 3GHz 4MB Cache

Xeon 5160 (dual core) Processors, 8GB 667MHz DDR2-RAM.

In the following, we treat the solution for the price from PSOR with 1,000 time steps,

3,000 volatility steps and 6,000 share price steps as the “true” solution for the purpose

of comparing the efficiency of both the MOL and CS methods. We treat the delta and

gamma from MOL with 500 time steps, 1, 000 volatility steps and 11, 380 share price

steps as the “true” deltas and gammas. We compute the root mean square relative

difference12 (RMSRD) using the option prices with S values of 80, 90, 100, 110 and 120

with a spot volatility v = 0.04.

ρ = 0.50, v = 0.04 S RMSRD Runtime

Method (N,M,Spts) 80 90 100 110 120 (%) (sec)
MOL (50,100,1138) 1.4844 3.7123 7.6982 13.6686 21.3645 0.0387 485
MOL (200, 100, 1138) 1.4847 3.7130 7.6993 13.6697 21.3654 0.0302 1,162
MOL (200, 250, 2995) 1.4848 3.7146 7.7018 13.6715 21.3657 0.0177 12,120
CS (2.5) (200, 100, 294) 1.4841 3.7070 7.6806 13.6387 21.3357 0.2006 100
CS (2.5) (300, 100, 294) 1.4747 3.6853 7.6442 13.5972 21.3029 0.6315 118
CS (2.5) (300, 200, 549) 1.4770 3.7027 7.6868 13.6563 21.3537 0.2820 345
CS (2.5) (1000, 1000, 2764) 1.4825 3.7120 7.6996 13.6690 21.3628 0.0654 25,985
PSOR (200, 200, 300) 1.4960 3.7415 7.7507 13.7300 21.4103 0.1920 1,680
PSOR (500, 500, 1000) 1.4861 3.7181 7.7086 13.6793 21.3707 0.0837 31,269
PSOR (1000, 3000, 6000) 1.4843 3.7145 7.7027 13.6722 21.3653 − 6,041,756

Table 4. American call prices computed using method of lines (MOL),
componentwise splitting (CS) and Crank-Nicolson with PSOR (PSOR).
Parameter values are given in Table 1, with ρ = 0.50 and v = 0.04.
For CS, the first number in brackets for the CS method indicates the
ratio between the grid step sizes at Smax and K imposed on the the
non-uniform grid in S. See Section 4.

In tables 4 and 5 we provide the American call prices produced by the method of lines

(MOL), componentwise splitting (CS) and PSOR. As a basis for comparison, we also

provide runtimes for the different methods, and compute the root mean-square relative

differences (RMSRDs) for each method in relation to the “true” solution from PSOR.

This allows us to make some further observations about the relative performance of the

other two methods. We find that increasing the number of time steps for the MOL has

12RMSRD is calculated as:

√

1
5

∑5
i=1

(

Ĉ(Si)−C(Si)
C(Si)

)2

, where Si = 80 + 10 · (i− 1), Ĉ(S) is the estimate

of the price, and C(S) is the true price. It is important to use RMSRD to measure the errors from price,
delta and gamma together since they have quite different numerical scales.
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ρ = −0.50, v = 0.04 S RMSRD Runtime

Method (N,M,Spts) 80 90 100 110 120 (%) (sec)
MOL (50,100,1138) 1.1369 3.3512 7.5922 13.8786 21.7156 0.0578 485
MOL (200, 100, 1138) 1.1370 3.3518 7.5932 13.8798 21.7168 0.0542 1,159
MOL (200, 250, 2995) 1.1363 3.3530 7.5959 13.8827 21.7191 0.0193 12,122
CS (2.5) (200, 100, 294) 1.1368 3.3526 7.5950 13.8807 21.7162 0.0404 98
CS (2.5) (300, 100, 294) 1.1233 3.3199 7.5440 13.8309 21.6834 0.7588 117
CS (2.5) (300, 200, 549) 1.1298 3.3433 7.5855 13.8734 21.7120 0.2833 323
CS (2.5) (1000, 1000, 2764) 1.1336 3.3501 7.5940 13.8808 21.7174 0.0995 25,707
PSOR (200, 200, 300) 1.1651 3.4050 7.6510 13.9196 21.7358 0.4983 1,726
PSOR (500, 500, 1000) 1.1394 3.3594 7.6035 13.8875 21.7210 0.1660 32,979
PSOR (1000, 3000, 6000) 1.1359 3.3532 7.5970 13.8830 21.7186 − 6,415,836

Table 5. American call prices computed using method of lines (MOL),
componentwise splitting (CS) and Crank-Nicolson with PSOR (PSOR).
Parameter values are given in Table 1, with ρ = −0.50 and v = 0.04.
For CS, the first number in brackets for the CS method indicates the
ratio between the grid step sizes at Smax and K imposed on the the
non-uniform grid in S. See Section 4.

little impact on the prices, while the price accuracy improves more when the grid size in

the volatility and share price directions is refined. Clearly, the CS method runs faster

when the grid is small compared with the MOL; with RMSRD as high as 0.7588% within

98 seconds it is almost 10 times faster than the MOL and produces results even more

accurate than the MOL. However the accuracy deteriorates when the number of time

steps is increased somewhat. It is also observed that the CS method produces prices

with some oscillations especially in the negative correlation case

If one wishes to achieve a given level of accuracy, we can see from the tables that the

MOL seems the best method as it produces a higher accuracy with a RMSRD of 0.0177%

within just half the time of CS, which produces results with a RMSRD of 0.0654%. Thus

we are confident in asserting that the method of lines is very competitive for evaluating

American options under stochastic volatility and jump-diffusion.

To see the overall efficiency of the three methods, we plot in Figures 7-10 below the

comparisons of the average accuracy of the American call price, delta and gamma with

the MOL, the CS method and PSOR. Note that these figures are plotted up to the point

on the horizontal axis where the “exact” solution curves start to become artificially steep

due to the fact that these are the solutions taken to be the “exact” ones. The RMSRD
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on the vertical axis in each of Figures 7 to 9 is calculated for the corresponding set of

values, call prices, deltas or gammas, at the underlying prices S = 80, 90, 100, 110 and

120 and with both correlations ρ = ±0.5. In Figure 10 we display the average of the

sum of the above three RMSRDs. The runtime on the horizontal axis in all graphs is

the computer time taken to produce all three quantities, namely the call prices, deltas

and gammas.

A number of comments based on the figures and the calculations are warranted. First, it

is clear from Figure 10 that the method of lines (MOL) performs best in calculating, to

similar accuracy, the call prices, deltas and gammas. For instance, it costs MOL around

1, 000 seconds to achieve an overall relative accuracy of 10−3 while it costs CS around

1, 000, 000 seconds to achieve the same overall accuracy and it takes PSOR even longer.

Second, the results from the calculations (see Figure 8 and 9) show that the American

call deltas and gammas seem to have a faster convergence rate than the American call

prices with the MOL. This is natural because for MOL, within each iteration, the call

prices are obtained after working out the deltas and gammas to the same degree of

accuracy. We also see from the calculations that the value of the deltas and gammas do

not change up to 5 decimals when refining the grid size which is also evidence indicating

that the deltas and gammas with the MOL are much closer to the “true” deltas and

gammas than those for both CS and PSOR.

6. Impact of Stochastic Volatility and Jumps on the Free Surface and

Prices

In this section, we explore the impact of stochastic volatility and jump-diffusion on the

early exercise boundary and the price profile of an American call option. We consider

four nested models for the underlying asset price: (i) the geometric Brownian motion

(GBM) model of Black & Scholes (1973) and Merton (1973); (ii) the jump-diffusion (JD)

model of Merton (1976); (iii) the stochastic volatility (SV) model of Heston (1993); and

(iv) the combined stochastic volatility and jump-diffusion (SVJD) model of Bates (1996),
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Figure 7. Runtime efficiency of American call prices with MOL, CS and
PSOR. We take the price from PSOR with a large grid consisting of 1, 000 time
steps, 3, 000 volatility steps and 6, 000 share price steps as the true solution. The
root mean-square relative differences (RMSRDs) for each method in relation to
this true solution correspond to the cases with share prices ranging from 80 to
120 and ρ = ±0.5.
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Figure 8. Runtime efficiency of American call deltas with MOL, CS and
PSOR. We take the delta from MOL with a large grid consisting of 500 time
steps, 1, 000 volatility steps and 11, 380 share price steps as the true delta. The
root mean-square relative differences (RMSRDs) for each method in relation to
this true solution correspond to the cases with share prices ranging from 80 to
120 and ρ = ±0.5.
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Figure 9. Runtime efficiency of gammas with MOL, CS and PSOR. We take
the American call gammas from MOL with a large grid consisting of 500 time
steps, 1, 000 volatility steps and 11, 380 share price steps as the true gamma. The
root mean-square relative differences (RMSRDs) for each method in relation to
this true solution correspond to the cases with share prices ranging from 80 to
120 and ρ = ±0.5.

given by (1)-(2). Here we aim to observe the impact that stochastic volatility and jump-

diffusion have on the shape of the early exercise boundary, where the variance of S is

consistent for all four models.

Setting the spot variance to v = 0.04 (corresponding to a volatility - standard deviation -

of 20%) in the SVJD model, we determine the time-averaged variance s2 for ln S over the

life of the option by using the characteristic function for the marginal density of x = ln S

given in Cheang, Chiarella & Ziogas (2008). By requiring that s2 be equal for all the

models, we then determine the necessary parameter values for each model to ensure that

they all have consistent variance over the time period of interest. A summary of the

parameters for each model is presented in Table 6. For the jump-diffusion model, we use

λ∗, γ and δ as given in Table 1. For the Heston model, we vary the spot volatility, vSV,

and long-run volatility, θSV
13, in order to match the variance. We determine suitable

13Note that θSV is the value of θ required to give the global volatility in table 5 when only SV dynamics
are present.
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Figure 10. Overall runtime efficiency with MOL, CS and PSOR. We
take the solution from PSOR with a grid size of 1, 000 time steps, 3, 000
volatility steps and 6, 000 share price steps as a true solution for the price.
We take the delta and gamma from the MOL with a large grid consisting
of 500 time steps, 1, 000 volatility steps and 11, 380 share price steps
as the true delta and the true gamma. The root mean-square relative
differences (RMSRDs) for each method in relation to this true solution
correspond to the cases with share prices ranging from 80 to 120 and the
correlations ρ = ±0.5.

values for vSV and θSV by assuming that vSV = θSV, and then rounding vSV up to the

nearest whole percent14.

Model Parameter Value: ρ = 0.50 Value: ρ = −0.50
GBM vGBM 8.8721% 9.1664%
JD vJD 3.8596% 4.1539%
SV θSV 9.0000% 8.5250%

vSV 10% 9%
Table 6. Parameters used to match the time-averaged variance for the
GBM, JD, SV and SVJD models for a 6-month option. The global volatil-
ities, s, are 29.7860% for ρ = 0.50, and 30.2760% for ρ = −0.50. The
value of v in the SVJD model is 4%.

In figures 11 and 12 we plot the early exercise boundary for the American call option for

the parameter values given in tables 1 and 6. By matching the variance of S over the

14This choice is made to avoid interpolating the solution with respect to v. Note that there are many
combinations of v, θ, κ, σ and λv in the SV model that can be used to match the variance of S to that
generated by the SVJD model.
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life of the option for all four models (GBM, JD, SV, SVJD), we can discuss the impact

of stochastic volatility and jump-diffusion on the American call early exercise strategy.

The solid lines indicate results for models which include stochastic volatility only, and

the broken lines indicate models which include jump-diffusion only.

Firstly, we note that the addition of jumps has a significant impact on the early exercise

boundary. Near expiry the boundary is higher than for cases without jumps, and far

from expiry the boundary is lower than the no-jump case. This holds true when adding

jumps to both the GBM and SV models. In financial terms, near expiry the impact

of a jump in S is likely to directly impact on the expiry value of the option, and thus

the option holder is more cautious about exercising the call for fear of incurring the

rebalancing cost from downward jumps. For longer time periods, jumps in S can be

offset both by long-term diffusion and additional jumps in S in the opposite direction.

Thus the holder of the option is willing to exercise for smaller values of S.

For positive correlation, the addition of stochastic volatility consistently reduces the

value of the early exercise boundary, relative to the nested model with constant volatility.

The reverse is true when the correlation is negative. From Heston (1993) we know that,

in the European case, call options under stochastic volatility are worth less in-the-money

than in the GBM case for positive correlation, and worth more in the same region when

the correlation is negative. The free boundary behaviour observed in figures 11 and 12

indicates that these option price changes persist in the case of American call options.

The correlation coefficient affects the skewness of the density for S, and this is reflected

in the option price as ρ changes between positive and negative values.

We also note that the kurtosis of the density for S is determined by the value of σ

(the “vol of the vol”), as demonstrated by Heston (1993). As σ increases, the impact

of stochastic volatility on the free boundary becomes more pronounced. As σ tends

towards zero we observe that the SV boundary converges to the GBM boundary, with

the same behaviour observed for SVJD and JD. We do not demonstrate this feature

here, but note again that the large value of σ has been chosen to demonstrate more

clearly the impact of stochastic volatility on the early exercise boundary in figures 11

and 12.
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Figure 11. Exploring the effect of jump-diffusion and stochastic volatil-
ity on the early exercise boundary for an American call option. The cor-
relation is ρ = 0.50; all other parameter values are as listed in Tables 1
and 6.
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Figure 12. Exploring the effect of jump-diffusion and stochastic volatil-
ity on the early exercise boundary for an American call option. The cor-
relation is ρ = −0.50; all other parameter values are as listed in Tables
1 and 6.

Finally, we are interested in demonstrating the impact of stochastic volatility and jumps

on the American call price, relative to the pure-diffusion case. In figure 13 we plot the

price differences between the stochastic volatility (SV), stochastic volatility with jump
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diffusion (SVJD) and pure-diffusion American call prices when the correlation is negative

(the case usually observed in practice). All other parameter values are the same as those

used to generate the free boundaries in figures 11 and 12. Positive (negative) differences

indicate that the SV or SVJD price is greater than (less than) the pure-diffusion price.

When the call is at-the-money or out-of-the-money, the SV price is much lower than

the pure-diffusion case. After adding the jumps the SVJD price is still lower than the

pure-diffusion price but a bit higher than the SV price. The situation changes when the

call goes in-the-money where the SV price starts to be higher than the pure-diffusion

price but the SVJD price is lower than the SV price, while it is still higher than the

pure-diffusion price.

In order to see how the parameter σ affects the American call price under either sto-

chastic volatility or stochastic volatility with jumps, we plot the price differences with

different values of “volatility of the volatility”, σ, in figure 14 for ρ = −0.5. Here we see

that the price profiles attain larger differences for the SV model, no doubt because the

SV component is only partially contributing to the overall volatility in the SVJD case.

A similar effect has been observed for ρ = 0 and ρ = 0.5.

In all of the above situations, both the SV and SVJD price will “converge” to the

pure-diffusion price when the call is either very deep out-of-the-money or very deep

in-the-money.
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Figure 13. The effect of jump-diffusion and stochastic volatility on
American call option prices. The correlation is ρ = −0.50; all other
parameter values are as listed in Tables 1 and 6.
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Figure 14. The effect of the volatility of the volatility, σ, on American
call option prices. The correlation is ρ = −0.50; all other parameter
values are as listed in Tables 1 and 6.
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7. Conclusion

This paper studies the numerical evaluation of American call options under stochastic

volatility and jump-diffusion. We propose a numerical method for solving the integro-

partial differential equation that determines the option price by extending the method of

lines algorithm to the case of stochastic volatility and jump-diffusion. Our approach gen-

eralises the method of lines solution of Meyer (1998) to incorporate stochastic volatility.

The method involves an approximation of the integral term using a Hermite Gauss-

quadrature scheme, combined with cubic spline interpolation of the option price. The

method iterates at each time step by updating the integral term until convergence is

obtained. Although we do not provide any proof for the convergence of the iterations

in this algorithm, we certainly observe convergence for all reported parameter values.

The accuracy of the method of lines (MOL) is assessed by comparing the American call

prices with those obtained via two alternative schemes based on finite difference meth-

ods. The first of these is the standard Crank-Nicholson implicit scheme solved using

projected successive over-relaxation (PSOR), and the second is based on the componen-

twise splitting finite difference scheme of Ikonen & Toivanen (2007). For both methods

the integral term is approximated in the same manner as for the method of lines, ex-

plicitly estimating the integral and then iterating by updating the integral term until

convergence of the price is obtained.

We have compared the three methods by using efficiency plots that show the run time

needed to achieve a certain level of (relative) accuracy. We have used solutions from

PSOR with a very high discretisation as the “true” solution for the price and a very

high discretisation of the MOL for the “true” delta and gamma. We have done the

comparisons for the calculations of prices, deltas and gammas separately and then jointly

(that is the sum of the relative errors of all three at a certain level of accuracy). We find

with all calculations that the MOL generally has the best performance, especially when

one wants all three quantities to be within a given level of relative accuracy. We believe

this is a consequence of the fact that the MOL calculates both the delta and gamma in

the process of calculating the price, all to the same degree of accuracy.
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Using the method of lines, we explore how the early exercise boundary of an Ameri-

can call option changes with respect to both jump-diffusion and stochastic volatility.

Matching the variance over the life of the option, we compare the free boundaries gener-

ated by classical geometric Brownian motion, Merton’s (1976) jump-diffusion, Heston’s

(1993) stochastic volatility, and the combined stochastic volatility and jump-diffusion

model of Bates (1996). In all cases we assume that the jump sizes are log-normally

distributed. We find that jumps have a pronounced effect on the free boundary, increas-

ing its value close to expiry, but reducing it for larger time horizons. The addition of

stochastic volatility increases the value of the boundary when correlation is negative,

and decreases the value when correlation is positive. We have also examined how the

price profiles change as we add stochastic volatility, then stochastic volatility plus jumps

to the standard geometric Brownian motion situation. We focused in particular on the

impact of the correlation between the stock price and volatility noise processes as well

as on the volatility of the volatility.

A number of issues remain to be investigated in future research. First, the method

proposed here does not need to be restricted to the Heston stochastic volatility process

and log-normal jump size distributions, for instance it should be possible to apply the

method to treat the double-exponential jump size distribution proposed by Kou (2002).

Second, it would also be useful to extend the MOL (and also the CS method) to consider

the case when the jumps are distributed according to more general processes such as

Levy processes, since the pricing equation is still an integro-partial differential equation

similar to (3) as can be seen in Cont & Tankov (2003).
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Appendix 1. The boundary condition at v = 0

There seems to be no theory for degenerate IPDEs, but since the IPDE (10) will be

time discreted and solved iteratively as a sequence of elliptic problems we shall ignore

the integral term in our discussion of the boundary condition at v = 0. The coefficient

matrix, that we shall denote A(S, v), associated with the second order derivatives of

equation (10) is given by

A(S, v) =







vs2

2

ρσvS

2
ρσvS

2

σ2v

2






.

This matrix is positive semi-definite and singular for S = 0, v = 0 and |ρ| = 1.

The degeneracy on the boundary can be handled with the theory in Houston, Schwab

& Sueli (2002). The Fichera function associated with the boundary for this problem is

given by

b(S, v) =

[

(r − q − λ∗k∗)S −
(

vS +
ρσS

2

)]

n1 +

[

(α − βv) −
(

ρσv

2
+

σ2

2

)]

n2

where n = (n1, n2) = (1, 0) on S = 0 and n = (0, 1) on v = 0.

It follows that b(S, 0) = α − σ2

2 . If b(S, 0) ≥ 0 then the boundary v = 0 is known as

an outflow boundary where no boundary condition needs to be specified. If b(S, 0) < 0

then C(S, 0) must be specified.

The dependence of the boundary condition on the magnitude of σ does not make finan-

cial sense and is a direct consequence of the Heston model. For competing stochastic

volatility models of the form

dv = kv(θ − v)dt + σv
1
2
+εdz2, ε > 0,

the corresponding Fichera function will turn out to be

b(S, 0) = α > 0,
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so that v = 0 will always be an outflow boundary. An analogous problem arises in

d’Halluin, Forsyth, Vetzal & Labahn (2001) when pricing bonds with a CIR interest rate

model. An ε-modification of the interest rate model produced an outflow boundary, but

small ε had negligible influence on the numerical bond prices.

We also observe that b(0, v) = 0, so that S = 0 is also an outflow boundary. However,

our numerical method will solve (10) for S ≥ S0 > 0 where A(S0, v) is non-singular so

that imposition of the boundary condition (7) is permitted.

The outflow boundary at v = 0 requires that the numerical scheme be a consistent

approximation of the differential equation as v → 0. This is readily shown.

Let L1C1 denote the left side of equation (22) or (23) for v1 = ∆v. It requires C0 and v0.

Now let CE
0 (S) and CE

S0(S) denote the quadratic exatrapolant of C(S, v) and CS(S, v)

through the values at v1, v2 and v3. It follows from polynomial approximation that

|CE
0 (S) − C(S, 0)| ≤ K∆v3, (45)

and

|CE
S0(S) − CS(S, 0)| ≤ K∆v3. (46)

Therefore

lim
∆v→0

CE
0 (S) − 2C(S, v1) + C(S, v2)

∆v2
= Cvv(S, v1),

and similarly that

lim
∆v→0

CS(S, v1) − CE
S0(S)

2∆v
= CSv(S, v1).

This implies that

lim
v1→0

L1C(S, v1) −LC(S, v1) = 0

where L is the IPD operator defined by equation (10). Hence our scheme is a consistent

approximation of the IPDE as v → 0. Note that LC(S, 0) has hyperbolic character.
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