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Abstract—In this article, a network model incorporating both
line-of-sight (LOS) and non-line-of-sight (NLOS) transmissions is
proposed to investigate impacts of blockages in urban areas on
heterogeneous network coverage performance. Results show that
co-existence of NLOS and LOS transmissions has a significant
impact on network performance. We find in urban areas, that
deploying more BSs in different tiers is better than merely de-
ploying all BSs in the same tier in terms of coverage probability.
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I. INTRODUCTION

With the tremendous growth of mobile subscribers and mo-
bile connected devices, mobile broadband traffic has exhibited
unprecedented growth. According to the forecast by Cisco [1],
there will be 11.5 billion mobile-connected devices by 2019,
which suggests that globally mobile data traffic is expected
to grow to 24.3 exabytes (EB) per month by 2019 – nearly a
tenfold increase over that in 2014. The ever increasing mobile
data traffic propels us to seek new techniques to handle the
challenge. Deploying complementary small-cell networks like
femtocells and picocells in the place where the need for traffic
is "hot" emerges as a promising solution in the 5G wireless
networks [2]–[4].

In urban areas, radio propagation is more complicated than
rural areas due to high-rise buildings, trees, etc. Through
reflection, diffraction, and even blockage, buildings not only
attenuate the received signal power but also weaken the
undesired signal power, i.e., the interference. Consequently it
often occurs that the strongest signal does not come from the
geographically nearest BS which renders location-based cell
association scheme [5] ineffective.

In [6], Choi analyzed blockage effects of a millimeter-wave
cellular system. Different from traditional cellular signals,
a mobile user (MU) can only communicate with BSs with
line-of-sight (LOS) connection in millimeter wave systems.
Therefore, outage probability obtained assuming millimeter
wave communication will be higher than that expected in
real cellular communications. Bai et al. [7] analyzed the
performance impact of large-scale blockage effects, which not

only capture 2D shape of buildings, but also the height of
buildings, in a microcell network. In their work a MU can only
connect to its nearest LOS BS, which of course does not reflect
the reality when a MU is in a central business district (CBD)
with high-rise buildings or is located in an office building.

In this paper, we develop a model to analyze the coverage
performance of heterogeneous networks incorporating both
LOS and NLOS connections, which is considered typical for
urban environment. Different from related work in which a
BS is connected to the geographically nearest BS, which does
not reflect the reality in urban environment, in our work, we
consider that a MU is associated with a BS that delivers
the strongest received signal-to-interference-plus-noise ratio
(SINR) where both LOS and NLOS connections are consid-
ered in the analysis. The main contributions of this paper are
summarized as follows.

1) The coverage performance in a heterogeneous network is
analyzed considering both NLOS and LOS transmissions
and that a MU is associated with the BS that delivers
the strongest SINR.

2) An analytical expression for the coverage probability is
derived. This is distinct from previous work where the
theoretical analysis is conducted assuming that a MU
is associated with its nearest LOS BS for analytical
tractability.

3) Through results, We find in urban areas, that deploying
more BSs in different tiers is better than merely de-
ploying all BSs in the same tier in terms of coverage
probability.

The remainder of this paper is organized as follows. Sec-
tion II describes the system model. While in Section III, the per
tier coverage probability and the coverage probability of the
entire network are derived. Results and performance analysis
are given in Section IV. Finally, Section V concludes this
paper.

II. SYSTEM MODEL

We consider a K-tier heterogeneous cellular network which
consists of macrocells, picocells, femtocells, etc and focus
on the analysis in downlink coverage performance. The BSs



of each tier are assumed to be spatially distributed on an
infinite plane following independent homogeneous Poisson
point processes (PPPs) denoted by Φk, k ∈ {1, 2, · · · ,K} with
intensities λk, k ∈ {1, 2, · · · ,K}. MUs are located according
to a homogeneous PPP denoted by Φu with intensity λu. BSs
of the same tier transmit using the same power P (k)

t and share
the same bandwidth Bk. BSs belonging to different tiers use
different power and orthogonal bandwidth for transmission.
Therefore there is no inter-tier interference. Furthermore,
within a cell, MUs use different frequency bandwidth for
downlink and uplink transmission and therefore there is no
intra-cell interference for downlink transmission analysis in
our paper. However, BSs of the same tier may interfere each
other and generate the inter-cell interference which is the main
focus of this paper. The assumption that both BSs and MUs
are homogeneously distributed over space makes our analysis
tractable with a minor loss of accuracy [8].

A. Cell Association Scheme

Taking both NLOS and LOS transmission into considera-
tion, the nearest BS of a tier may not be the best candidate
BS in that tier to associate with. More specifically, the cell
association decision can be divided into the following two
major steps.

1) If a MU requests to connect to a BS, it will firstly
choose n nearest BSs from each tier to form the set
of candidate BSs. The candidate BS set is denoted
by ΩB = {(k, i) |k ∈ {1, 2, · · · ,K} , i ∈ [1, n]}, where
(k, i) represents the i-th nearest BS in the k-th tier. For
example, (1, 3) means the 3rd nearest BS in the 1st tier.
The total number of candidate BSs in ΩB is nK.

2) The MU will then choose which BS to associate with
from ΩB based on its received SINR. The BS in ΩB

that offers the highest received SINR to the MU will be
chosen.

Apparently, when the value of n is chosen to be sufficiently
large, the coverage performance of the cell association scheme
described above will resemble that of the cell association
scheme that chooses the BS with the highest SINR at the MU
from all tiers.

B. Signal Propagation Model

We consider both NLOS and LOS transmissions. The oc-
currence of NLOS or LOS transmissions depend on various
environmental factors, including geographical structure, dis-
tance and clusters. N. Blaunstein [9] gave the probability for
NLOS transmissions

pN (R) = 1− e−κR. (1)

And the probability for LOS transmissions is given by

pL (R) = 1− pN (R) = e−κR, (2)

where κ is a parameter determined by the intensity and the
mean length of the blockage lying in the visual path between
a MU and a BS, and R denotes the distance between the
MU and the BS. Bai [7] extended N. Blaunstein’s work by

using random shape theory which considers that κ is not only
determined by the mean length but also the mean width.

In general, NLOS and LOS transmissions will experience
different path losses, which is captured by the following model

PL|NLOS [dB] = A
(k)
N + α

(k)
N 10 lgR+ ξ

(k)
N ,

PL|LOS [dB] = A
(k)
L + α

(k)
L 10 lgR+ ξ

(k)
L ,

where |LOS(NLOS) means the LOS (NLOS) transmission,
A

(k)
N and A

(k)
L are constants determined by the transmission

frequency, α(k)
N and α

(k)
L are respective path loss exponents,

ξ
(k)
N and ξ

(k)
L are independent Gaussian random variables

with zero means, i.e., ξ
(k)
N ∼ N

(
0,
(
σ
(k)
N

)2)
and ξ

(k)
L ∼

N
(
0,
(
σ
(k)
L

)2)
, reflecting the attenuation caused by flat

fading. The corresponding parameters in this model can be
found in [10]. Accordingly, the received signal power without
and with LOS transmission link in W (watt) are

P
(k)
i |NLOS = B

(k)
N

(
R

(k)
i

)−α
(k)
N

exp
(
βξ

(k)
N

)
,

and

P
(k)
i |LOS = B

(k)
L

(
R

(k)
i

)−α
(k)
L

exp
(
βξ

(k)
L

)
,

respectively, where R
(k)
i denotes the distance between a MU

and the BS (k, i), B(k)
N = P

(k)
t · 10−A

(k)
N /10, B(k)

L = P
(k)
t ·

10−A
(k)
L /10 and β = −ln 10/10 are constants.

Therefore, the received power of the typical MU located at
the origin o from the BS (k, i) is given by

P
(k)
i

(
R

(k)
i

)
= I(k)i P

(k)
i |NLOS +

(
1− I(k)i

)
P

(k)
i |LOS, (3)

where I(k)i is a random indicator variable equal to 1 for
NLOS transmission and 0 otherwise, and the corresponding
probabilities are pN (R) and pL (R) given by (1) and (2),
respectively.

We consider an interference-limited system and the impact
of noise is thus ignored [8]. For downlink transmission, the
signal-to-interference ratio (SIR) experienced by the typical
MU associated with the BS (k, i) is expressed as follows

SIR(k)
i =

S

I
=

P
(k)
i∑

(k,j)∈Ω
′
k

P
(k)
j

, (4)

where Ω
′

k is the Palm point process [11] representing the set
of interferers in the k-th tier network.

III. THE COVERAGE PROBABILITY

A MU is considered to be covered if the SIR from any of the
BS in the set of candidate BSs, formed by choosing n nearest
BSs from each tier, is greater than or equal to a prescribed
threshold γ. In the following derivation, a conditional coverage
probability will be firstly obtained with Laplace transform
and then the unconditional probability will be derived by
integrating with respect to random variables.



A. An Analysis of the Conditional Coverage Probability

Lemma 1. For non-negative set Ξ = {aq}, q ∈ N, if and only
if am > an, then am∑

q ̸=m

aq+W > an∑
q ̸=n

aq+W , ∀am, an ∈ Ξ.

Proof: For non-negative set Ξ = {aq}, q ∈ N, if and
only if am > an, am∑

q
aq+W > an∑

q
aq+W , thus am∑

q
aq+W−am

>

an∑
q
aq+W−an

, which completes the proof.

Let M(k)
m denote the event

{
arg max

i∈[1,n]
SIR(k)

i = m

}
, mean-

ing that among the n nearest BSs in the k-th tier, the maximum
SIR comes from the m-th nearest BS in that tier. Accordingly,
the typical MU will connect to BS (k,m) if we restrict that
only BSs in the k-th tier are available. Conditioned on event
M

(k)
m , power received from the m-th nearest BS in the k-th tier

P
(k)
m = t and distances

{
R

(k)
i = r

(k)
i , i∈ [1, n]

}
, we obtain

the conditional coverage probability that the typical MU is
covered by the BS (k,m) as follows

Pr
(

SIR(k)
m > γ

∣∣∣M(k)
m , P (k)

m = t,
{
R

(k)
i

})
= Pr

(
P

(k)
m

I
(k)
m

> γ

∣∣∣∣∣M(k)
m , P (k)

m = t,
{
R

(k)
i

})

= F
I
(k)
m

(
P

(k)
m

γ

∣∣∣∣∣M(k)
m , P (k)

m = t,
{
R

(k)
i

})
(a)
= F

I
(k)
m

 t

γ

∣∣∣∣ ∩
j∈[1,n],i ̸=m

P
(k)
j ≤ t, P (k)

m = t,
{
R

(k)
i = r

(k)
i

} ,

(5)

with

I(k)m = I
(k)
m,≤n + I

(k)
m,>n =

n∑
j=1,j ̸=m

P
(k)
j +

∞∑
j=n+1

P
(k)
j , (6)

where the last step (a) is obtained followed by Lemma 1

that event
{
arg max

i∈[1,n]
SIR(k)

i = m

}
is equivalent to event{

arg max
i∈[1,n]

P
(k)
i = m

}
, γ is the SIR threshold, I(k)m is the ag-

gregate interference power experienced by the typical MU con-
necting to the BS (k,m), I(k)m,≤n is the aggregate interference
signal power from the n−1 candidate BSs excluding the m-th
nearest BS in the k-th tier, I(k)m,>n is the aggregate interference
power from BSs located outside the disk area with radius R(k)

n

in the k-th tier, e.g. the n + 1-th nearest BS, the n + 2-th
nearest BS, ... and so on, and F

I
(k)
m

(
x
∣∣∣M,

{
R

(k)
i = r

(k)
i

})
is

the conditional cumulative distribution function (CDF) of the
aggregate interference I

(k)
m .

To obtain the CDF of I
(k)
m , we firstly derive the Laplace

transform (LT) of I(k)m,≤n and I
(k)
m,>n, respectively.

1) The LT of I
(k)
m,≤n: Conditioned on{

R
(k)
i = r

(k)
i , i∈ [1, n]

}
, the distribution of received

power P (k)
j , j ̸= m, is derived as follows

F
P

(k)
j

(
x
∣∣∣R(k)

j = r
(k)
j

)
= Pr

(
P

(k)
j ≤ x

∣∣∣R(k)
j = r

(k)
j

)
(a)
= Pr

(
P

(k)
j ≤ x

∣∣∣NLOS,R
(k)
j = r

(k)
j

)
· pN

(
r
(k)
j

)
+ Pr

(
P

(k)
j ≤ x

∣∣∣LOS,R
(k)
j = r

(k)
j

)
· pL

(
r
(k)
j

)
=
(
1− e−κr

(k)
j

)∫ x

0

f
P

(k)
j

(
z|NLOS,R

(k)
j = r

(k)
j

)
dz+

e−κr
(k)
j

∫ x

0

f
P

(k)
j

(
z|LOS,R

(k)
j = r

(k)
j

)
dz, (7)

where (a) follows from the law of total
probability, f

P
(k)
j

(
z|NLOS,R

(k)
j = r

(k)
j

)
and

f
P

(k)
j

(
z|LOS,R

(k)
j = r

(k)
j

)
are the PDF of received signal

power P
(k)
j conditioned on NLOS and LOS transmissions,

respectively.
The PDF of received signal power P

(k)
j conditioning on

NLOS transmission and the distance R
(k)
j = r

(k)
j , i.e.,

f
P

(k)
j

(
z|NLOS,R

(k)
j = r

(k)
j

)
is given by

f
P

(k)
j

(
z|NLOS,R

(k)
j = r

(k)
j

)
(a)
=

∣∣∣∣ d
dz

[
P

(k)∗

j (x)
]∣∣∣∣ · fξ(k)

N

[
P

(k)∗

j (z)
]

=
1

zσ
(k)
sN

√
2π

exp

[
−
(
ln z − µ

(k)
sN

)2/
2
(
σ
(k)
sN

)2 ]
, (8)

where (a) is obtained by applying the change-of-variables rule
on the density function of a normal distribution, P

(k)∗

j (z)

denotes the inverse function of P
(k)
i |NLOS, thus ξ

(k)
N =

P
(k)∗

j

(
P

(k)
j

)
= 1

β

(
lnP

(k)
j − µ

(k)
sN

)
, µ

(k)
sN = lnB

(k)
N −

α
(k)
N ln r

(k)
j and

(
σ
(k)
sN

)2
=
(
βσ

(k)
N

)2
. Obviously, P (k)

j is log-
normal distributed conditioned on NLOS transmission and the
distance R

(k)
j = r

(k)
j , i.e., P (k)

j ∼ lnN
(
µ
(k)
sN , σ

(k)
sN

)
.

Similarly, the PDF of received signal power P (k)
j condition-

ing on LOS transmission and the distance R
(k)
j = r

(k)
j , i.e.,

f
P

(k)
j

(
z|LOS,R

(k)
j = r

(k)
j

)
is given by

f
P

(k)
j

(
z|LOS,R

(k)
j = r

(k)
j

)
=

1

zσ
(k)
sL

√
2π

exp

[
−
(
ln z − µ

(k)
sL

)2/
2
(
σ
(k)
sL

)2 ]
, (9)

where µ
(k)
sL = lnB

(k)
L −α

(k)
L ln r

(k)
j and

(
σ
(k)
sL

)2
=
(
βσ

(k)
L

)2
.

Plugging (8) and (9) into (7) , the distribution of received
power P

(k)
j , j ̸= m, i.e., F

P
(k)
j

(
x
∣∣∣R(k)

j = r
(k)
j

)
, can be



obtained:

F
P

(k)
j

(
x
∣∣∣R(k)

j = r
(k)
j

)
=

1

2

[
1 +

(
1− e−κr

(k)
j

)
erf

(
lnx− µ

(k)
sN√

2σ
(k)
sN

)
+ e−κr

(k)
j erf

(
lnx− µ

(k)
sL√

2σ
(k)
sL

)]
, (10)

where erf (·) is the error function.
The PDF of the received power given the distance

R
(k)
j = r

(k)
j is obtained by taking the derivative of

F
P

(k)
j

(
x
∣∣∣R(k)

j = r
(k)
j

)
with respect to x:

f
P

(k)
j

(
x
∣∣∣R(k)

j = r
(k)
j

)
=

e−κr
(k)
j

xσ
(k)
sL

√
2π

exp

−
(
lnx− µ

(k)
sL

)2
2
(
σ
(k)
sL

)2


+

(
1− e−κr

(k)
j

)
xσ

(k)
sN

√
2π

exp

−
(
lnx− µ

(k)
sN

)2
2
(
σ
(k)
sN

)2
 . (11)

Conditioned on
∩

j∈[1,n],j ̸=m

P
(k)
j ≤ t, P

(k)
m = t, and{

R
(k)
i = r

(k)
i , i∈ [1, n]

}
, the PDF of P (k)

j is then given by

f
P

(k)
j

(
x
∣∣∣P (k)

j ≤ t, P (k)
m = t, R

(k)
j = r

(k)
j

)
=

f
P

(k)
j

(
x
∣∣∣R(k)

j = r
(k)
j

)
∫ t

0
f
P

(k)
j

(
x
∣∣∣R(k)

j = r
(k)
j

)
dx

= 2

{(
1− e−κr

(k)
j

)
erfc

(
−
ln t− µ

(k)
sN√

2σ
(k)
sN

)
+ e−κr

(k)
j ·
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(
−
ln t− µ

(k)
sL√

2σ
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sL

)}−1{
e−κr
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j

xσ
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√
2π
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−
(
lnx− µ
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(
σ
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+

(
1− e−κr
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)
xσ
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√
2π

exp

−
(
lnx− µ

(k)
sN

)2
2
(
σ
(k)
sN

)2
}, 0 < x ≤ t.

(12)

where erfc (x) = 1 − erf (x) is the complementary error
function.

Thus the LT of P
(k)
j conditioned on

∩
j∈[1,n],j ̸=m

P
(k)
j ≤ t,

P
(k)
m = t, and

{
R

(k)
i = r

(k)
i , i∈ [1, n]

}
is derived by using

its definition

L
P

(k)
j

(s)

=

∫ t

0

e−sxf
P

(k)
j

(
x
∣∣∣P (k)

j ≤ t, P (k)
m = t, R

(k)
j = r

(k)
j

)
dx.

(13)

Lemma 2. If conditioned on
{
R

(k)
i = r

(k)
i , i∈ [1, n]

}
, P (k)

j ,
j < n are independent of each other.

Proof: From (3), we find that if conditioned on{
R

(k)
i = r

(k)
i

}
, P (k)

j are determined by random variables I(k)j ,

ξ
(k)
N and ξ

(k)
L which are all independent of each other. Thus

P
(k)
j are independent of each other, which completes the proof.

By using Lemma 2, the moment generating function (MGF)
of I

(k)
m,≤n =

∑n
j=1,j ̸=mP

(k)
j is the product of the LTs of

individuals

L
I
(k)
m,≤n

(s) =
n∏

j=1,j ̸=m

L
P

(k)
j

(s) (14)

2) The LT of I
(k)
m,>n: Next, the LT of

I
(k)
m,>n =

∑∞
j=n+1P

(k)
j will be derived conditioned on∩

j∈[1,n],j ̸=m

P
(k)
j ≤ t, P (k)

m = t, and
{
R

(k)
i = r

(k)
i

}
, i ∈ [1, n].

Note that if conditioned on
{
R

(k)
i = r

(k)
i

}
only, P (k)

j , j > n

are independent of each other and also independent of P
(k)
j ,

j ≤ n as well because distance R
(k)
l , l > n are not sequential

by index as R
(k)
l , l ≤ n. For simplification, assume that the

transmission of interference from BSs located outside the
disk area with radius R

(k)
n are all NLOS. This simplification

can be justified by that BSs located far away are more likely
to have NLOS paths. The LT of I(k)m,>n is obtained as follows

L
I
(k)
m,>n

(s) = E
I
(k)
m,>n

(
e−sI

(k)
m,>n

)
= E

Φk,ξ
(k)
N

exp
−s

∑
l∈Φk

\
Θ

(k)
n

B
(k)
N

(
r
(k)
l

)−α
(k)
N

eβξ
(k)
N




= EΦk


∏

l∈Φk

\
Θ

(k)
n

E
ξ
(k)
N

exp

[
−sB

(k)
N

(
r
(k)
l

)−α
(k)
N

eβξ
(k)
N

]
(a)
= exp

{
−2πλk

∫ ∞

r
(k)
n

[1− φ (v, s)] vdv
}
, (15)

with

φ (v, s) =∫ ∞

−∞

1

σ
(k)
N

√
2π

exp

−sB
(k)
N v−α

(k)
N eβu − u2

2
(
σ
(k)
N

)2
 du.

(16)

where Θ
(k)
n denotes the set of the locations of BS (k, i), , i ∈

[1, n], (a) follows from the probability generating functional
(PGFL) of the PPP [11].

At last, the PDF of I(k)m is obtained by taking an inverse LT
of L

I
(k)
m

(s) = L
I
(k)
m,≤n

(s)L
I
(k)
m,>n

(s) , i.e.,

f
I
(k)
m

(x) = L−1

I
(k)
m

(s) . (17)



Through derivations above, we get

F
I
(k)
m

 t

γ

∣∣∣∣ ∩
j∈[1,n],j ̸=m

P
(k)
j ≤ t, P (k)

m = t,
{
R

(k)
i = r

(k)
i

}
=

∫ t
γ

0

f
I
(k)
m

(x) dx (18)

B. The Per Tier Coverage Probability and Coverage Proba-
bility

The per tier coverage probability can be derived by de-
conditioning with respect to

∩
j∈[1,n],j ̸=m

P
(k)
j ≤ t, P

(k)
m = t

and
{
R

(k)
i = r

(k)
i

}
, respectively.

Firstly, we need to de-condition with respect to∩
j∈[1,n],j ̸=m

P
(k)
j ≤ t. Noticing the conditional independence

of P (k)
j , j ̸= m (conditioned on their respective distances), the

probability of
∩

j∈[1,n],j ̸=m

P
(k)
j ≤ t conditioning on P

(k)
m = t

and
{
R

(k)
i = r

(k)
i , i∈ [1, n]

}
is given by

Pr

 ∩
j∈[1,n],j ̸=m

P
(k)
j ≤ t

∣∣∣∣∣∣P (k)
m = t,

{
R

(k)
i = r

(k)
i

}
=

n∏
j=1,j ̸=m

Pr
(
P

(k)
j ≤ t

∣∣∣R(k)
j = r

(k)
j

)
=

n∏
j=1,j ̸=m

F
P

(k)
j

(
t
∣∣∣R(k)

j = r
(k)
j

)
. (19)

De-conditioning with respect to
∩

j∈[1,n],j ̸=m

P
(k)
j ≤ t, we

obtain

F
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(k)
m

(
t

γ

∣∣∣∣P (k)
m = t,

{
R

(k)
i = r

(k)
i
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=
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γ

0
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I
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(x) dx
n∏

j=1,j ̸=m

F
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(k)
j

(
t
∣∣∣R(k)

j = r
(k)
j

)
. (20)

Next, we obtain F
I
(k)
m

(
t
γ

∣∣∣ {R(k)
i = r

(k)
i

})
by de-

conditioning with respect to P
(k)
m = t, which is derived as

follows
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γ
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(
t
∣∣∣R(k)

j = r
(k)
j
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·

f
P

(k)
m

(
t
∣∣∣R(k)

m = r(k)m

)
dt. (21)

As a final step, we shall de-condition with respect to{
R

(k)
i = r

(k)
i

}
and the joint PDF of

{
R

(k)
i = r

(k)
i

}
is derived

as follows.

Lemma 3. The joint distance distribution up to n-th nearest
neighbors in the k-th tier which is given by [12]

fk (r1, r2, . . . , rn)

=

{
(2πλk)

n
r1r2 . . . rne

−πλkr
2
n , 0 ≤ r1 ≤ r2 ≤ . . . ≤ rn

0, otherwise

(22)

where ri, i ∈ [1, n] is the i-th nearest distance to the typical
MU1.

Combing equations (21) and (22), the unconditional prob-
ability F

I
(k)
m

(
t
γ

)
can be obtained by de-conditioning with

respect to
{
R

(k)
i = r

(k)
i

}
as follows
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1 r

(k)
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n )
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dr(k)1 dr(k)2 . . . dr(k)n .
(23)

The per tier coverage probability is the summation of all
possibilities as follows

P(k)
c (γ) =

n∑
m=1

F
I
(k)
m

(
t

γ

)
. (24)

And the coverage probability of the whole tiers is given by

Pc (γ) = 1−
K∏

k=1

[
1− P(k)

c (γ)
]

= 1−
K∏

k=1

[
1−

n∑
m=1

F
I
(k)
m

(
t

γ

)]
. (25)

IV. PERFORMANCE ANALYSIS AND RESULTS

This section presents results of previous sections, followed
by discussions. [10] suggest that usually α

(k)
N > α

(k)
L and

σ
(k)
N > σ

(k)
L if we fix antenna types and heights. Let α(1)

N =

4.28, α(1)
L = 2.42, α(2)

N = 3.75 and α
(2)
L = 2.09 in a 2-tier

network. A(1)
N , A(1)

L , A(2)
N and A

(2)
L are set to 2.7, 30.8, 32.9

and 41.4, respectively.
Fig. 1 shows the coverage probability with respect to the

SIR threshold which varies from -20 dB to 40 dB. It is
found that the coverage probability decreases with the increase
of the SIR threshold, as the higher the SIR threshold, the
more difficult for the received SIR at a MU to be higher
than the SIR threshold. When the SIR threshold is fixed, 2-
tier networks perform better than 1-tier networks. Besides,
a comparison with [8] which does not consider NLOS and

1We omit tier order k in this subsections for notation simplification.
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LOS transmissions is illustrated in the same figure. In [8],
the coverage probability is a monotonously increasing along
with the path loss exponent α. In our model, the coverage
probability of both 2-tier and 1-tier networks have a similar
trend with networks configured with NLOS path loss exponent,
i.e., α(1)

N or α(2)
N , which indicates that buildings and trees have

a non-negligible impact on network performance.
The coverage probability vs. 2nd BS density λ2 is given

by Fig. 2. Through curves above, the coverage probability
decreases with a slower and slower rate as 2nd BS density
increases. While in [8], the coverage probability is only a
function of SIR threshold and path loss exponent if we ignore
terminal noise.

Comparing Fig. 1 with Fig. 2, we find that in urban areas
dense BS deployment do not always provide a better network
performance. As Fig. 1 shows, coverage probability in 2-
tier networks with dense BSs is larger than that in 1-tier
networks when the SIR threshold is fixed. While in Fig. 2,
dense BSs deployment weakens networks performance, which

indicates that deploying more BSs in different tiers is better
than deploying all BSs in the same tier in terms of coverage
probability in urban areas. This is an effect caused by the
co-existence of NLOS and LOS transmission in our model.

V. CONCLUSIONS

In this paper, we propose a heterogeneous network model
considering LOS and NLOS transmission to study the cov-
erage performance. The coverage probability is derived and
analyzed with the assumption that both visible and invisible
BSs are available for a MU, as long as the SIR threshold
is satisfied. We also compare our work with [8] and obtain
some interesting observations. As for our future work, channel
model shall be generalized and impacts of the number of
candidate BSs per tier should also be investigated.
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