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Abstract—In this paper, we propose a new approach of
network performance analysis, which is based on our previous
works on the deterministic network analysis using the Gaus-
sian approximation (DNA-GA). First, we extend our previous
works to a signal-to-interference ratio (SIR) analysis, which
makes our DNA-GA analysis a formal microscopic analysis tool.
Second, we show two approaches for upgrading the DNA-GA
analysis to a macroscopic analysis tool. Finally, we perform a
comparison between the proposed DNA-GA analysis and the
existing macroscopic analysis based on stochastic geometry. Our
results show that the DNA-GA analysis possesses a few special
features: (i) shadow fading is naturally considered in the DNA-
GA analysis; (ii) the DNA-GA analysis can handle non-uniform
user distributions and any type of multi-path fading; (iii) the
shape and/or the size of cell coverage areas in the DNA-GA
analysis can be made arbitrary for the treatment of hotspot
network scenarios. Thus, DNA-GA analysis is very useful for
the network performance analysis of the 5th generation (5G)
systems with general cell deployment and user distribution, both
on a microscopic level and on a macroscopic level.

I. INTRODUCTION

Due to their potential for large performance gains, dense
orthogonal deployments of small cell networks (SCNs) within
the existing macrocell networks1 gained much momentum in
the design of the 4th generation (4G) systems [1], and are
envisaged as the workhorse for capacity enhancement in the
5th generation (5G) systems [2]. In this context, new and more
powerful network performance analysis tools are needed.

Network performance analysis tools can be broadly clas-
sified into two groups, i.e., macroscopic analysis [3,4] and
microscopic analysis [5-10]. The macroscopic analysis usually
assumes that user equipments (UEs) and/or base stations (BSs)
are randomly deployed, often following a homogeneous Pois-
son distribution to invoke the stochastic geometry theory [3,4].
In essence, the macroscopic analysis investigates network
performance at a high level, such as coverage probability and
signal-to-interference ratio (SIR) distribution, by averaging
over all possible UE and BS deployments [3,4]. Instead, the

1Orthogonal deployment means that small cells and macrocells operating
on different frequency spectrum, i.e., Small Cell Scenario #2a defined in [1].
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microscopic analysis allows for a more detailed analysis and
is often conducted assuming that UEs are randomly placed but
that BS locations are known [5-10].

Within the microscopic analysis and paying special attention
to uplink (UL), in [5], the authors considered a single UL
interfering cell with a disk-shaped coverage area and presented
closed-form expressions for the UL interference considering
both path loss and shadow fading. In [6], the authors con-
jectured that the UL interference in a hexagonal grid based
cellular network may follow a lognormal distribution, which
was verified via simulation. In [7] and [8], we went a step
further and analytically derived an upper bound of the error
in approximating the dB-scale UL interference from a single
cell by a Gaussian distribution. Such error was measured by
the Kolmogorov–Smirnov (KS) distance [11] between the real
cumulative density function (CDF) and the approximate CDF,
and it was shown to be small for practical SCNs. On the basis
of this single-cell interference analysis, we further investigated
the approximate distribution of the aggregate UL interference
in a multi-cell scenario as a power lognormal distribution. For
more practical networks, in [9] and [10], we also investigated
the network performance of SCNs in current 4G networks
using system-level simulations.

In this paper, our objective is to extend our previous works
in [7] and [8] to analyze the UL SIR performance, and create
a novel and compelling approach for network performance
analysis that can unify the macroscopic and the microscopic
analyses within a single framework. To that end, our work is
composed of the following three steps:

1) The extension of the UL interference analysis in [7]
and [8] to the UL SIR analysis, which makes our
analysis a formal microscopic analysis tool.

2) The upgrade of the developed microscopic analysis tool
to a macroscopic analysis tool.

3) The comparison between the proposed macroscopic
analysis tool and the existing macroscopic analysis based
on stochastic geometry.

Since the macroscopic and the microscopic analyses are
unified in our framework based on a deterministic network
analysis (DNA) using the Gaussian approximation (GA) pre-



sented in [7] and [8], our framework will be referred to as the
DNA-GA analysis hereafter. Our main contributions are:

1) Based on the GA theorem presented in [7] and [8],
the approximate distributions of the UL signal power
and the UL SIR for the interested UE are derived in
tractable expressions using the Gauss-Hermite numerical
integration [12], giving rise to the DNA-GA analysis.

2) Although the DNA-GA analysis stands alone as a solid
contribution to the family of microscopic analysis, two
approaches for upgrading the DNA-GA analysis to a
macroscopic analysis are further investigated. The first
one is the semi-analytical approach, which directly aver-
ages the performance given by many DNA-GA analyses
over many random BS deployments to obtain the per-
formance of the macroscopic analysis. The second one
is the analytical approach, which constructs an idealistic
and deterministic BS deployment, and then conducts the
DNA-GA analysis on such BS deployment to obtain an
upper-bound performance of the macroscopic analysis.

3) Interesting results on the comparison between the DNA-
GA analysis and the stochastic geometry analysis [4] are
presented. Our results show that the DNA-GA analysis
qualifies as a new network performance analysis tool
with a few special merits over stochastic geometry: (i)
Shadow fading is naturally considered in the DNA-GA
analysis, while stochastic geometry usually cannot; (ii)
Non-uniform UE distributions and any type of multi-
path fading can be treated in the DNA-GA analysis,
while stochastic geometry usually cannot; (iii) Apart
from the common assumption on the cell coverage areas
as Voronoi cells made by stochastic geometry, the shape
and/or the size of cell coverage areas in the DNA-GA
analysis can be made arbitrary, making it suitable for
the network performance analysis of hotspot SCNs.

II. NETWORK SCENARIO AND SYSTEM MODEL

In this paper, we consider UL transmissions, and assume
that each small cell BS only schedules one UE in each
frequency/time resource, i.e., resource block (RB). This is a
reasonable assumption in line with 4G networks, i.e., Long
Term Evolution (LTE) [1] and Worldwide Interoperability
for Microwave Access (WiMAX) [13]. Note that small cell
BSs serving no UE do not contribute to the UL interference,
thereby those BSs are ignored in the analysis.

Regarding the network scenario, we consider a SCN with
multiple small cells operating on the same carrier frequency, as
shown in Fig. 1. In more detail, the SCN consists of B small
cells, each of which is managed by a BS. The network includes
the small cell of interest denoted by C1 and B− 1 interfering
small cells denoted by Cb, b ∈ {2, . . . , B}. We focus on a
particular RB, and denote by Kb the active UE associated
with small cell Cb in such RB. Moreover, we denote by Rb
the coverage area of small cell Cb, in which its associated
UEs are randomly distributed. Note that the coverage areas of
adjacent small cells may overlap due to the arbitrary shapes
and sizes of {Rb} , b ∈ {2, . . . , B}.

Fig. 1. A schematic model of the considered SCN.

The distance (in km) from the BS of Cb to the BS of
C1, b ∈ {1, . . . , B}, and the distance from UE Kb to the
BS of Cm, b,m ∈ {1, . . . , B}, are denoted by Db and dbm,
respectively. Since DNA-GA is a microscopic analysis tool,
we consider a deterministic deployment of BSs, i.e., the set
{Db} is known, while each UE Kb is randomly distributed in
Rb with a distribution function fZb

(z) , z ∈ Rb. Hence, dbm is
a random variable (RV), whose distribution cannot be readily
expressed in an analytical form due to the arbitrary shape and
size of Rb, and the arbitrary form of fZb

(z). Regarding Rb
and fZb

(z), we have two remarks in the following.
Remark 1: Unlike the existing works, e.g., [3-6, 9-10], where
only the uniform UE distribution was considered, DNA-GA
can handle any probability density function (PDF) of general
UE distribution, here denoted by fZb

(z), where 0 < fZb
(z) <

+∞, z ∈ Rb and its integral over Rb equals to one, i.e.,´
Rb
fZb

(z) dz = 1.
Remark 2: Even if fZb

(z) is constant with z, we can only
say that the UE distribution is uniform within the small
cell coverage area Rb, but we cannot guarantee that the UE
distribution is uniform within the entire scenario, because no
UEs are deployed outside the hotspot areas {Rb}, which may
cause the non-uniformity of UE distribution within the entire
scenario. Instead, in stochastic geometry [3,4], UEs are usually
assumed to be uniformly distributed within the entire scenario,
creating Voronoi cells, which is less general and practical than
our assumption of Rb and fZb

(z). Note that in the sequel, the
characterization of UE distribution is meant within Rb.

Based on the definition of dbm, the path loss in dB from
UE Kb to the BS of Cm is modeled as

Lbm = A+ α× 10log10dbm, (1)

where A is the path loss in dB at the reference distance of
dbm = 1 and α is the path loss exponent. In practice, A and α
are constants obtainable from field tests [14]. Note that Lbm
is a RV due to the randomness of dbm.

The shadow fading in dB from UE Kb to the BS of
Cm is denoted by Sbm, and is usually assumed to follow a
lognormal distribution [14]. Based on this assumption, Sbm
is modeled as an independently and identically distributed
(i.i.d.) zero-mean Gaussian RV with a variance of σ2

Shad, i.e.,
Sbm ∼ N

(
0, σ2

Shad

)
.



The UL transmission power in dBm of UE Kb is denoted
by Pb, and is subject to a semi-static power control (PC)
mechanism, e.g., the fractional path loss compensation (FPC)
scheme [14]. Based on this FPC scheme, Pb is modeled as

Pb = P0 + η (Lbb + Sbb) , (2)

where P0 is the target received power in dBm on the consid-
ered RB at the BS, η ∈ (0, 1] is the FPC factor, and Lbb and
Sbb ∼ N

(
0, σ2

Shad

)
have been discussed above.

The multi-path fading channel from UE Kb to the BS of
Cm is denoted by hbm ∈ C, where we assume that each UE
and each BS are equipped with one omni-directional antenna.
It is important to note that we consider a general type of multi-
path fading by assuming that the effective channel gain in dB
associated with hbm is defined as Hbm = 10 log10 |hbm|

2,
which follows an i.i.d. distribution with a PDF of fH (h).
For example, |hbm|2 can be characterized by an exponential
distribution or a Gamma distribution in case of Rayleigh
fading or Nakagami fading, respectively [15]. And hence, the
distribution of Hbm can be derived analytically.

Finally, we ignore the additive noise because the 4G and the
5G SCNs generally work in the interference-limited region [2].

III. THE PROPOSED DNA-GA ANALYSIS

The proposed DNA-GA analysis consists of three steps, i.e.,
the interference analysis, the signal power analysis, and the
SIR analysis, which are presented in the following.

A. The Interference Analysis

Based on the definition of RVs discussed in Section II, the
UL received interference power in dBm from UE Kb to the
BS of C1 can be written as

Ib
(a)
= Pb − Lb1 − Sb1 +Hb1

= P0 + (ηLbb − Lb1) + (ηSbb − Sb1) +Hb1

4
= (P0 + L+ S) +Hb1,
4
= I

(1)
b +Hb1, (3)

where (2) is plugged into the step (a) of (3), and L and S are
defined as L

4
= (ηLbb − Lb1) and S

4
= (ηSbb − Sb1), respec-

tively. Apparently, L and S are independent RVs. Besides, the
first part of Ib is further defined as I(1)

b

4
= (P0 + L+ S). Since

Sbb and Sb1 (b ∈ {2, . . . , B}) are i.i.d. zero-mean Gaussian
RVs, it is easy to show that S is also a Gaussian RV, whose
mean and variance are{

µS = 0

σ2
S =

(
1 + η2

)
σ2

Shad
. (4)

From the definition of Ib in (3), the aggregate interference
power in mW from all interfering UEs to the BS of C1 can
be formulated as

ImW =

B∑
b=2

10
1
10 Ib . (5)

In our previous work [8], we show that the distribution of
ImW can be well approximated by a power lognormal distri-
bution. This approximation is summarized in the following.

1) The Distribution of I(1)
b in (3): First, we analyze the

distribution of I(1)
b shown in (3). Considering a small approx-

imation error, upper-bounded by the KS distance [11] provided
in [8], we approximate I(1)

b by a Gaussian RV Gb, whose mean
and variance are {

µGb
= P0 + µL + µS

σ2
Gb

= σ2
L + σ2

S

, (6)

where µL and σ2
L are respectively the mean and the variance

of L, which can be obtained using numerical integration
involving fZb

(z) and Rb [7,8]. Details are omitted for brevity.
2) The Distribution of Ib in (3): Second, we analyze the

distribution of Ib = I
(1)
b + Hb1 shown in (3). Considering

a small approximation error, upper-bounded by the KS dis-
tance [11] provided in [8], we approximate Ib by another
Gaussian RV Qb, whose mean and variance are{

µQb
= µGb

+ µHb1

σ2
Qb

= σ2
Gb

+ σ2
Hb1

. (7)

where µHb1
and σ2

Hb1
are respectively the mean and the

variance of Hb1. We omit the details for brevity.
Note that the upper bound of the total approximation error

of the above two steps is obtained from the summation of the
individual approximation errors of the two steps in closed-form
expressions [8]. And it has been shown in [8] that the total
approximation error is small for practical SCNs, without any
requirement on (i) the uniformity of UE distribution and/or
the type of multi-path fading; and (ii) the shape and/or size
of cell coverage areas. Intuitively speaking, the results in [8]
show that the larger the variance of the Gaussian RV, i.e., S
in (6) or Gb in (7), the better the approximation in (6) or in
(7), due to the increasing dominance of the Gaussian RV.

3) The Distribution of ImW in (5): Third, we invoke the
main results in [17-18], which indicate that the sum of multiple
independent lognormal RVs can be well approximated by a
power lognormal RV. Accordingly, in our case, since each
Ib, b ∈ {2, . . . , B} is approximated by a Gaussian RV Qb,
their sum 10

1
10Qb shown in (5) should be well approximated

by a power lognormal RV expressed as ÎmW = 10
1
10Q, where

the PDF and CDF of Q [16] can be written as (8) shown
on the top of the next page. In (8), Φ (x) is the CDF of the
standard normal distribution, and the parameters λ, µQ and
σQ are obtained from {µQb

} and
{
σ2
Qb

}
that are computed

by (7). The procedure to obtain λ, µQ and σQ is omitted here
for brevity, but interested readers are referred to Appendix B
of [8] for further details. As a result of (8), the PDF and CDF
of ÎmW can be written as (9) shown on the top of the next
page, where ζ = 10

ln 10 is a scalar factor originated from the
variable change from 10 log10 v to ln v.

Finally, we approximate the distribution of ImW by that of
ÎmW shown in (9) presented on the top of the next page.
Note that in this step, the approximation error depends on
the approximate error introduced by the power lognormal
approximation, which has been shown to be reasonably small
and good enough in practical cases [17-18].



PDF of Q : fQ (q) = λΦλ−1
(
q−µQ

σQ

)
1√

2πσ2
Q

exp
{
− (q−µQ)2

2σ2
Q

}
CDF of Q : FQ (q) = Φλ

(
q−µQ

σQ

) . (8)

PDF of ÎmW : fÎmW (v) = λΦλ−1
(
ζ ln v−µQ

σQ

)
ζ

v
√

2πσ2
Q

exp
{
− (ζ ln v−µQ)2

2σ2
Q

}
CDF of ÎmW : FÎmW (v) = Φλ

(
ζ ln v−µQ

σQ

) . (9)

B. The Signal Power Analysis

The UL received signal power in dBm from UE K1 to the
BS of C1 can be written as

X1
(a)
= P1 − L11 − S11 +H11

= P0 + (ηL11 − L11) + (ηS11 − S11) +H11

4
=
(
P0 + L̄11 + S̄11

)
+H11,

4
= X

(1)
1 +H11, (10)

where (2) is plugged into the step (a) of (10). Besides, L̄11 and
S̄11 are defined as L̄11

4
= (η − 1)L11 and S̄11

4
= (η − 1)S11,

respectively. The first part of X1 is further defined as X(1)
1

4
=

P0 + L̄11 + S̄11, and it is easy to show that S̄11 is a Gaussian
RV, whose mean and variance are{

µS̄11
= 0

σ2
S̄11

= (1− η)
2
σ2

Shad
. (11)

Similar to the discussion in subsection III-A1, we consider a
small approximation error, upper-bounded by the KS distance
shown in [8], and we approximate X

(1)
1 by a Gaussian RV

G1, whose mean and variance are{
µG1

= P0 + µL̄11
+ µS̄11

σ2
G1

= σ2
L̄11

+ σ2
S̄11

, (12)

where µL̄11
and σ2

L̄11
are respectively the mean and the

variance of L̄11. As a result, (10) can be re-formulated as
X1 ≈ G1 +H11

4
= X̂1. (13)

Note that unlike the discussion in subsection III-A2, it is not
accurate to further approximate X̂1 by a Gaussian RV, because
the randomness of the Gaussian distributed RV S11 is largely
removed by the UL transmission power control mechanism,
rendering a less dominant role of the Gaussian distribution of
G1 compared with the distribution of H11. In other words, σ2

G1

is comparable with or even smaller than the variance of H11,
making the approximation error large according to our results
in [8]. Therefore, we derive the approximate distribution of
X1 using a different method, presented in Theorem 1.

Theorem 1. The approximate CDF of X1 is derived as

FX1
(x)≈FX̂1

(x)=
1√
π

M0∑
m=1

wmFH11

(
x−
(√

2σG1
am+µG1

))
,

(14)
where M0 is the number of terms employed in the Gauss-
Hermite numerical integration [12], and the weights {wm}
and the abscissas {am} are tabulated in Table 25.10 of [12].

Proof: Since G1 is a Gaussian RV with the mean and the
variance shown in (12), the PDF of G1 can be written as

fG1
(v) =

1√
2πσ2

G1

exp

{
− (v − µG1

)
2

2σ2
G1

}
. (15)

Besides, we assume the CDF of H11 to be FH11
(h). Hence,

the CDF of X1 can be approximated by
FX1

(x) ≈ FX̂1
(x)

= Pr [G1 +H11 ≤ x]

= Pr [H11 ≤ x−G1]

=

+∞ˆ

−∞

FH11
(x− v) fG1

(v) dv

(a)
=

+∞ˆ

−∞

FH11 (x− v)
1√

2πσ2
G1

exp

{
− (v − µG1)

2

2σ2
G1

}
dv

(b)
=

1√
π

+∞ˆ

−∞

FH11

(
x−

(√
2σG1

y + µG1

))
exp

(
−y2

)
dy

(c)
=

1√
π

M0∑
m=1

wmFH11

(
x−

(√
2σG1am + µG1

))
+RM0

(d)
≈ 1√

π

M0∑
m=1

wmFH11

(
x−

(√
2σG1am + µG1

))
, (16)

where the step (a) of (16) is obtained from (15), and the
step (b) of (16) is computed using the variable change
v =

√
2σG1

y + µG1
. Moreover, the step (c) of (16) is

derived using the Gauss-Hermite numerical integration [12],

i.e.,
+∞́

−∞
f (y) exp

(
−y2

)
dy =

∑M0

m=1 wmf (am) + RM0
,

where M0 is the number of terms in the approximation,
the weights {wm} and the abscissas {am} are tabulated in
Table 25.10 of [12] and RM0 is a residual error in the order
of M0!

2M0 (2M0)!
[12], which decays very fast as M0 increases.

Finally, the step (d) of (16) is obtained by dropping RM0
. Our

proof is thus completed by comparing (14) and (16).
In case of Rayleigh fading [15], we propose Corollary 2 to

compute the approximate expression of FX1
(x).

Corollary 2. In case of Rayleigh fading, the approximate CDF
of X1 can be computed by (14), where

FH11
(h) = 1− exp

(
− exp

(
h

ζ

))
, (17)

where ζ = 10
ln 10 .



Proof: As discussed in Section II, on condition of
Rayleigh fading, the channel gain |h11|2 follows an expo-
nential distribution with unitary mean [15]. Then, our proof
is completed by deriving (17) based on the variable change
H11 = 10 log10 |h11|2. Details are omitted for brevity.

In case of Nakagami fading [15], we propose Corollary 3
to compute the approximate expression of FX1

(x).

Corollary 3. In case of Nakagami fading, the approximate
CDF of X1 can be computed by (14), where

FH11
(h) =

1

Γ (k)
γ

(
k,

1

θ
exp

(
h

ζ

))
, (18)

where Γ (·) and γ (·, ·) are respectively the gamma and the
incomplete gamma functions [12], k and θ are respectively
the shape and the scale parameters of the Gamma distribution
associated with the channel gain of Nakagami fading [15].

Proof: As discussed in Section II, on condition of Nak-
agami fading, the channel gain |h11|2 follows a Gamma
distribution with parameters k and θ [15]. Then, our proof
is completed by deriving (18) based on the variable change
H11 = 10 log10 |h11|2 Details are omitted for brevity.

C. The SIR Analysis
From (10), we can approximate the UL SIR in dB by

ZdB ≈ X1 −Q
4
= ẐdB. (19)

We derive the approximate distribution of ZdB in Theorem 4.

Theorem 4. The approximate CDF of ZdB is derived as
FZdB (z) ≈ FẐdB (z)

=
λ√
π

M0∑
m=1

wmΦλ−1
(√

2am

)
FX1

(
z +
√

2σQam + µQ

)
, (20)

where M0, {wm} and {am} have the same definition as those
in Theorem 1.

Proof: From (19), the approximate CDF of ZdB can be
derived as
FZdB (z) ≈ FẐdB (z)

= Pr [X1 −Q ≤ z]
= Pr [X1 ≤ z +Q]

=

+∞ˆ

−∞

FX1
(z + q) fQ (q) dq

(a)
≈

+∞ˆ

−∞

FX̂1
(z + q)λΦλ−1

(
q−µQ
σQ

)
1√

2πσ2
Q

exp

{
− (q−µQ)

2

2σ2
Q

}
dq

(b)
=

1√
π

+∞ˆ

−∞

FX̂1

(
z +
√

2σQy + µQ

)
λΦλ−1

(√
2y
)

exp
(
−y2

)
dy

(c)
=

1√
π

M0∑
m=1

wmFX̂1

(
z +
√

2σQam + µQ

)
λΦλ−1

(√
2am

)
+RM0

(d)
≈ λ√

π

M0∑
m=1

wmΦλ−1
(√

2am

)
FX̂1

(
z +
√

2σQam + µQ

)
, (21)

where the step (a) of (21) is calculated using Theorem 1 and
(8), and the step (b) of (21) is computed using the variable
change q =

√
2σQy + µQ. Moreover, the step (c) of (21) is

derived using the Gauss-Hermite numerical integration [12].
Finally, the step (d) of (21) is obtained by dropping RM0

. Our
proof is thus completed by comparing (20) and (21).

In case of Rayleigh fading [15], we propose Corollary 5 to
compute the approximate expression of FZdB (z).

Corollary 5. In case of Rayleigh fading, the approximate CDF
of ZdB can be computed by (20), where (17) is plugged into
(14) to obtain FX̂1

(x) in (20).

Proof: The proof is completed by applying Corollary 2
to Theorems 1 and 4. Details are omitted for brevity.

In case of Nakagami fading [15], we propose Corollary 6
to compute the approximate expression of FZdB (z).

Corollary 6. In case of Nakagami fading, the approximate
CDF of ZdB can be computed by (20), where (18) is plugged
into (14) to obtain FX̂1

(x) in (20).

Proof: The proof is completed by applying Corollary 3
to Theorems 1 and 4. Details are omitted for brevity.

IV. MACROSCOPIC UPGRADE OF THE DNA-GA ANALYSIS

With Theorem 4, we have crafted a powerful microscopic
analysis tool based on the proposed DNA-GA analysis that
can deal with a wide range of network assumptions and
system parameters. In this section, we further investigate
two approaches for upgrading the DNA-GA analysis from a
microscopic analysis tool to a macroscopic one, putting DNA-
GA in the same league as, e.g., stochastic geometry.

A. The Semi-Analytical Approach

The microscopic and the macroscopic analyses are closely
related to each other. The average performance of many
microscopic analyses conducted over a large number of ran-
dom BS deployments converges to the performance of the
macroscopic analysis, given that the examined realizations of
the deterministic BS deployments follow the BS deployment
assumption used in the macroscopic analysis. Therefore, we
can directly average the performance results obtained by
applying DNA-GA, i.e., Theorem 4, over a large number of
random BS deployments to obtain the performance results of
the macroscopic analysis.

B. The Analytical Approach

Instead of conducting DNA-GA, i.e., Theorem 4, over many
BS deployments and averaging all the results together to obtain
the results of the macroscopic analysis, we can construct
an idealistic BS deployment on a hexagonal lattice with the
equivalent BS density, and perform a single DNA-GA analysis
on such BS deployment to extract an upper-bound of the
SIR performance of the macroscopic analysis. The hexagonal
lattice leads to an upper-bound performance because BSs
are evenly distributed in the scenario and thus very strong
interference due to close proximity is avoided [3,4].



V. SIMULATION AND DISCUSSION

In this section, we conduct simulations to validate the
proposed DNA-GA analysis, using both the semi-analytical
and the analytical approaches. For the semi-analytical ap-
proach, to obtain the results of the macroscopic analysis, we
average the results given by Theorem 4 over 1000 random
BS deployments. For each BS deployment, 10,000 random
experiments are conducted to go through the randomness of
UE positions. And for each BS deployment and each UE
placement, another 10,000 random experiments are conducted
to go through the randomness of shadow fading and multi-path
fading. For the analytical approach, only one BS deployment
in a hexagonal lattice is examined. M0 is set to 30 for
the computation in the DNA-GA analysis to ensure a good
accuracy of the results [12].

With regard to the scenario and parameters, 3rd Genera-
tion Partnership Project (3GPP) recommendations have been
considered [14]. For the semi-analytical approach, 19 dummy
macrocell sites are deployed with a 0.5 km inter-site distance
to guide the small cell deployment. Each macrocell site has the
shape of a hexagon, and is equally divided into 3 macrocells.
Each macrocell contains 4 randomly deployed small cells,
resulting in 19 × 3 × 4 = 228 small cells with a density
around 55.43 cells/km2. For the analytical approach, the 228
small cells are located in a hexagonal lattice with the same cell
density. In both cases, each small cell has a coverage radius of
0.04 km, and the minimum inter-BS distance and the minimum
BS-to-UE distance are 0.04 km, and 0.01 km, respectively.
Moreover, according to [14], A = 145.4, α = 3.75, P0 = −76
dBm, η = 0.8, and σS = 10 dB.

Fig. 2 illustrates an example of a random BS deployment
according to [14], where small cell BSs are represented by x-
markers, while the coverage areas of dummy macrocells and
small cells are marked by dashed and solid lines, respectively.
UEs are randomly distributed in the mentioned small cell
coverage areas, and it is important to note that although some
small cell coverage areas are disk-shaped, the coverage areas
of most small cells are of irregular shape due to overlapping.

For brevity, in the following subsections, we omit the
detailed investigation on the interference analysis and the
signal power analysis, and directly present SIR results given
by the DNA-GA analysis and the simulation.

Fig. 2. Illustration of a 3GPP SCN deployment [14].

A. Validation of the DNA-GA Analysis

In this subsection, we validate the accuracy of the DNA-GA
analysis in terms of the SIR performance when assuming two
cases for UE distribution and multi-path fading, i.e.,
• Case 1: Uniform UE distribution + Rayleigh fading
• Case 2: Non-uniform UE distribution + Nakagami fading
For Case 1, we obtain the SIR results through the DNA-GA

analysis using Theorem 4 and Corollary 5, while for Case 2,
we invoke Theorem 4 and Corollary 6.

When considering a non-uniform UE distribution, we as-
sume that fZb

(z) = W
ρ , z ∈ Rb, where ρ is the radial

coordinate of z in the polar coordinate system, the origin of
which is placed at the position of the BS of Cb and W is
a normalization constant to make

´
Rb
fZb

(z) dz = 1. In the
resulting non-uniform UE distribution, UEs are more likely
to locate in the close vicinity of the BS of Cb than at the
cell-edge2. When considering Nakagami fading, we assume
that k = 10 and θ = 0.1, which corresponds to a multi-path
fading with a strong line-of-sight (LoS) component [15].

For both cases, the UL SIR performance is evaluated using
the simulation and the semi-analytical approach discussed in
Subsection IV-A. Moreover, the upper bound of the UL SIR
is also investigated using the simulation and the analytical
approach discussed in Subsection IV-B based on a BS deploy-
ment in a hexagonal lattice. The results are shown in Fig. 3.

Fig. 3. UL SIR in dB (DNA-GA vs. Simulation).

As can be seen from Fig. 3, the SIR results of the pro-
posed DNA-GA analysis match those of the simulation very
well, particularly in the head portion. In the semi-analytical
approach, the maximum deviation between the CDFs obtained
by the DNA-GA analysis and the simulation for both inves-
tigated cases are around 1.0∼1.7 percentile. In the analytical
approach, the fitness becomes even better, i.e., the maximum
deviation for both cases is within 0.6 percentile.

More importantly, for both cases, the upper-bound SIR
performance given by the analytical approach is shown to be
within 2.0∼ 2.5 dB from the exact performance, indicating
its usefulness in characterizing the network performance with

2Note that the considered fZb
(z) is just an example of the non-uniformly

distributed UEs in Rb, which reflects a reasonable network planning, where
small cell BSs have been deployed at the center of UE clusters. Other forms
of fZb

(z) can be considered in our DNA-GA analysis as well.



low-complexity computation. To take Case 1 of DNA-GA as
an example, the numerical results to be plugged into Theo-
rem 4 for the hexagonal BS deployment are µG1 = −93.07,
σ2
G1

= 5.97, λ = 202.66, µQ = −137.71 and σ2
Q = 212.04.

Finally, note that the SIR of Case 2 outperforms that of
Case 1, mainly because UEs tend to stay closer to their serving
BSs in Case 2 as discussed above, leading to a larger signal
power and a lower interference power.

B. Comparison Between DNA-GA and Stochastic Geometry

In this section, we compare the UL SIR results of the DNA-
GA analysis (Case 1) and those of the stochastic geometry
analysis in Fig. 4, with the same average cell density of 55.43
cells/km2 and the same assumption of Rayleigh fading3.

Fig. 4. UL SIR in dB (DNA-GA vs. Stochastic Geometry [4]).

In Fig. 4, a few interesting aspects are noteworthy. First,
both our analysis and the analysis in [4] are only able to give
approximate results. However, the approximation error of our
DNA-GA analysis is shown to be smaller than that of [4].

Second, there is a significant performance gap between
our DNA-GA analysis and the stochastic geometry analysis
in [4]. This is because (i) Our DNA-GA analysis considers
the shadow fading on top of the multi-path fading, which
leads to a large variance of SIR, while the analysis in [4] does
not, which gives a small SIR variance; and (ii) The DNA-GA
analysis studies the hotspot SCN scenario recommended by
the 3GPP [14], where UEs are deployed closer to the serving
BSs than those in Voronoi cells considered in [4].

Third, the purpose of Fig. 4 is not to reproduce the results
in [4] based on Voronoi cells, but to analytically investigate a
more practical 3GPP network scenario. If the shadow fading
is required to be ignored, albeit impractical, the Gamma
approximation of the aggregate interference [10] could be
invoked to make our approach of analysis still valid. Besides,
the DNA-GA analysis can also handle the case where the cell
coverage areas are constructed as Voronoi cells [4]. However,
to do so, it would be more practical to consider an alternative

3Note that the stochastic geometry analysis in [4] poses some assumptions
on the model for the sake of tractability, e.g., no shadow fading, Rayleigh
fading only, homogeneous Poisson distribution of both UEs and BSs in
the entire scenario. In contrast, the DNA-GA analysis does not need such
assumptions and works with a more realistic model, considering the hotspot
SCN scenario [14] shown in Fig. 2 and discussed in Remark 2 of Section II.

UE association strategy (UAS), where each UE is connected
to the BS with the smallest path loss plus shadow fading.
Note that such UAS will blur the boundaries of Voronoi cells,
because each UE is no longer always connected to its closest
BS, making the analysis more intricate and realistic.

Finally, note that a three-fold integral computation is needed
in [4] to compute the results, while no integration is required
in Theorem 4 of the DNA-GA analysis. However, many BS
deployments are needed in the semi-analytical approach of the
DNA-GA analysis, while only one in the analytical approach.

VI. CONCLUSION

We proposed a new approach of network performance
analysis, which unifies the microscopic and the macroscopic
analyses within a single framework. Compared with stochastic
geometry, our DNA-GA analysis considers shadow fading,
general UE distribution and any type of multi-path fading,
as well as any shape and/or size of cell coverage areas.
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