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ABSTRACT. This paper contributes to the development of the recesrilitire on the explana-
tion power and calibration issue of heterogeneous assghgnnodels by presenting a simple
stochastic market fraction asset pricing model of two tygfedsaders (fundamentalists and trend
followers) under a market maker scenario. It seeks to exgigpects of financial market behav-
ior (such as market dominance, convergence of the markeg prithe fundamental price, and
under- and over-reaction) and to characterize variousssta properties (including the con-
vergence of the limiting distribution and autocorrelati&tructure) of the stochastic model by
using the dynamics of the underlying deterministic systeaters’ heterogeneous behavior and
market fractions. A statistical analysis based on MontddCsimulations shows that the long-
run behavior, convergence of the market prices to the fueddah price, limiting distributions,
and various under and over-reaction autocorrelation ipettef returns can be characterized by
the stability and bifurcations of the underlying deterrsiiti system. Our analysis underpins the
mechanisms on various market behaviors (such as undereaetions), market dominance and

stylized facts in high frequency financial markets.
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1. INTRODUCTION

Traditional economic and finance theory is based on the gssams of investor homogene-
ity and the efficient market hypothesis. However, there isoavmng dissatisfaction with models
of asset price dynamics, based on the representative ageadigm, as expressed for exam-
ple by Kirman (1992), and the extreme informational assionptof rational expectations. As
a result, the literature has seen a rapidly increasing nuwibeeterogeneous agents models,
see recent survey papers by Hommes (2006) and LeBaron (20063e models characterize
the dynamics of financial asset prices; resulting from theraction of heterogeneous agents
having different attitudes to risk and having different egations about the future evolution
of prices! For example, Brock and Hommes (1997, 1998) proposed a siAgaptive Belief
Systento model economic and financial markets. Agents’ decisioa®ased upon predictions
of future values of endogenous variables whose actual sateedetermined by the equilibrium
equations. A key aspect of these models is that they exl@bdbdack of expectations. Agents
adapt their beliefs over time by choosing from differentdacéors or expectations functions,
based upon their past performance as measured by the cealifés. The resulting dynamical
system is nonlinear and, as Brock and Hommes (1998) showbleapfigenerating the entire
zooof complex behavior from local stability to high order cyxlend even chaos as various key
parameters of the model change. It has been shown (e.g. He1f2062)) that such simple
nonlinear adaptive models are capable of explaining ingpbtmpirical observations, includ-
ing fat tails, clustering in volatility and long memory ofaldinancial series. The analysis of the
stylized simple evolutionary adaptive system, and its misakanalysis provides insight into
the connection between individual and market behavior.c@ipally, it provides insight into
whether asset prices in real markets are driven only by newar® at least in part, driven by
market psychology.

The heterogeneous agents literature attempts to addregatevesting issues among many
others. It attempts to explain various types of market beinasnd to replicate the well docu-
mented empirical findings of actual financial markets, tlyézstd facts. The recent literature

has demonstrated the ability to explain various types oketarehavior. However, in relation

1See, e.g., Arthuet al. (1997), Brock and Hommes (1997, 2002), Brock and LeBaro®§)L9Bullard and
Duffy (1999), Chen and Yeh (1997, 2002), Chiarella (1992)jagella et al. (2002), Chiarella and He (2001,
2002, 2008), Dacorogneet al. (1995), Day and Huang (1990), De Long et al (1990), FarmerJasti (2002),
Frankel and Froot (1987), Gaunersdorfer (2000), Homme&1(22002), lori (2002), LeBaron (2000, 2001, 2002),
LeBaronet al.(1999), Lux (1995, 1997, 1998) and Lux and Marchesi (1999))
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to the stylized facts, there is still a gap between the hgesreous agents models and observed
empirical findings. It is well known that most of the stylizé&atts can be observed only for
high frequency data (e.g. daily) and not for low frequenctade.g. yearly). However, two
unrealistic assumptions underpin this literatir@he first is the unrealistic risk-free rate of
approximately 10 per-cent per trading perfo&econd, the unrealistic nature of the assumed
trading period is problematic for the quantitative caltia to actual time series. As pointed out
by LeBaron (2002),This (unrealistic trading period) is fine for early quatite comparisons
with stylized facts, but it is a problem for quantitativeibation to actual time series’

Another more important issue for various heterogeneotet psgsing models is the interplay
of noisy and deterministic dynamics. Given that deterntiimisodels are simplified versions
of realistic stochastic models and stability and bifur@atare the most powerful tools (among
other things) to investigate the dynamics of nonlinearesysit is interesting to know how de-
terministic properties influence the statistical progestsuch as the existence and convergence
of stationary process, and the autocorrelation (AC) strectd the corresponding stochastic
system. In particular, we can ask if there is a connectiowéen different types of attractors
and bifurcations of the underlying deterministic skeletmd various invariant measures, and
AC patterns of the stochastic system, respectively. Thsstha potential to provide insights
into the mechanisms of generating various invariant measuxC patterns and stylized facts
in financial markets. These issues are investigated in @&xbat a simple heterogeneous asset
pricing model in this paper. At present, the mathematicth&as not yet been able to achieve
these tasks in general. Consequently, statistical anaysisVionte Carlo simulations are the
approaches adopted in this paper.

This paper builds upon the existent literature by incorpogaa realistic trading peridd
which eliminates the unrealistic risk-free rate assunmptwhilst also introducing market frac-

tions of heterogeneous traders into a simple asset-priciodel. In this paper this model is

2See, e.g., Arthuet al. (1997), Brock and Hommes (1997), Chen and Yeh (2002), Cliageal (2002), Chiarella
and He (2002, 2008, lori (2002), LeBaron (2002), LeBaraegt al. (1999), Levyet al.(1994)).

3Apart fromr; = 1% in Gaunersdorfer (2000) and LeBaron (2001) and= 0.04% in Hommes (2002).This
rate is crucial for model calibration in generating styfiz&acts. In this literature, as risk-free rate of trading
period decreases, demand on the risky asset increaseseduensly, the price of the risky asset become rather
larger numbers resulting sometimes in break-down in th@oaealysis and overflows in numerical simulations. In
addition, some of interesting dynamics disappear as thenée rate of trading period decreases to realistic level
(e.g. (5/250)% per day given a risk-free rate of 5% p.a. arfiit2&ling days per year).

“In fact, the trading period of the model can be scaled to avgl lef trading frequency ranging from annually,
monthly, weekly, to daily. However, we focus on a daily traglperiod (i.e.KX = 250) in this paper.
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referred to as the Market FractioM ) Model. The model assumes three types of participants
in the asset market. This includes two groups of boundedigmral traders—fundamentalists
(also called informed traders) and trend followers (aldleddess informed traders or chartists),
and a market-maker. The aim of this paper is to show that iMRenodel the long-run behavior
of asset prices and the autocorrelation structure of thehasiic system can be characterized
by the dynamics of the underlying deterministic systemddra’ behavior, and market frac-
tions. In addition, this paper also contributes to the ditere how to use statistical analysis
based on Monte Carlo simulations to study the interplay of@aind deterministic dynamics
in the context of heterogeneous asset pricing models. Hiestetal analysis shows that the
long-run behavior and convergence of the market pricesyandus under- and over-reaction
AC patterns of returns can be characterized by the stahittybifurcations of the underlying
deterministic system. Our analysis gives us some insighdghe mechanism of various market
behavior (such as under/over-reactions), market domeamd stylized facts in high frequency
financial markets.

This paper is organized as follows. Section 2 outlines a gtdriction model of heteroge-
neous agents with the market clearing price set by a markieemiatroduces the expectations
function of the fundamentalists and trend followers whdofela learning process, and derives a
full market fraction model on asset price dynamics. Priceediyics of the underlying determin-
istic model is examined in Section 3. Statistical analyseésed on Monte Carlo simulations,
of the stochastic model is given in Section 4. By using the eptgof random fixed point and
invariant measure, we examine the convergence of the mariagt, in particular to the fun-
damental price, and to the limiting distribution. By choagilfferent sets of parameters near
different types of bifurcation boundaries of the underlyisheterministic system, we explore
various under and over-reaction AC patterns. Section 5lades and all proofs and additional

statistical results are included in the Appendices.

2. HETEROGENEOUSBELIEFS, MARKET FRACTIONS AND MARKET-MAKER

Both empirical and theoretical studies show that marketifyvas among different types of
traders have an important role to play in financial marketspiical evidence from Taylor
and Allen (1992) suggests that at least 90% of the traderse@ame weights on technical

analysis at one or more time horizons. In particular, tradely more on technical analysis,
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as opposed to the fundamental analysis, at shorter timednsi As the length of time hori-
zons increases, more traders rely on the fundamental ridtdnetechnical analysis. In addition,
there is a certain proportion of traders who do not change strategies over all time horizons.
Theoretically, the study by Brock and Hommes (1997) shows thiaen different groups of
traders, such as fundamentalists and chartists, havifegetit expectations about future prices
and dividends compete between trading strategies and ehbes strategy according to an
evolutionaryfitness measureahe corresponding deterministic system exhibits ratiooates

to randomness. The adaptive switching mechanism propos@&itdrk and Hommes (1997)
Is an important element of the adaptive belief model. It isdohon both ditness function
and a discrete choice probability. In this paper, we takergplsiied version of the Brock and
Hommes’ framework. The MF model assumes that the marketidresszamong heterogeneous
agents are fixed parameters. Apart from mathematical b#itgathis simplification is moti-
vated as follows. First, because of the amplifying effecth@f exponential function used in
the discrete choice probability, the market fractions Ipee@ery sensitive to price changes and
the fitness functions. Therefore, it is not very clear to sew Hifferent group of traders do
actually influence the market price in different way. Sedgnahen agents switch intensively,
it becomes difficult to characterize market dominance wteslidg with heterogeneous trading
strategies. Thirdly, it is important to understand how teedviors of different types of agents
are linked to certain dynamics (such as the autocorrelatiarcture we discuss later). Such an
analysis becomes clear when we isolate the market fractions switching. In doing so, we
can examine explicitly the influence of the market fractionghe price behavior.

The set up follows the standard discounted value assengritiodel with heterogeneous
agents, which is closely related to the framework of Day andrd) (1990), Brock and Hommes
(1997, 1998) and Chiarella and He (2002, 2003 he market clearing price is arrived at via a
market maker scenario rather than the Walrasian scenagdo®ds on a simple case in which
there are three classes of participants in the asset mankegjroups of traders, fundamentalists

and trend followers, and a market maker, as described irotleving discussion.

2.1. Market Fractions and Market Clearing Price under a Market Maker. Consider an
asset pricing model with one risky asset and one risk freetaliss assumed that the risk free

asset is perfectly elastically supplied at a gross returR ef 1 + /K, wherer stands for a
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constant risk-free rate per annum alidstands for the trading frequency measured in a year.
Typically, K = 1,12,52 and250 for of trading period of a year, a month, a week and a day,
respectively. To focus on the stylized facts observed fraitygrice movement in financial
markets, we seledt’ = 250 in our following discussion.

Let P, be the (ex dividend) price of the risky asset at timand {D,} be the stochastic

dividend process of the risky asset. Then the wealth of &@ypiaderk att + 1 is given by
Whit1 = RWhy + [Pig1 + Dipr — RP 2y, (2.1)

whereW,,, and z,, are the wealth and the number of shares of the risky assehgqsed by
trader# att, respectively. Let;, ; andV}, , be thebeliefsof type i traders about the conditional
expectation and variance of quantities at 1 based on their information set at timeDenote

by R, the excess capital gain on the risky asset-atl, that is
Ry1 = Poy1+ Dy — RP, (2.2)
Then it follows from (2.1) and (2.2) that
Eni(Wit1) = RWy + Epi(Ri1) 2t Vit(Wig1) = szvch,t(RtH). (2.3)

Assume that trade-has a constant absolute risk aversion (CARA) utility functioti the risk
aversion coefficient;, (e.g. U, (W) = —e~®W). By expected utility maximization, traders
optimal demand on the risky assgt, is given by

_ Eng(Rig)
Zh,t — 5 N

= ) 2.4
ahvh,t(RtJrl) ( )

Given the heterogeneity and the nature of asymmetric irdéion among traders, we con-
sider two most popular trading strategies correspondingvtotypes of boundedly rational
traders—fundamentalists and trend followers, and thdiefsewill be defined in the following
discussion. Assume the market fraction of the fundamestsadind trend followers is; andn,
with risk aversion coefficieni; anda,, respectively. Lein = ny — n. € [—1,1]. Obviously,
m = 1 and—1 correspond to the cases when all the traders are fundanséntal trend fol-

lowers, respectively. Assume a zero supply of outside shdreen, using (2.4), the aggregate
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excess demand per trader () is given by

14+m El,t [Rt+1] 1—m E27t[Rt+1}
2 Cllvl,t[RtH] 2 a2‘/2,t[Rt+1]‘

(2.5)

Zet =MNf21p + Nekogy =

To complete the model, we assume that the market is clearadnbgrket maker. The role
of the market maker is to take a long (when < 0) or short (wherx,; > 0) position so as to
clear the market. At the end of periodafter the market maker has carried out all transactions,
he or she adjusts the price for the next period in the direatfthe observed excess demand.
Let 1 be the speed of price adjustment of the market maker (thisisanbe interpreted as the
market aggregate risk tolerance). To capture unexpectekkt@ews or noise created Iopise
traders we introduce a noisy demand tednwhich is an i.i.d. normally distributed random

variablé with 6, ~ A(0, 02). Based on these assumptions, the market price is determyned b
Py = P+ pzey + oy

From (2.5), this becomes

Pii=P+E(1+m)

. B[Ry (1- )M +9,. (2.6)

alvl,t [Rt+1] alvz,t [Rt+1]

It should be pointed out that the market maker behavior is thodel is highly stylized. For
instance, the inventory of the market maker built up as alre$the accumulation of various
long and short positions is not considered. This could afiecor her behavior and the market
maker price setting role in (2.6) could be a function of theemtory. Allowing to be a function
of inventory would be one way to model such behavior. We ghaildo seek to explore the

micro-foundations of the coefficiept Such considerations are left to future research.

2.2. Fundamentalists. Denote byF, = {P,, P,_1,--- ; Dy, D;_1,- - - } the common informa-
tion set formed at timé. We assume that, apart from the common information set,uhea-

mentalists havesuperionnformation on the fundamental valug;’, of the risky asset, which is

5In this paper, we assume a constant volatility noisy demandtae volatility is related to an average fundamental
price level. This noisy demand may also depend on the maried.pTheoretically, how the price dynamics are
influenced by adding different noisy demand is still a diffiGaroblem. Here, we focus on the constant volatility
noisy demand case and use Monte Carlo simulations andisttanalysis to gain some insights into this problem.
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assumed to follow a stationary random walk proéess
Pi,=Pl+os&), &~N(01), o0.>0  Pf=P>0, (2.7)

whereg¢, is independent of the noisy demand proc&sd his specification ensures that neither
fat tails nor volatility clustering are brought about by thdamental price process. Hence,
emergence of any autocorrelation pattern of the returnefigky asset in our late discussion
would be driven by the trading process itself.

For the fundamentalists, because they realize the exstanton-fundamental traders, such
as trend followers to be introduced in the following discossthey believe that the stock price
may be driven away from the fundamental value. More pregiset assume that the conditional

mean and variance of the fundamental traders are, resplgctiv
E1y(Pria) = P+ a(Ply — By), Vii(Piy1) = o7, (2.8)

whereo? is a constant, and € [0, 1] is the weight on the fundamental price which measures
the speed of price adjustment of the fundamentalists totve@dundamental value. That is,
the expected price of the fundamentalists is a weightedageeof the fundamental price and
the latest market price, while the variance of the price isr@stant. In general, the fundamen-
tal traders believe that markets are efficient and priceserge to the fundamental value. A
high (low) weight ofa leads to a quick (slow) adjustment of their expected prieeatds the

fundamental price.

2.3. Trend followers. Unlike the fundamentalists, trend followers are technicaders who
believe the future price change can be predicted from vanatterns or trends generated from
the history of prices. The trend followers are assumed trapgtate the latest observed price
change over prices’ long-run sample mean and to adjust vaeiance estimate accordingly.

More precisely, their conditional mean and variance ararassl to satisfy
Esi(Piy1) = Bo+v(P — w), Vou(Piy1) = U% + byvy, (2.9)

wherey, b, > 0 are constants, and andv, are sample mean and variance, respectively, which

may follow some learning processes. The parameteeasures the extrapolation rate and high

6As we know that the fundamental value driven by this randonk weocess can be negative.
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(low) values ofy correspond to strong (weak) extrapolation from the trefidvieers. The coef-

ficientb, measures the influence of the sample variance on the comalitiariance estimated by
the trend followers who believe in a more volatile price moeat. Various learning schenfes

can be used to estimate the sample mgaand variance. In this paper we assume that

Uy = (SUt_l + (1 - 5)Pt, (210)

vy = 0V + 5<1 - 5)(Pt - ut—l)Qv (2.11)

wherej € [0, 1] is a constant. This is a limitingeometric decay procesgen the memory lag
length tends to infinit§ The selection of this process is two fold. First, tradersit® put a
higher weight to the most recent prices and lesser weigliteartore remote prices when they
estimate the sample mean and variance. Secondly, we btievinis geometric decay process
may contribute to certain autocorrelation patterns, elieddng memory feature discussed late.

In addition, it has the mathematical advantage of analytiaatability.

2.4. The Complete Stochastic Model. To simplify our analysis, we assume that the dividend
processD; follows a normal distributiorD; ~ N'(D, %), the expected long-run fundamental
valueP = D/(R — 1), and the unconditional variances of price and dividend tvettrading

period are related by? = go?.° Based on assumptions (2.8)-(2.9),

Bia(Res1) = Pi+ (Pl = B) + D= RP = a(Pjy, — P) - (R-1)(R - P),

Vie(Rer) = (1 + q)oy

and hence the optimal demand for the fundamentalists is djye

L (P, —P)— (R—1)(P— D). (2.12)

A= ai(1+ q)o?

’For related studies on heterogeneous learning in assetgnmdels with heterogeneous agents who's conditional
mean and variance follow various learning processes, vee tefChiarella and He (20@32004).

8See Chiarellat. al.(2006) for the proof. Basically, a geometric decay probghirocess(1 — §){1,6,62,---}

is associated to the historical pricé®;, P;_1, P;_o,--- }. The paramete§ measures the geometric decay rate.
Foro = 0, the sample mean, = P;, which is the latest observed price, while= 0.1, 0.5,0.95 and0.999 gives

a half life of 0.43 day, 1 day, 2.5 weeks and 2.7 years, resgdet

9 In this paper, we choose? = 0%/K andq = r2. This can be justified as follows. Lets be the annual
volatility of P, andD; = rP; be the annual dividend. Then the annual variance of the elidd?, = r%0%.
Thereforeo?, = 07, /K = r?0%/K = r?07. For all numerical simulations in this paper, we choose= a; =
0.8, P = $100,r = 5% p.a. ¢ = 20% p.a., K = 250. CorrespondinglyR = 1 + 0.05/250 = 1.0002,0? =
(100 x 0.2)2/250 = 8/5 ando?, = 1/250.
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In particular, whenP; = P,

(a+R=-1)(P—P)

= 2.13
o ai(1+ q)ot (213)
Similarly, from (2.9), (usingD = (R — 1)P)
Eyy(Rey1) = P+ (P —w)+D—RP =~(P,—w) - (R—1)(P, - P),
Vau(Ris1) = 07 (1 +q+buy),
whereb = b, /o?. Hence the optimal demand of the trend followers is given by

az03(1+q+bvy)

Subsisting (2.12) and (2.14) into (2.6), the price dynamiwder a market maker is determined

by the following 4-dimensional stochastic difference sys{SDS hereafter)

( pl 14+m \ 5
Pt+1=Pt+§ W[Q(Ptﬂ—ﬂ)—(R—U(E—P)]
V(P —uw)—(R=1)(P,-P)]  «

+ 0y,
az03 (1 +q+bvy) '

+(1—m)

2.1
w = ouy + (1= 0)F, (2.15)

vp =061+ 6(1 = 6) (P, — w1)?,

\ Py = P14 o0&l

It has been widely accepted that stability and bifurcatioeoty is a powerful tool in the
study of asset-pricing dynamics (see, for example, Day amahlg (1990), Brock and Hommes
(1997, 1998) and Chiarella and He (2002, 2003 However, the question how the stability
and various types of bifurcation of the underlying detelistia system affect the nature of the
stochastic system, including stationarity, distributeord statistic properties of returns, is not
very clear at the current stage. Although the techniquesudsed in Arnold (1998) may be
useful in this regard, the mathematical analysis of noalis¢ochastic dynamical system is still
difficult in general. In this paper, we consider first the esponding deterministic skeleton
of the stochastic model by assuming that the fundamenteg sigiven by its long-run value
P¥ = P and there is no demand shocks, ifg. = o, = 0. We then conduct a stochastic analysis

of the stochastic model through Monte Carlo simulation.
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3. DYNAMICS OF THE DETERMINISTIC MODEL

When the long run fundamental price is a constant and there isoisy demand, the 4-
dimensional stochastic system (2.15) reduces to the folgp®-dimensional deterministic dif-

ference systendDS hereafter)

1+m (1—04—R)(Pt—P)}+1—m{7(Pt—ut)—(R—1)(Pt—P)

Py =P+
i tTAT a;(1+ q)o? 2 a0?(1+q+ bvy)

b

Uy = 5ut_1 + (1 — 5)Pt,

Vs = 5/Ut—1 + 5(1 — 5)(Pt — Ut_l)Q.
(3.1)

The following result on the existence and uniqueness oflgtetate of the DDS is obtained.
Proposition 3.1. For DDS (3.1),(P;, us, v;) = (P, P,0) is the unique steady state.

Proof. See Appendix A.1. O

We call this unique steady state the fundamental steads. skatthe following discussion,
we focus on the stability and bifurcation of the fundamestahdy state of the DDS. We first

examine two special cases= +1, before we deal with the general cagsec (—1,1).

3.1. Thecasem = 1. In this case, the following result on the global stabilityddnfurcation

iS obtained.

Proposition 3.2. For DDS (3.1), if all the traders are fundamentalists, iz@. = 1, then the

fundamental priceP is globally asymptotically stable if and only if

2a,(1 + q)o?

0 = 3.2
<K< Ho (R+a—1) (32)
In addition, i« = 11 leads to a flip bifurcation withh = —1, where
R+a—-1
A=1—p———. 3.3
Mal(l +q)o} (3:3)
Proof. See Appendix A.2. O

The stability region of the fundamental pri¢gis plotted in(a, 1) plane in Fig.A.1 in Ap-
pendix A.2, whereuq (1) = [2a1(1+¢)o?]/R for a = 1 andpo1(0) = [2a1(1+q)o?]/(R—1)
for o = 0. The stability condition (3.2) is equivalent td R + o — 1) < 2a,(1+ ¢)o?, implying
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that the fundamental price is locally stable as long as theti@ns from both the market maker
and the fundamentalists are balanced (i.e. a high (lowg)balanced by a low (high) so that
the produciu(R + « — 1) is below the constar®u, (1 + ¢)o?). Given the stabilizing role (to the
fundamental price) of the fundamentalists, over-reastfoom either the fundamentalists or the
market maker will push the market price to flipping aroundftiredamental price. Numerical
simulations indicate that the over-reaction from eitherrniarket maker or the fundamentalists

can push the price to explode (through the flip bifurcation).

3.2. Thecasem = —1. Similarly, we obtain the following stability and bifurcati result when

all traders are trend followers.

Proposition 3.3. For DDS (3.1), if all the traders are trend followers (thatis= —1), then

(1) for 6 = 0, the fundamental steady state is globally asymptotica#iple if and only if
0 <pu<Q/(R—1), whereQ = 2a,(1 + ¢)of. In addition, a flip bifurcation occurs
along the boundary. = Q/(R — 1);

(2) for § € (0,1), the fundamental steady state is stable for

fh1 0<vy<%
O<p<
fh2, Yo < 7,
where
_ Q _ (1-9)Q _ (1+9)°
=R it T wp—weny 0BV

In addition, a flip bifurcation occurs along the boundary= i, for 0 < v < 7, and a

Hopf bifurcation occurs along the boundaty= fi, for v > 7.

Proof. See Appendix A.3. O

The local stability regions and bifurcation boundariesiadécated in Fig. A.2 (a) foh = 0
and (b) foré € (0,1) in Appendix A.3, wherey, = (1 4 9)(R — 1)/(20) is obtained by let-
ting i = Q/(R — 1). Given thatR = 1 + r/K is very close to 1, the value o¢f along
the flip boundary is very large any, is close to 0. This implies that, far = 0, the funda-
mental price is stable for a wide range of values.ofFor € (0, 1), the stability region is

mainly bounded by the Hopf bifurcation boundary. Along thepHboundary,. decreases as
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~ increases, implying that the stability of the steady stat@aintained when the speed of the
market maker and the extrapolation of the trend followeesb@lanced. When the fundamental
price becomes unstable, the Hopf bifurcation implies thatbarket price fluctuates (quasi) pe-
riodically around the fundamental price. Intuitively, etolation of the trend followers results
a sluggish reaction of the market price to the fundamenteépiThe interplay of such sluggish
reaction from the trend followers and the stabilizing fofican the fundamentalists leads the
market price fluctuate around the fundamental price. Nuraksimulations indicate that, near
the Hopf bifurcation boundary, the price either convergasaalically to the fundamental value
or oscillates regularly or irregularly. In addition, the pfdifurcation boundary shifts to the left
whenJ increases. This implies that the steady state is stalgliimen more weights are given

to the most recent prices.

3.3. Thegeneral casem € (—1,1). We now consider the DDS with both fundamentalists and
trend followers by assuming. € (—1,1). Leta = as/a; be the ratio of the absolute risk
aversion coefficients. It turns out that the stability anfditmation of the fundamental steady
state are determined by the geometric decay rate and eldtimporate of the trend followers,
the speed of the price adjustment of the fundamentalistardsmthe fundamental steady state,

and the speed of adjustment of the market maker towards thestaggregate demand.

Proposition 3.4. For DDS (3.1) withm € (-1, 1),

(2) if 6 = 0, the fundamental steady state is stable(fer © < u*, where

. 2Q
o RB-DA-m) +aR+a-1)1+m)

In addition, a flip bifurcation occurs along the boundary= * with « € [0, 1];

(2) if 6 € (0,1), the fundamental steady state is stable for

1 0<vy<%
O<pu<

2, Yo <,
where
146 Q1 1-5 Q 1
M1 = 5 1_m72_,77 H2 = 5 1—m"}/—')/17

1+m (14 46)? 1446

=(R-1 —1)— = = :
n=(R-1)+aR+a )1—m’ 0 5 M=oy
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In addition, a flip bifurcation occurs along the boundary= 1; for 0 < v < v, and a

Hopf bifurcation occurs along the boundaty= 5 for v > .

Proof. See Appendix A.3. O

I’L 1 \ 7/ 1
| \ // |
. \\ /7 I
Flip Boundaryu = Jg // |

,aO | _ _ _4I_____ 7 Hoproundlfa\ryu:uz
| |
| \ |
I \\\ |
|
_ |

HE \\\
~
il Yo Y2

FIGURE 3.1. Stability region and bifurcation boundaries fore (—1,1) and
J € (0,1).

The model with the fundamentalists only can be treated agerdgated case of the complete
model withé = 0. Ford € (0, 1), the fundamental steady state becomes unstable throumgh eit
flip or Hopf bifurcation, indicated in Fig.3.1, where

_ 2 _ 20Q
B (R—1)(1—m)+a(R+a—-1)(1+m)

Variations of the stability regions and their bifurcaticsumdaries characterize different impacts
of different types of trader on the market price behaviomsharized as follows.
The market fractiolmas a great impact on the shape of the stability region atitadaries.

It can be verified that, o, 72 anduy, up iNncrease asn increases. This observation has two
implications: (i) the local stability region of the pararaet(~, 1) is enlarged as the fraction of
the fundamentalists increases and this indicates a ialgileffect of the fundamentalists; (ii)
the flip (Hopf) bifurcation boundary becomes dominant asftaetion of the fundamentalists
(trend followers) increases, correspondingly, the mapkeee displays different behavior near
the bifurcation boundaries. Numerical simulations of DI3SL] show that the price becomes
explosive near the flip bifurcation boundary, but convergesither periodic or quasi-periodic

cycles near the Hopf bifurcation boundary.
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The speed of price adjustment of the fundamentalists tasvidrel fundamental valugas an
impact that is positively correlated to the market fractidhis observation comes from the fact
that, ase increasesy; and hencey, and~, increase. In other words, an increase (decrease) of
the fundamentalists fraction is equivalent to a increaser@hse) of the price adjustment speed

of the fundamentalists toward the fundamental value.

The memory decay rataf the trend followers has a similar impact on the price beraas
the speed of the price adjustment of the fundamentalists. dd@s is because, adecreases,
both~, and~, increase. In particular, a@— 0, 70,72 — +oc and the stability and bifurcation
is then characterized by the model with the fundamentadistg On the other hand, as—

1, both~, and~; tend to~; whilst fiy tends to infinity and the stability and bifurcation are
then characterized by the model with the trend followersy.oit addition, iz, increases as
decreases, implying the steady state is stabilizing asl t@iowers put more weights on the
more recent prices.

The risk aversion coefficientsave different impact on the price behavior, depending en th
relative risk aversion ratio. Note that and hencei, increases fon = ay/a; < o and
decreases fo# > a*, wherea* = (R —1)/(R+a —1) € (1 — 1/R,1]. Hence the local
stability region is enlarged (reduced) when the trend fadls are less (more) risk averse than
the fundamentalists in the sensengf< a*a; (az > a*ay).

Overall, in terms of the local stability and bifurcation betfundamental steady state, a sim-
ilar effect happens for either a high (low) geometric decg,ror a high (low) market fraction
of the trend followers, or a high (low) speed of the price atinent of the fundamentalists to-
wards the fundamental value. This observation makes usotrate our statistical analysis of

SDS (2.15) onn anda.

4. STATISTICAL ANALYSIS OF THE STOCHASTIC MODEL

In this section, by using numerical simulations, we examiagous aspects of the price
dynamics of the stochastic heterogeneous asset pricingl{®d5) where both the noisy fun-
damental price and noisy demand processes are presentdnalysis is conducted by estab-
lishing a connection of the price dynamics between SDS j2ah8 its underlying DDS (3.1).

In so doing, we are able to obtain some theoretical insigtitsthe generating mechanisms of



16 HE AND LI
various statistical properties, including those econoimptoperties and stylized facts observed
in high frequency financial time series.

Our analysis is conducted as follows. As a benchmark, welfiisfly review the stylized
facts based on the S&P 500. Secondly, we study the conndmtioveen the limiting behavior
of the SDS and the stable attractors of the deterministitt Bf&S. This limiting behavior is
studied from two different aspects: dynamical behavior lemding distribution. To study the
dynamical behavior, we use the concept of random fixed poiekamine the convergence of
the market price series in the long-run. The limiting bebagan also be studied by examin-
ing the limiting distributions from the observed time seridt is found that the asset prices of
SDS (2.15) converge to the random fixed point when the DDS (84 either a stable steady
state or a stable attractor. When the price of DDS explodesptice series of SDS does not
converge to a random fixed point, but it does converge to arigwt distribution. Thirdly, we
use Monte Carlo simulations to conduct a statistical analysd test on the convergence of the
market prices to the fundamental price. It is commonly lelicthat the market price is mean-
reverting to the fundamental price in the long-run, but it daviate from the fundamental price
in the short-run. By using numerical simulation, we analyzkat conditions under which
this is hold. Finally, by examining the autocorrelation (AsZjucture and limiting distribution
of (relative) returns near different types of bifurcation® study the generating mechanism of
different AC patterns. Most of our results are very intigt@nd can be explained by various
behavioral aspects of the model, including the mean renxgedf the fundamentalists, the ex-
trapolation of the trend followers, the speed of price ampent of the market maker, and the

market dominance. The statistical analysis and tests aedl@n Monte Carlo simulations.

4.1. Financial Time Series and Stylized Facts. As a benchmark, Fig. B.1 and Table B.1lin
Appendix B give a brief statistical analysis of the S&P 5aihirAug. 10, 1993 to July 24, 2002.
Fig. B.1 includes the plots of the prices, the returns and ¢ineesponding density distribution,
autocorrelation coefficients (ACs) of the returns, the altsodnd the squared returns. Table
B.1 presents the summary statistics for the returns. Thag stame common stylized facts in
high-frequency financial time series, including excessiiitly (relative to the dividends and

underlying cash flows), volatility clustering (high/low @wations are followed by high/low
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fluctuations), skewness (either negative or positive) atoe®s kurtosis (compared to the nor-
mally distributed returns), long range dependence (infsggimt ACs of returns, but significant
and decaying ACs for absolute and squared returns), etc. Eomarehensive discussion of
stylized facts characterizing financial time series, wenef Pagan (1996).

Recent structural models on asset pricing and heterogehetiats have shown a relatively
well understood mechanism of generating volatility clusig skewness and excess kurtosis.
However, these are less clear on the mechanism of genetatiggrange dependené?.in
addition, there is a lack of statistical analysis and testshese mechanisms. Our statistical
analysis is based on Monte Carlo simulations, aiming to &stah connection between vari-
ous AC patterns of the SDS and the bifurcation of the undeglypDS. Such a connection is
necessary to understand the mechanism of generatingestyfrts, to replicate econometric
properties of financial time series, and to calibrate theehtmwlfinancial data.

In the following discussion, we choose the annual volgtitit the fundamental price to be
20% (hencer, = (20/v/K)% with K = 250) and the volatility of the noisy demang = 1,
which is about 1% of the average fundamental price lé&ve! $100. For all of the Monte Carlo
simulation, we run 1,000 simulations over 6,000 time pesiadd discard the first 1,000 time
periods to wash out possible initial noise effects. Eachukation builds on two independent
sets of random numbers, one is for the fundamental pricetendther is for the noisy demand.
The draws are i.i.d. across the 1,000 simulations, but theessets of draws are used for

different scenarios with different sets of parameters.

4.2. Random Fixed Point and Limiting Behavior. One of the primary objectives of this pa-
per is to analyze the limiting behavior of SDS (2.15). For D@), the limiting behavior is
characterized by either stable fixed points or various statitactors. For a stochastic dynamic
system, the limiting behavior is often characterized bti@tarity and invariant probability dis-
tributions. We examine invariant distribution propert#<sSDS when the prices of DDS either
converge to a stable attractor (steady state or closed)ayrcéxplode.

On the other hand, as pointed out iwHn and Chiarella (2005), the invariance distribu-
tion does not provide information about the stability of atisinary solution generated by the

stochastic difference system. The theory of random dyransigstem (e.g. Arnold (1998))

10see Lux (2004) for a recent survey on possible mechanisnmergiiimg long range dependence, including coex-
istence of multiple attractors and multiplicative noiseq@ss.
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provides the appropriate concepts and tools to analyzelsgraths and investigate their limit-
ing behavior. The central concept is that afdom fixed poirtt and its asymptotic stability,
which are generalizations of the deterministic fixed poird ds stability. Intuitively, a random
fixed point corresponds to a stationary solution of a staahdsgference system like (2.15) and
the asymptotic stability implies that sample paths corwdaythe random fixed point point-
wisely for all initial conditions of the system. We are irgsted in the existence and stability of
arandom fixed point of SDS (2.15) when the deterministic DB.$)(displays a stable attractor.
Since SDS (2.15) is nonlinear, a general theory on the existand stability of a random fixed
point is not yet available and we conduct our analysis by migaksimulations.

For illustration, we choose the parameters as follows
y=21, §=085 p=02 m=0, w,=05 and a=1,050.10  (4.1)

Recall thatm = 0 implies that there are equal numbers of fundamentalisthadists in the
market. For DDS (3.1) with the set of parameters (4.1), apgliProposition 3.4 implies that the
fundamental value is locally asymptotically stable for= 1 and unstable forv = 0.5,0.1, 0.
Our numerical simulations results for DDS (3.1) with di#fat values ot are illustrated in Fig.
4.1. Fig. 4.1 (a) shows the time series of prices with diffénaitial values forae = 0.1,0.5
and1, Fig. 4.1 (b) shows the corresponding limiting phase ploteirms of( 7, u;), and Fig.
4.1 (c) shows the limiting probability distributions of tpeices fora = 0.1 and0.5 over time
period fromt = 1,001 to¢t = 10,000. Fora = 0, the prices explode. One can see that,
for « = 1, the market prices with different initial values convergethe fundamental price.
However, fora. = 0.5 and 0.1, with different initial values, prices do not corgeeto each other,
but converge to the same quasi-periodic cycle (this is detnated by the closed orbit in the
phase plots). In other words, the prices with differentahivalues converge to each other in
limiting distribution, as indicated by the price probatyiliimiting distributions in Fig. 4.1 (c).
For parameter set (4.1), Fig.4.2 shows the price dynamitiseoorresponding SDS (2.15)
with four different values otv = 1,0.5,0.1,0 and (arbitrarily) different initial conditions but
with a fixed set of noisy fundamental value and demand presedi$ is found that, forv =

1,0.5 and0.1, respectively, there exists a random fixed point and prica#s avfferent initial

e refer to Arnold (1998) for mathematical definitions of dam dynamical systems and of stable random
fixed points and Bhm and Chiarella (2005) for economical applications to igsseing with heterogeneous mean
variance preferences.
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FIGURE 4.1. Price series with different initial values far= 0.1,0.5 and1
(a), phase plots ofP;, u;) (b) and limiting probability distributions of the prices
for a = 0.1 and0.5.

conditions converge to the fixed random point in the long rumfact, the convergence only
takes about 40, 90 and 450 time periodsdot 1,0.5 and 0.1, respectively. However, there
is no such stable random fixed point far = 0 and prices with different initial conditions
lead to different random sample paths. In fact, the samlespare shifted by different initial
conditions. This result is very interesting. Fer= 1, the prices of the DDS with different
initial values converge to the stable steady state, whigepitices of the SDS with different
initial values converge to a random fixed point. ko 0.5 and 0.1, the prices of the DDS with
different initial values do not converge to each other, @/ftile prices of the SDS with different
initial values converge to a random fixed point.

The long-run behavior can also be characterized by theitighgrobability distribution, this
is given in Fig. 4.3 for different values af. In Fig. 4.3 (a), the limiting probability distribu-
tions of the market prices and the underlying fundameniaepver time period = 1,001 to
t = 10,000 for « = 1,0.9,0.5,0.1, 1 are plotted. The distributions look very similar to the one
for the fundamental price far = 1,0.9, 0.5, 0.1, but different fora: = 0 (in which the prices of
the DDS explode). In Fig. 4.3 (b), we observe a similar feafar the limiting return distribu-
tions. However, unlike the price distributions, the retdrstributions fora = 1,0.9,0.5,1 are
very different from that for the fundamental price, theysdlare some non-normality features,
including skewness and high kurtosis, as indicated by thenetatistics and normality tests in

Table B.2 in Appendix B. Therefore, we obtain stable invard@istribution (characterized by
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FIGURE4.2. Prices withn=1 (a), 0.5 (b), 0.1 (c), and 0 (d) for different initial cotidns.

the stable random fixed point) for the SDS when the DDS dispdtgble attractors. Far= 0,

the price of the DDS explodes, while the prices of the SDS diiifierent initial values stabilize
the price process to different random paths. However, th&paverge to the same probability
distribution, as indicated in Fig.4.3. This analysis ithases different characteristics between a

stable random fixed point and a stable invariance distobti

4.3. Convergence of Market Price to the Fundamental Value. We now turn to the relation
between the market price and the fundamental price. It isnconty believed that the market
price is mean-reverting to the fundamental price in the long but it can deviate from the
fundamental price in the short-run. The following discassindicates that this is true under
certain market conditions.

As we know from the local stability analysis of DDS (3.1) arcr@ase i has a similar

effect as an increase im. The previous discussion illustrates that, for fixed= 0, as«

121 fact, this result holds for other selections of paranetdiheoretically, how the stability of the deterministic
system and the corresponding stochastic system are retatedifficult problem in general. It is well known
from the stochastic differential equation literature (esge the examples in Mao (1997), pages 135-141) that,
for continuous differential equations, adding noise cavehdouble-edged effect on the stability—it can either
stabilize or destabilize the steady state of the diffeastmguations. For our SDS (2.15), numerical simulations
show that adding a small (large) noise can stabilizing édekte) the price dynamics when parameters are near
the flip bifurcation boundary of the DDS (3.1).
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FIGURE 4.3. Limiting probability distributions of prices (a) aneturns (b) for
a=0,0.1,0.5 andl.

increases, the speed of convergence of the market priceetaatidom fixed point increases.
For SDS (2.15), it is interesting to know how the stable randixed point is related to the
fundamental value process. For the parameter set (4.1)epatrthe averaged time series of
the difference of market and fundamental pri¢eés- P based on Monte Carlo simulations in
Fig. 4.4. It shows that, as increases, the deviation of the market price from the furetaai
price decreases. That is, as the fundamentalists put moghteomn their estimated fundamental

price, the deviation of market price from the fundamentalgare reduced.

We conduct a statistical analysis by using Monte Carlo sitiaria for the given set of pa-
rameters (4.1) with four different values af The resulting Wald statistics to detect the dif-
ferences between market prices and fundamental pricesspogted in Table 4.1. The null
hypothesis is specified as, respectively,

e Case 1:H, : P, = P}, t = 1000, 2000, ..., 5000;

e Case 2H, : P, = P}, t = 3000, 3500, 4000, ..., 5000;
e Case 3H, : P, = P}, t = 4000, 4100, 4200, ..., 5000;
e Case4H,: P = P},t = 4000,4050, 4100, ..., 5000;

e Case 5,Hy : P, = P/,t = 4901,4902,4903...,5000, which refers to the last one hundred
periods;
e Case6H,: P, = P/, t =4951,4952, ...,5000, which refers to the last fifty periods.
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FIGURE 4.4. Time series of price differend® — P; with a=0 (top left); 0.1
(top right); 0.5 (second left); and 1 (second right).

Notice that the critical values corresponding to the ab@at statistics come from thg?

distribution with degree of freedom 5, 5, 11, 21, 100, andr&8pectively, at the 5% significant

level. We see that far = 0, all of the null hypothesis are strongly rejected at the 5§aificant

level. Fora = 0.5 and1, all of the null hypothesis cannot be rejected at the 5% Bagamit

level. We also see that whenincreases, the resulting Wald statistics decreases (e<@ege

5 with o« = 1). This confirms that when increasing, i.e. when the fundamentalists put more

weight on the fundamental price, the differences betweenthrket prices and fundamental

prices become smaller.

TABLE 4.1. Wald test statistics for the differences between theketgrice P,
and the fundamental pricg* for n; = n. = 0.5.

a=0 a=01 a=0.5 «a=1 Critical value
Casel 100.585 13.289 5.225 3.698 11.071
Case2 99.817 13.964 6.782 4.358 11.071
Case3 121.761 24.971 16.041 10.840 19.675
Case4 148.690 38.038 23.836 19.190 32.671
Case5 293.963 105.226 99.618 103.299 124.342
Case6 177.573 50.970 45.043 43.052 67.505
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As we know that an increase i has similar effect to an increase of the market fraction
of the fundamentalists. The above statistic analysis tmiés that, as the fundamentalists
dominate the market (as increases), the market prices follow the fundamental pridesely.
Trend extrapolation of the trend followers can drive thekegaprice away from the fundamental

price. This result is very intuitive.

4.4. Bifurcations and Autocorrelation Structure. Understanding the autocorrelation (AC)
structure of returns plays an important role in the markiatiehcy and predictability. It is often
a difficult task to understand the generating mechanism wbws AC patterns, in particular
those realistic patterns over different time periods olein financial time series. Itis believed
that the underlying deterministic dynamics of the stodhaststem play an important role in
the AC structure of the stochastic system. But how they aataelis not clear. In the following
discussion, we try to establish such a connection by anadyaanges of autocorrelation (AC)
structures and limiting probability distributions of thshastic returns when the parameters
change near the bifurcation boundaries of the underlyirigrdenistic model. The analysis
on the AC structure is conducted through Monte Carlo simutatiand the analysis on the
limiting distribution is conducted through the probalyilitistribution of returns over time period
t = 1,001 tot = 10,000 for the same underlying noise processes. These analyskadda
some insights into how particular AC patterns of the stottbasodel are characterized by
different types of bifurcation of the underlying deternsitic system.

From our discussion in the previous section, we know thatdbal stability region of the
steady state is bounded by both flip and Hopf bifurcation blaues in general. To see how the
AC structure changes near the different types of the bifioundoundary, we select two sets of
parameters, denoted by (F1) and (H1), respectively,

(Fl)a=1,7y=08,=>5,0 = 0.85,w,0 = 0.5 andm = —0.8, —0.5, —0.3, 0;

(Hl) a=1,7 =21, =043,6 = 0.85,w; o = 0.5 andm = —0.95, —0.5,0, 0.5,

For (F1) with different values of:, the steady state of DDS (3.1) is locally stabiélowever,
asm increases, we move closer to the flip boundaryor (H1), there exists a Hopf bifurcation
valuem € (0,0.005), the steady state is locally stable far= 0.5 > m and unstable fom =

13The solutions become exploded when parameters are neaigHaftircation boundary and hence we only
choose parameters from inside the stable region.

14This means that the difference between the givemd the corresponding flip bifurcation value(m) becomes
smaller asn increases. Itis in this sense that an increase is destabilizing the steady state.
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FIGURE 4.5. Monte Carlo simulation on the average ACs of returnifiore=
—0.8, —0.5,—0.3, 0 for the parameter s¢¥'1).

—0.95, —0.5,0 < m through a Hopf bifurcation. As: decreases, we are moving close to the
Hopf bifurcation boundary initially, and then crossing otlee boundary, and then moving away
from the boundary. Therefore, an increaseiiis stabilizing the steady state. It is interesting to
see that the market fraction has different stabilizingaff@ear different bifurcation boundaries.
For SDS (2.15), Figs. 4.5 and 4.6 report the average ACs dfwelaturn for four different
values ofm with parameter set (F1) and (H1), respectively. Tables BBEHA in Appendix
B report the average ACs of returns over the first 100 lags, tineber in the parentheses are
standard errors, the number in the second row for each latharetal number of ACs that
are significantly (at 5% level) different from zero amongQQGimulations. It is found that
adding the noise demand does not change the nature of ACsuofisét Given that there is

insignificant AC structure from the noisy returns of the fantental values, the persistent AC

15Noisy processes in our model do not change the qualitatiwganaf the AC of returns, however, they do change
the AC patterns of the absolute and squared returns. This isaddressed in He and Li (2015
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patterns displayed in Figs.4.5 and 4.6 indicate some caoiomsdetween AC patterns of SDS
(2.15) and the dynamics of the underlying DDS (3.1).
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FIGURE 4.6. Monte Carlo simulation on the average ACs of returnifioe=
—0.95, —0.5,0, 0.5 for the parameter s¢fi1).

For the parameter set (F1), the fundamental value of therlyiig DDS (3.1) is locally stable
and the AC structure of returns of SDS (2.15) changes as tlameders are moving close to
the flip bifurcation boundary. For the deterministic modet, know that an increase ot has
a similar effect to an increase of the speed of price adjustment of the fundamentalistg, or
the speed of price adjustment of the market maker. Correspgnol the case ofn = —0.8
in Fig. 4.5, anunder and over-reaction pattern characterized by oscillatory decaying ACs
with AC(i) > 0 for small lags followed by negative ACs for large lags is oliedrwhen the
parameters are far away from the flip bifurcation boundanguitively, this results from the
constantly price under-adjustment from either the fundaaiests or the market maker. As
the parameters are moving toward the flip bifurcation bomwndsuch as in the case af =
—0.5, —0.3 in Fig. 4.5, arover-reaction pattern characterized by increasing ACs withi' (i) <

0 for small lags appears. As the parameters move closer to the flip boundetyas whem: =
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0 in Fig. 4.5, this over-reaction pattern becomesrang over-reaction pattern characterized

by an oscillating and decaying ACs which are negative for edg and positive for even lags.
These results are very intuitive. When the market fractidricefundamentalists are small, it
is effectively equal to a slow price adjustment from either fundamentalists or market maker,

leading to under-reaction. As increases, such adjustment becomes strong, leading teean ov
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The limiting distributions of returns and the correspomgdatatistics near the flip bifurcation
boundary for the parameter ggt'1) with different values ofn are given in Fig. 4.7 (a) and
Table B.5 in Appendix B, respectively. Itis observed that #tems are not normally distributed
with positive skewness and high kurtosis for all values0fThis non-normality underpins the
strong AC structure displayed in Fig. 4.5. In addition,sasncreases, the standard deviation
increases because of the over-reaction of the fundamsistakar the flip bifurcation boundary.

Near the Hopf bifurcation boundary, the AC structure bebaliferently when parameters
cross the Hopf boundary from the unstable region to the stadglion, see Fig. 4.6. For small
m, for examplen = —0.95, —0.5, the steady state of the deterministic model is unstablatand
bifurcates to either periodic or quasi-periodic cycles. the stochastic model,sirong under-
reaction AC pattern characterized by significantly decaying positi¢’(i) for small lags: and
mis observation, one can see that both the fundalstnand market maker need to react to the market

price ina balanced wajn order to generate insignificant AC patterns observed infital markets. Essentially,
this is the mechanism we are using to characterizing thedange dependence in the following subsection.
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insignificantly negativedC (i) for large lags, as illustrated in Fig. 4.6 fomn = —0.95.2" This

Is partially due to the dominance of the trend followers whitoiv the lagged learning process.
As m increases, for example to = —0.5 and0, the trend followers becomes less dominated.
As the result, the strong under-reaction pattern is replégean over-reaction pattern. As
increases further, for exampleto = 0.5, the steady state of the deterministic model becomes
stable and the AC structure of the stochastic return in Egreduces to an insignificant under-
reaction pattern.

The limiting distributions of returns and the correspormgdstatistics near the Hopf bifurca-
tion boundary for the parameter $éf1) for different values ofn are given in Fig. 4.7 (b) and
Table B.6 in Appendix B, respectively. Different from the poais case near the flip bifurcation
boundary, the returns appear to be closer to normal disimitnas indicated by the probabil-
ities of the Jarque-Bera tests) with less significant skesvaesl kurtosis. This underpins the
insignificant AC structure displayed in Fig. 4.6.

The above discussion is based®nr= 1. Similar results are observed far< 1. Fig. B.2 in

Appendix B plots the AC patterns for the following set of pasders:
(FH) : a=0.5,v7v=0.8,u=>50=0.85, m = —0.9,—-0.5,0,0.9.

In this case, small values ot are close to the Hopf boundary and large values.@ire close to
the flip boundary. As we can see from the AC patterns in Fig. Ba®, tasn increases, the AC
patterns change from strong under-reaction to under- aadreaction, and to over-reaction,
and then to strong over-reaction.

In all cases, the ACs decay and become insignificant afterr8tddiv lags (the first 5 lags for
under/over-reaction and the first 10 lags for strong reaktiBriefly, activity of the fundamen-
talists (either high fraction or high speed of price adju=tith are responsible for over-reaction
AC patterns and extrapolation from the trend followers asponsible for the under-reaction
AC patterns. In addition, a strong under-reaction AC pagtef SDS is in general associated
with Hopf bifurcation of the DDS, a strong over-reaction Aattern is associated with flip bi-
furcation, and under and over-reaction AC patterns arecagsa with both types of bifurcation
(depending on their dominance). This statistical analysiboth the AC structure and limiting
mcture discussed here are actually combined o#@sof the under-reacting trend followers and over-

reacting fundamentalists. This leads price to be undeatedafor short lags, over-reacted for medium lags, and
mean-reverted for long lags.
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distribution gives us insights into how the AC structure loé ISDS are affected by different

types of bifurcation of the underlying DDS.

4.5. Some other issues. One of the related issues to our early discussion is the tange
dependence founded in daily financial time series includimegS&P 500. It corresponds to
an insignificant AC pattern for the returns, but significa@ patterns for the absolute returns
and squared returns. Guided by the above analysis, we delewsting set of parameters:
a=0.1y=03u=2m=0,6 =0850b= 1. For this set of parameter, the steady state
fundamental pricé® of the DDS is locally asymptotically stable. The price anttine behaviors

are reported in Fig. 4.8.
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FIGURE 4.8. Time series on prices and returns, density distribwaiod auto-
correlation coefficients (ACs) of the returns, the squaréadns and the absolute
returns.

In this case, we observe from Figure 4.8 a relatively hightdais, volatility clusterings,
insignificant ACs for returns, but significant ACs for the algeland squared returns. This
result shows that the model is able to produce relativellisteavolatility clustering and the
long-range dependence. A more detailed analysis of thergi@mg mechanism on the long-
range dependence and statistical estimates and tests dradddnte Carlo simulation can be

found in He and Li (200B).
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Another related issue is the profitability and survivapitt the fundamentalists and chartists.
A systematic analysis of how different, fixed fractions effeurvivability and profitability under
the current framework is examined in He and Li (2805Such an approach is perhaps less
general than the strategy switching models (e.g. Brock anehries (1998)) in which the

market fractions are endogenous. We leave this to the fatudy.

5. CONCLUSION

It is interesting and important to see how the determinidgicamics and noise interact with
each other. A theoretical understanding of the connectiehseen certain time series proper-
ties of the stochastic system and its underlying detertingrdynamics is important but difficult,
and a statistical analysis based on various econometiig $eems necessary. Such an analysis
helps us to understand potential sources of generatinigtiediime series properties.

The model proposed in this paper introduces a market frastoodel with heterogeneous
traders in a simple asset-pricing framework. It contributethe literature by incorporating a re-
alistic trading period, which eliminates the untenabl&-free rate assumption. By focusing on
different aspects of financial market behavior includingketdominance and under and over-
reaction, we investigate the relationship between detestic forces and stochastic elements
of the stochastic model. A statistical analysis based ontM@arlo simulations shows that
the limiting behavior and convergence of the market pri@sloe characterized by the stabil-
ity and bifurcation of the underlying deterministic systelm particular, we show that various
under and over-reaction autocorrelation patterns of mstean be characterized by the bifur-
cation nature of the deterministic system. The model is &blgenerate some stylized facts,
including skewness, high kurtosis, volatility clustergugd long-range dependence, observed in
high-frequency financial time series.

It is worth emphasizing that all these interesting qualieaind quantitative features arise
from our simple market fraction model with fixed market fiant It would be interesting to
extend our analysis from the current model to a changingifnaenodel developed recently
in Dieci et al. (2006), in which some part of the market fractions are goserpoy the herd-
ing mechanism (e.g. Lux and Marchesi (1999)) and the otherfpilows some evolutionary
adaptive processes (e.g. Brock and Hommes (1997,1998) dtamice). Taking together the

herding and switching mechanisms and the findings in thiepage can better understand and
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characterize a large part of the stylized facts of financhdWe hope this will lead to better

models for calibrations.

APPENDIXA. PROOFS OFPROPOSITIONS

A.1. Proof of Proposition 3.1. For P; = P, the demand function for the fundamentalists becomes

(1-a—R)(P,— P)
ar(1+r2)o?
Let (P, ug, vi) = (Po,uo,vo) be the steady state of the system. ThEr w, vo) satisfies

(1—a—R)(Py—P)

21t =

Po=Py+ b |(1+m)

2 ar(1+1r2)o?
V(P —ug) = (R—1)(Py — P)
+(1—m) 202 (L4 12+ buy) , (A.1)
ug = dug + (1 — 6)P0, (A.2)
vy = dvg + 0(1 — 8)(Py — ug)*. (A.3)

One can verify that Py, ug, vo) = (P, P, 0) satisfiegA.1)-(A.3); that is the fundamental steady state is
one of the steady state of the system (3.1). It follows from (A.2)-(A.8)&a [0, 1) that Py = ug, vo =
0. This together with (A.1) implies tha®, = P. In fact, if Py # P, then (A.1) implies that

L R+ 21— R) =0, (A4)
as

ai
However, sincex € [0,1], R = 1+r/K > 1andm € [—1, 1], equation (A.4) cannot be hold. Therefore
the fundamental steady state is the unique steady state of the system.

A.2. Proof of Proposition 3.2. For P} = P andm = 1, equation (3.1) becomes

(R+a—1)(P, - P)

P1=F—p PRI (A.5)
which can be rewritten as
Piy1 — P =[P, - P, (A.6)
where
V=1 R+a-1

Mal(l +7r2)o?’
Obviously, from (A.6), the fundamental prideis globally asymptotically attractive if and only|i| <
1, which in turn is equivalent t6 < p < p,.

A.3. Proof of Propositions 3.3 and 3.4. For P; = P, system (3.1) is reduced to the following 3-
dimensional difference deterministic system

Py = Fi(Pug, vp),
U1 = Fo( Py, ue, vy), (A.7)
V1 = F5( P, ue, vy),
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FIGURE A.1. Stability region and bifurcation boundary for = 1.

where
B I3 (1—a—R)(P-P)
Fi(P,u,v) =P+ 5 (1+m) ar(LF r2)0?
V(P —u) — (R-1)(P -~ P)
1—
+d-m) aof(1+1r2+bv) ’
Fy(P,u,v) = du+ (1 —0)F1(P,u,v),
F3(P,u,v) = 6v + 6(1 — 6)(Fy —u)?.
Denote a
a=-2, Q = 2ax(1 4 r%)o?.
a
At the fundamental steady stat®, P, 0),
0F, 0
p— = —_— — — — 1 —
5P A 1+Q[(1+m)a(1 a—R)+ (1—m)(1+~—R)],
o uy(l —m) o0F;
T _p=_ it R
ou Q ’ ov 0
or, or, or

oP du v
Then the Jacobian matrix of the system at the fundamental steady/ s&aggven by

A B 0
J(Mm c o)

0 0 0
and hence the corresponding characteristic equation becomes
A'(\) =0,
where

T(\) =X\ —[A+6+ (1 -8B\ +JA.

31

(A.8)

It is well known that the fundamental steady state is stable if all three eiymsug satisfy |\;| < 1

(e =1,2,3), wherehs = 0 and\; 5 solve the equatiof’(\) = 0.

Ford = 0,I'(\) = A[A— (A+ B)]. The first result of Proposition 3.3 is then follows from < X\ =

A+ B <land\=—-1whenA+ B =1.
Foré € (0,1), the fundamental steady state is stable if

(). T(1) > 0;
(ii). T(=1) > 0;
(iii). 0A < 1.
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It can be verified that
(i). Fora €0,1],T(1) > 0 holds;
(i). I'(—1) > 0is equivalent to
either v >y or 0<y < and  0<p < pi,

where
1496 14+m
Y2 = W[(R_ +a(R+a- 1)@]»
146 Q1

=" I—my—~

(iif). The conditiond A < 1 is equivalent to
either <, or v >y and 0 < pu < pg,

where
14+m
1-6 Q1
s T—my -
Noting that, for§ € (0,1), v1 < v < 72, where
(1+ )2 1+m
= ~1 I R
0= \(R=1)+a(R+a— 1)

solves the equatiop; = ue. Also, i1 is an increasing function of for v < ~9 while 5 is a decreasing
function of v for v > ~7. Hence the two conditions for the stability are reduce® ta u < pup for
0 <~ <y and0 < u < s fory > 7. In addition, the two eigenvalues Bf\) = 0 satisfyA; = —1
and\y € (—1,1) wheny = p; and )\ o are complex numbers satisfying; o| < 1 whenu = po.
Therefore, a flip bifurcation occurs along the boundary 11 for 0 < v < 7 and a Hopf bifurcation
occurs along the boundary= p» for v > ~.

1t oo

Flip Boundaryu = % : )2( F |
1-9)(R-1

5 Flip Boundaryu = fi1
R-1 R—1

Hopf Boundaryu = jis

R—1 %0 72

@ d=0 (b) & € (0,1)

FIGURE A.2. Stability region and bifurcation boundaries for thentd follow-
ers and market maker model with= 0 (a) andj € (0, 1) (b).
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APPENDIXB. STATISTICAk(RESULTS
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FIGUREB.1. Time series on prices and returns, density distrilbugiod auto-
correlation coefficients (ACs) of the returns, the squaréadns and the absolute
returns for the S&P 500 from Aug. 10, 1993 to July 24, 2002.

TABLE B.1. Summary statistics of returns for the S&P 500.

Mean Median Max.
0.000194 0.000043 0.057361

Min. Std. Skew. Kurt.  Jarque-Bera
-0.070024 0.0083 -0.504638 8.21545 6.7274

TABLE B.2. Summary statistics of returns for=1,0.9, 0.5, 0.1, 0 and that for
the fundamental price corresponding to the Fig.4.3.

*

a=1 a=09 a=05 «a=01 a=20 Ty

Mean -7.64E-06 -9.75E-06 -1.89E-05 -3.38E-05 0.001124 1.60E-07
Median -8.90E-05 -7.07E-05 -0.000112 -0.000103 -3.01E-06 0.GD011

Max. 0.073622 0.072503 0.070621 0.071766 5.090196 0.045078
Min. -0.063119 -0.064302 -0.072816 -0.090166 -4.269424 -0.045625
Std. 0.013236 0.013129 0.012717 0.012432 0.101814 0.012689
Skew. 0.119060 0.117119 0.095103 0.038494 17.46148 -0.014001
Kurt. 5.061570 5.098182 5.291521 5.777193 1526.675 2.973831
Jarque-Bera  1794.489 1857.181 2203.019 3216.136 9.68E+08 656120

Probability 0.000000 0.000000 0.000000 0.000000 0.000000 0.736373
Sum -0.076388 -0.097484 -0.189223 -0.338318 11.23968 0.001602

Sum Sqg. Dev. 1.751808 1.723556 1.617170 1.545346 103.6512 1%0984
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TABLE B.3. Autocorrelations of; for the flip-set parameter'1).

Lag m = —0.8 m = —0.5 m = —0.3 m =10
1 0.2933(0.0169) -0.0256 (0.0149) -0.3076 (0.0136) -0.8602 (0)0084
993 455 1000 1000
2 0.1664 (0.0162) -0.0760 (0.0152) -0.0278 (0.0169) 0.6939 (0.0161)
988 935 720 1000
3 0.0636(0.0161) -0.0782 (0.0157) -0.0328 (0.0168) -0.5899 (0)0205
883 915 456 1000
4 -0.0112(0.0164) -0.0621 (0.0158) -0.0102(0.0168) 0.5123(0)0233
297 826 115 998
5 -0.0630 (0.0168) -0.0420 (0.0158) -0.0058 (0.0167) -0.4528 (0)025
868 625 79 986
6 -0.0958 (0.0168) -0.0262 (0.0158) -0.0034 (0.0167) 0.4033 (0)0262
949 379 70 978
7 -0.1116 (0.0169) -0.0134(0.0158) -0.0014 (0.0167) -0.3631 (0)026
968 163 72 969
8 -0.1148 (0.0169) -0.0052 (0.0158) -0.0006 (0.0166) 0.3282 (0)0274
976 57 54 955
9 -0.1102(0.0169) -0.0015 (0.0159) -0.0010 (0.0167) -0.2981 (8)027
966 58 53 934
10 -0.0989 (0.0169) 0.0008 (0.0159) -0.0009 (0.0167) 0.2712 (0)0280
953 63 57 916
20 0.0248 (0.0179) -0.0006 (0.0160) -0.0001 (0.0167) 0.1188(0)0278
338 51 57 690
30 -0.0036(0.0181) 0.0002(0.0160) 0.0002 (0.0167) 0.0565 (0.0268)
96 51 54 463
40 -0.0020 (0.0180) 0.0005 (0.0160) 0.0007 (0.0167) 0.0291 (0.0262)
88 39 47 299
50 0.0015 (0.0180) 0.0006 (0.0160) 0.0009 (0.0167) 0.0150 (0.0259)
77 66 56 230
60 -0.0017 (0.0181) -0.0014 (0.0161) -0.0013(0.0167) 0.0059 (9)025
99 56 54 218
70 0.0012(0.0181) 0.0003(0.0161) 0.0001 (0.0167) 0.0046 (0.0259)
84 54 50 197
80 0.0005(0.0180) 0.0013(0.0161) 0.0014 (0.0167) 0.0032 (0.0258)
74 76 64 181
90 -0.0006 (0.0181) -0.0006 (0.0161) -0.0007 (0.0167) 0.0016 (9)025
84 64 54 184
100 -0.0003(0.0181) -0.0005 (0.0162) -0.0001 (0.0168) 0.0023%8)02
69 48 52 192
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TABLE B.4. Autocorrelations of, for the Hopf-set parametéf 1).

Lag m = —0.95 m = —0.5 m =0 m = 0.5
1 0.0746 (0.0345) 0.1037 (0.0196) 0.0688 (0.0176) 0.0205 (0.0168)
898 964 582 730
2 0.0825(0.0326) 0.0802 (0.0189) 0.0429(0.0174) 0.0064 (0.0169)
811 868 469 687
3 0.0720(0.0315) 0.0593(0.0187) 0.0241(0.0173) -0.0020 (0.0170)
788 672 434 618
4 0.0631(0.0309) 0.0426(0.0183) 0.0116(0.0173) -0.0059 (0.0171)
756 493 422 529
5 0.0535(0.0301) 0.0294 (0.0182) 0.0023 (0.0174) -0.0079 (0.0171)
721 380 436 418
6 0.0456 (0.0292) 0.0185(0.0182) -0.0050(0.0173) -0.0099 (0.0171)
677 301 398 339
7 0.0388(0.0288) 0.0107 (0.0180) -0.0080 (0.0173) -0.0085 (0.0170)
587 272 366 244
8 0.0333(0.0287) 0.0049 (0.0179) -0.0095 (0.0171) -0.0068 (0.0170)
498 257 325 161
9 0.0309 (0.0278) -0.0009 (0.0178) -0.0111(0.0173) -0.0066 (0)0170
433 290 313 154
10 0.0250 (0.0268) -0.0050 (0.0177) -0.0116 (0.0172) -0.0055 (0)017
358 281 245 106
20 0.0021 (0.0230) -0.0152 (0.0175) -0.0048 (0.0171) -0.0012 (0)017
88 228 62 53
30 -0.0035(0.0215) -0.0058 (0.0174) 0.0002 (0.0171) 0.0003 (0)0170
78 76 53 58
40 -0.0066 (0.0201) -0.0013(0.0175) -0.0003(0.0172) -0.000470)01
84 54 50 47
50 -0.0053(0.0191) 0.0002 (0.0177) 0.0001 (0.0172) 0.0002 (0.0170)
80 56 63 62
60 -0.0059 (0.0193) -0.0005 (0.0175) -0.0012 (0.0172) -0.00137Q)01
85 53 60 54
70 -0.0045 (0.0190) 0.0008 (0.0175) 0.0006 (0.0172) 0.0006 (0.0171)
72 61 59 56
80 -0.0034 (0.0186) 0.0008 (0.0175) 0.0009 (0.0172) 0.0010 (0.0170)
73 61 61 58
90 -0.0046 (0.0185) -0.0013(0.0176) -0.0008 (0.0172) -0.00097@)01
73 60 65 63
100 -0.0037 (0.0183) -0.0001 (0.0178) -0.0002(0.0173) -0.00027@)0
56 55 50 43

35
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TABLE B.5. Summary statistics of returns for the paramete(&ej with m =

—0.8,-0.5,—0.3,0.

HE AND LI

m=—-08 m=-05 m=-03 m=0
Mean 3.95E-05 0.000126 0.000244 5.08E-05
Median -0.000116 0.000253 0.000336 -1.25E-05
Max. 0.082283 0.111046 0.125501 0.039912
Min. -0.078098 -0.105505 -0.136236 -0.035434
Std. 0.016142 0.020343 0.025387 0.010419
Skew. 0.072327 0.135512 0.078667 0.039038
Kurt. 4547681 4.057518 3.620744 2.997571
Jarque-Bera 1006.767 496.5827 170.8656 2.542365
Probability 0.000000 0.000000 0.000000 0.280500
Sum 0.394987 1.261548 2.438208 0.507550
Sum Sqg. Dev. 2.605493 4.137975 6.444583 1.085374
TABLE B.6. Summary statistics of returns for the paramete(gét) with m =
—0.95,—-0.5,0,0.5.
m=-095 m=-05 m=0 m = 0.5
Mean 3.60E-05 4.70E-05 5.08E-05 5.46E-05
Median 6.80E-05 -5.95E-05 -1.25E-05 8.00E-05
Max. 0.040650 0.041044 0.039912 0.039438
Min. -0.042000 -0.035635 -0.035434 -0.034406
Std. 0.010408 0.010310 0.010419 0.010669
Skew. 0.031815 0.030451 0.039038 0.042038
Kurt. 3.137758  2.993963 2.997571 2.991432
Jarque-Bera 9.594179 1.560606 2.542365 2.975951
Probability 0.008254  0.458267 0.280500 0.225829
Sum 0.360021  0.469831 0.507550 0.545647
Sum Sqg. Dev. 1.083105 1.062926 1.085374 1.138265
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