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ABSTRACT 

Cyclotides are cyclic disulfide-rich peptides that are chemically and thermally stable and 

possess pharmaceutical and insecticidal properties. The activities reported for cyclotides 

correlate with their ability to target phosphatidylethanolamine (PE)-phospholipids and disrupt 

cell membranes. However, the mechanism by which this disruption occurs remains unclear. In 

the current study we examine the effect of the prototypic cyclotides, kalata B1 (kB1) and kalata 

B2 (kB2) on tethered lipid bilayer membranes (tBLMs) using swept frequency electrical 

impedance spectroscopy. We confirmed that kB1 and kB2 bind to bilayers only if they contain 

PE-phospholipids. We hypothesize that the increase in membrane conduction and capacitance 

observed upon addition of kB1 or kB2 is unlikely to result from ion channel like pores, but is 

consistent with the formation of lipidic toroidal pores. This hypothesis is supported by the 

concentration dependence of effects of kB1 and kB2 being suggestive of a critical micelle 

concentration event rather than a progressive increase in conduction arising from increased 

channel insertion. Additionally, conduction behaviour is readily reversible when the peptide is 

rinsed from the bilayer. Our results support a mechanism by which kB1 and kB2 bind to and 

disrupt PE-containing membranes by decreasing the overall membrane critical packing 

parameter, as would a surfactant, which then opens or increases the size of existing membrane 

defects. The cyclotides need not participate directly in the conductive pore, but might exert 

their effect indirectly through altering membrane packing constraints and inducing purely 

lipidic conductive pores. 

INTRODUCTION 

Cyclotides are a large family of plant-derived peptides that possess pharmaceutical (e.g. 

uterotonic, anti-HIV and anti-cancer) and agricultural (e.g. insecticidal, nematocidal) 

properties and have attracted much attention as leads in drug design.1-2 They feature a cyclized 

backbone and three disulfide bonds arranged in a knot, which confer to them remarkable 

stability (Figure 1A).1 Kalata B1 (kB1) and kalata B2 (kB2), Figure 1B, are two of the most 

studied cyclotides and were originally isolated from the African herb Oldenlandia affinis.3 Both 

peptides belong to the Möbius subfamily4 of cyclotides and mode-of-action studies with these 

and other native cyclotides belonging to this subfamily suggest they act by interacting with the 

cell membranes of the target organism. In particular, cyclotides bind to and disrupt membranes 

that contain phosphatidylethanolamine (PE) phospholipids.5-6 A strong correlation between 

biological activity and affinity for PE-containing membranes has been reported.7-8  

An Ala-scan of kB1 in which insecticidal activity was measured for all of the Ala point mutants 

showed that a patch of residues formed at the surface of kB1 is important for activity (Figure 

1C); accordingly this patch is referred to as the bioactive face.9 This finding was later confirmed 

with a Lys-scan,10 which found that, in addition to the bioactive face, a hydrophobic patch also 

at the surface of the molecule is essential for activity. Later it was found that both the bioactive 



 

 

 
  Page 3 

and the hydrophobic patches are required for kB1 to bind to lipid membranes.8 Specifically, 

the bioactive patch binds to phospholipids containing PE head-groups whereas the hydrophobic 

patch is important for the peptide to insert into the lipid bilayer. Single mutations in either of 

these two patches rendered kB1 unable to bind to membranes and it became inactive in all of 

the biological assays tested so far.8 

Patch-clamp electrophysiology measurements showed that binding of kB1 to model 

membranes containing PE-phospholipids induces ion channel-like activity.11 The ability to 

disturb lipid bilayers was also supported by a dye leakage study showing that kB1 induces 

membrane leakage in liposomes but only when they have PE-phospholipids in their 

composition.7, 11 Based on these findings it was postulated that kB1 might form pores in 

membranes through the formation of multimers of tetramers. The proposed oligomerization 

behaviour is supported by analytical ultracentrifugation studies showing that kB2 can 

oligomerize to form tetramers and octomers.12 

An extension to the pore-forming model was proposed by Wang et al in 2012.13 Based on 

quartz crystal microbalance and neutron reflectometry data, the extended model predicts that 

membrane pores are formed when sufficient quantities of peptide monomers or oligomers have 

bound to the membrane via PE lipids, and increasing concentrations of kB1, or kB2, can 

permanently disrupt the membrane.  

More recently, Nawae et al reported coarse-grained molecular dynamics simulations of kB1 

and its association with lipid membranes14 and suggested that kB1 forms oligomers in aqueous 

solutions that themselves can conjugate to form either “tower-like” or “wall like” structures. 

Each of these elongated structures was hollow, with apertures of ~13nm in diameter. According 

to that study, kB1 is arranged within the outer leaflet of lipid bilayers, and instead of forming 

ion channels within the membrane, induces a positive membrane curvature. However, that 

study was done using membranes lacking PE lipids, which are known to be essential for the 

ability of kB1 and kB2 to bind to model membranes, so does not provide realistic insights into 

cyclotide membrane binding.7-8 

Given the contrasting membrane disruption mechanisms proposed for cyclotides, here we 

conducted studies using tethered bilayer lipid membranes (tBLMs) in conjunction with swept 

frequency electrical impedance spectrometry (EIS) to gain insights into cyclotide mode-of-

action. We consider this experimental approach unique as, unlike other structural biological 

measures, such as neutron and X-ray scattering or nuclear magnetic resonance (NMR), which 

require excessively high concentrations of perturbants, EIS permits the direct observation of 

the peptide induced changes in the membrane conductance and capacitance at peptide 

concentrations in the range 0.1-10 µM. The data collected by EIS questions the model that kB1 

and kB2 might form ion channel like pores. Instead, we suggest that these cyclotides have a 

surfactant-like behaviour and induce the formation of toroidal pores in membranes. 

Furthermore, we demonstrate that this surfactant-like behaviour is reversible upon rinsing 

tBLMs with cyclotide-free electrolyte solution. The putative mechanism of cyclotide-

membrane interaction is described here in terms of lowering the membrane critical packing 
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parameter (CPP)15-19 leading to an increase in the size of membrane defects existent in the 

bilayer according to a model discussed previously.20 

MATERIALS AND METHODS 

Peptide extraction and synthesis 

The cyclotides kB1 and kB2 were extracted from Oldenlandia affinis and purified as described 

previously.4 kB1 mutant, [W23A]kB1, was synthesised and purified as before.9 The 

concentration of kB1 and kB2 in various experiments was quantified by absorbance at 280 nm 

assuming an extinction coefficient of 5875 M-1 cm-1, as determined from the contribution of 

aromatic residues and disulfide bonds. As the analogue [W23A]kB1 does not contain aromatic 

residues, the concentration of [W23A]kB1 samples was quantified by weight of lyophilised 

peptide. 

 

Solutions 

The peptides were tested at 1 µM and 10 µM, concentrations at which they were previously 

shown to have negligible and considerable effects on lipid membranes, respectively.8 All 

experiments were conducted using phosphate buffered saline (PBS) at pH 7.2; except for those 

experiments that necessitated a pH change, which were performed in 100 mM NaCl solutions 

whose pH was adjusted to pH 5 and pH 7 by the addition of concentrated HCl or NaOH. These 

unbuffered solutions were used immediately upon creation so as to prevent subsequent 

alterations in pH by the absorption of atmospheric CO2. 

 

Tethered bilayer lipid membranes  

tBLMs with 10% tethering lipids and 90% spacer lipids (T10 tBLM) were formed using the 

solvent exchange technique as described previously. Briefly, 2.1 mm2 electrodes were pre-

prepared with tethered benzyl-disulfide (tetra-ethyleneglycol)n=2 C20-phytanyl tethers (DLP) 

and benzyl-disulfide-tetra-ethyleneglycol-OH spacers (TEGOH) in the ratio of 1:9. The 

electrodes are 2 mm2 patterned, 100 nm thick, fresh 5N5 gold surfaces sputter coated onto a 

polycarbonate slide (SDx Tethered Membranes Pty Ltd, Australia).21 To the tethered monolayer 

chemistries, 8 μL of a 3 mM solution of a mobile lipid phase dissolved in ethanol were added, 

and, after a 2 minute incubation, were washed three times with 2  200 μL of 100 mM PBS. 

The mobile lipid phases investigated were: 20% (mol/mol) 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphoethanolamine (POPE) with 80% 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine 

(POPC) (Avanti Lipids, USA); and POPC alone.  

AC electrical impedance spectroscopy (EIS) 

Impedance and phase measurements were performed using an SDx tethaPod™ operated with 

SDx tethaQuick™ software (SDx Tethered Membranes Pty Ltd). Swept frequency EIS was 

employed using a 50 mV peak-to-peak AC excitation at frequencies between 0.02 and 10,000 

Hz, with 4 steps per decade, at zero bias potential. The data were fitted using an equivalent 

circuit comprising a Constant Phase Element (CPE) in series with a Resistor/CPE network 

using a proprietary adaptation of a Levenberg–Marquardt fitting routine (Figure 4A). In this 

equivalent circuit, Qs is the imperfect series capacitance at the gold electrode interface which 

is modified by an exponent, αs, as in the equation: 
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1

𝑍𝐶𝑃𝐸
 =  𝑄𝑠 (𝑖𝜔)𝛼𝑠  

Where ZCPE is the impedance magnitude of the constant phase element, i the imaginary unit 

and ω the frequency in radians per second. When αs = 1, Qs is a pure capacitor and when αs = 

0, Qs is a pure resistor. It has been determined in previous studies that the presence of tethering 

molecules in the tBLM architecture can act as an impediment to ion flow towards the gold 

tethering electrode. The delay charging the sulphur coated gold surface distorts the capacitive 

properties of the gold-sulphur-electrolyte interface justifying the use of the CPE22 as an 

approximation of the distributed RC network at the interface. In Figure 4A, Qm and αm represent 

the imperfect capacitance and exponent of the tethered lipid bilayer and Gm the membrane 

conduction. Recent work from Valincius and co-workers examined equivalent circuit models 

for a heterogeneous distribution of membrane conductive elements. Their conclusions further  

support the use of a CPE23 in the equivalent electrical circuit model. Ge represents the 

conduction of the PBS or NaCl electrolyte solutions. In the present work, the fitting of the 

equivalent circuit model was optimised against the combined, frequency weighted impedance 

magnitude and phase data.  

RESULTS AND DISCUSSION 

EIS is particularly suited to measurements of conduction changes that depend on specific lipid-

peptide components within lipid bilayers. In particular, the effect of a lipid–peptide complex 

on the membrane can be identified from the Bode plot of Log10 [Zmag.(Ohms)] and separately 

the Phase (degrees), both plotted against Log10[Frequency(Hz)]. Phase versus frequency 

profiles are represented in Figure 2. Briefly, when the lipid-protein or lipid-peptide form an ion 

channel in the membrane, the frequency at the minimum phase will be shifted to higher 

frequencies, as shown in Figure 2A. This is a typical response seen with many membrane ion 

channels, such as those formed by gramicidin-A or α-haemolysin. Small alterations in the 

membrane thickness and/or water content of the membrane occur when such channels enter the 

membrane. With a channel, the changes in the imperfect membrane capacitance, or Qm and αm 

of the CPE, remain essentially unaltered. Thinner membranes and/or membranes with greater 

water content will exhibit higher capacitances or Qm values. Figure 2B shows the effect of a 

change in the membrane capacitance without a substantial change in Gm (the membrane 

conductance). An example of a peptide that induces this behaviour is GSMTx-4 toxin24 from 

tarantula venom (as seen in Figure 2B).  

Lipid-peptide or lipid-protein complexes that have surfactant-like properties can, at high 

concentrations, cause a change in the membrane morphology producing a large increase in the 

membrane conduction and result in a phase profile similar to that depicted in Figure 2C. Here 

the phase at phase minima is increased, resulting from the exposure of the sulphur coated gold 

surface and an increase in Qm, as well as exhibiting a shift to higher frequencies.  

The addition of either kB1 or kB2 to tBLMs containing POPC/POPE (80:20 molar ratio) 

phospholipids induced a shift in the EIS phase profile (Figure 3 for kB1; Figure S1 for kB2 in 
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Supplementary Material) that more resembles surfactant-like properties similar to that depicted 

in the Figure 2C example. When pure POPC membranes were used, neither kB1 nor kB2 had 

any noticeable effect on the EIS phase profile, consistent with previous reports showing that 

the presence of PE-containing phospholipids is required for these peptides to bind to 

membranes.7-8 Interestingly, following a subsequent PBS wash step, any effect of the cyclotides 

on the membrane impedance spectra disappeared and the membrane appeared to return to its 

former state. To gain further evidence of the specificity of kB1 for PE containing membranes, 

[W23A]kB1, a kB1 analogue with a mutation in the hydrophobic face (see Figure 1C) and 

previously shown to be inactive in the activities tested9 was here included as a control. As 

expected, [W23A]kB1 exhibited no response in either POPE containing membranes or POPC-

only membranes (Supplementary Material Figures S3 & S4). This is in agreement with 

previous studies with kB1 analogues with a mutation in this residue showing that Trp23 is 

important for kB1 membrane binding properties and activity.8-10, 25 

The way in which membrane conduction (Gm) and imperfect capacitance (Qm) are altered as a 

result of adding kB1 is depicted in Figure 3B&C (Supplementary Material Fig S2 B&C for 

kB2). Membrane conduction increases in response to addition of 10 µM kB1, then returns to 

baseline levels following a washing step. These responses are repeatable upon subsequent 

exposure to, and washouts of the cyclotides. Likewise, the imperfect capacitance of the 

membrane is drastically altered with exposure to kB1 and kB2, and is also reversible. To record 

such a drastic capacitance change, not only would the membrane have to become substantially 

thinner as a result of adding the cyclotide, but the dielectric of the membrane would also need 

to substantially increase, indicating increased water content. However, such a dramatic change 

would indicate that the membrane has undergone a structural alteration to a non-sealing 

isotropic phase that exposes the underlying gold electrode.  

The effects of kB1 and kB2 were only detected in membranes containing a proportion of POPE 

in their composition, and not in POPC-only membranes. This observation suggests a specific 

interaction between the PE headgroup and the cyclotide which increases both membrane 

conduction and permittivity. In addition, the CPE exponent, αm, decreased from 0.95 to 0.8 

apparently indicating an impediment to the charging of the membrane capacitance (Figure 3D). 

In the example where the membrane has undergone a change of morphology such that highly 

conductive pathways are now bypassing the permeability barrier previously caused by the 

presence of the lipid bilayer, the two capacitor model collapses to a single capacitor model 

describing the underlying gold electrode. The fall in αm is now reflecting αs (Figure 4F). Had 

the primary effect of kalata been the assembly of multimeric peptide ion channels, the 

conduction would have increased but the capacitance would be expected to remain 

substantially unaltered. Furthermore, the Qs minimally changed upon addition of kB1 or kB2, 

suggesting that the effects induced by these cyclotides are localised within the lipid bilayer 

(Figure 3E). 

The effects of cyclotides on a PE containing membrane were observed over a very narrow 

concentration range. This is in contrast to the progressive increase in conduction experienced 

with ion channels such as gramicidin-A.26 No significant effects were detected upon addition 

of 1 M kB1, even after 10 hours of incubation (Figure 5A&B); whereas at 10 M substantial 
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changes in Qm and Gm occur immediately. Such changes over the 1 - 10 µM kalata 

concentrations are similar to a critical micelle concentration (CMC) event in which the self-

assembly of surfactant molecules can incorporate membrane lipids inducing a morphological 

phase change and a disruption of the membrane. One model, therefore, of the effect of the 

cyclotides on the tBLMs studied here is that, rather than behaving like an ion channel, kB1 and 

kB2 interact with PE containing lipid bilayers as a surfactant, inducing major leakage pathways 

in the membrane and causing an increase in the membrane dielectric constant through the 

facilitated increase in the water content in the previously strongly hydrophobic region of the 

membrane.  

Another important observation is that the effects of kB1 and kB2 are reversible. Following a 

PBS rinse, the membrane’s conduction and capacitance return to the values observed before 

the addition of the cyclotides (Figure 4B-F). Had the cyclotides acted as a lytic surfactant, the 

system would not show reversibility. The fact that  the tBLM intrinsically possesses stabilising 

tethers that anchor the membrane lipids to the electrode must result in stabilising the conductive 

state induced by the addition of kB1 and kB2. However, the outer leaflet of the tBLM is not 

tethered and so would be disrupted, forming an irreversible micellar phase (as would occur 

when a conventional surfactant, such as Triton-X 100, is added). It is noteworthy that the re-

addition of kB1 and kB2, after rinsing, repeated the earlier response, indicating there can have 

been no loss of the PE lipid from the tBLM. These observations raise the possibility of other 

amphipathic peptides or organic compounds acting as surfactants on lipid bilayers which can 

induce toroidal pores.  

Our analysis focuses exclusively on the steric constraints that determine the membrane’s 

morphology. This is effectively described by a weighted CPP parameter (CPPw). The CPPw 

relates the population weighted metrics of the individual molecular dimensions, such as area 

(ao), length (l) and volume (v), to the morphology of the resultant assembled phase formed by 

the molecules such that CPPw = <v/(aol)>.15-16, 20 When the CPPw = 1/3, spherical micelles are 

predicted, and when the CPPw = 1, the anticipated structure is a planar bilayer. In a model 

presented here, the interaction that titrates in the range 1 – 10 µM8 forming cyclotide-PE 

complexes, reduces significantly the CPPw of the membrane and results in the generation of 

regions of high local curvature which, in turn, induce toroidal pores causing the substantial 

increase in Gm and Qm.20  

The CPPw model is further supported by the data in Figure 6A&B which shows a typical 

response of tBLMs to kB1 at pH 5 compared to pH 7 in 100 mM NaCl. In this pH range the 

conformational change in the structure of kB1 is minimal,27 and earlier work has indicated that 

pH has little effect on the mass loading of kB1 to PE within supported membranes in the range 

of pH 5.5 – 7.4.28  However, a recent study has shown the membrane organisation is strongly 

dependent on pH over the same range.20 At lower pH the membrane is more ordered with a 

significantly reduced Qm suggesting an increased inter-molecular attraction of the lipids at 

lower pH is modifying the interaction of kB1 with the PE population of the lipid bilayer. A 

consequence of this dependence would be that the effect of kB1 on the membrane conduction 

will be closely correlated with the pH dependent partition coefficient, consistent with the CPPw 

model.  
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There is no necessity in this model for there to be an interaction between cyclotide molecules. 

The impact of the cyclotides on the membrane structure is primarily through the alteration of 

the steric CPPw which, in the presence of kB1 and kB2 is proposed to fall, inducing a need for 

regions of high curvature within the membrane structure which, in turn, induces the formation 

of conductive toroidal pores. The dramatic changes that occur in the membrane capacitance 

and conduction are difficult to explain by other than a major surfactant effect.  It is unlikely that 

pores arising within the membrane are due to peptide self-assembly will possess sufficiently 

large central ion conductive pathways to increase the membrane capacitance to the extent 

observed. The magnitude of the effect of kB1 and kB2 on the membrane strongly suggests 

these peptides induce a morphological change in the membrane and not simply self-assembly 

into ion channel-like pores.    

CONCLUSIONS 

Using tethered bilayer lipid membranes in conjunction with swept frequency electrical 

impedance spectroscopy we have shown that the prototypical cyclotides, kB1 and kB2, have 

surfactant-like properties and are unlikely to exert their effects on lipid membranes via an ion 

channel like pore mechanism. It was further confirmed that the presence of PE lipids in the 

bilayer is required for the effects of these cyclotides. The formation of cyclotide-PE complexes 

supports the creation of toroidal pores described by a CPPw model whereby an alteration of the 

size of the head groups in proportion to the lipid tails generates regions of curvature in the 

membrane inducing the formation toroidal pores. 
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Figure 1. Structure and sequence of cyclotides. A, Three-dimensional structure of kalata B1 

(PDB: 1nb1) showing the cyclic backbone and the three disulfide bonds (yellow) arranged in 

a knot. The grey circle shows the position of Gly-1, I-VI indicate the location of Cys residues 

and the black arrow indicates the direction of the peptide chain. The segments between the Cys 

residues are termed loops and are labelled 1-6. B, Sequences of kalata B1 and kalata B2. 

Backbone cyclization between Gly-1 and Asn/Asp-29 is indicated with a black dashed line, 

with the disulfide connectivity shown in yellow; Cys residues are labelled I-VI and loops are 

labelled 1-6. C, Surface representation of kalata B1 in two views showing the location of the 

amendable face (blue), hydrophobic face (green) and bioactive face (red).9-10 The residues that 

have been shown to be important for the reported activities of kalata B1 are located in the 

hydrophobic and bioactive faces. Point mutations in these regions might render the peptide 

inactive and also unable to bind to membranes. Mutations in the amendable face can improve 

the potency of kalata B1.10 
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Figure 2 A, the higher membrane conduction resulting from the incorporation of an ion channel 

into a tBLM will shift the phase profile to higher frequencies. B, incorporation of a protein or 

peptide that induces a thinning of the membrane will cause an increase in membrane 

capacitance resulting in an increase in the phase minima. C, the typical response seen here, 

resulting from the addition of kB1 or kB2 to a POPC/POPE membrane was both a shift to 

higher frequencies of the phase profile and an increase in the phase minima.  
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Figure 3. Bode plots highlighting the change in the impedance spectra in response to 10 µM 

kB1. On the left hand side are Bode plots of tBLMs containing a mixture of POPC/POPE 

(80:20) lipids before adding kB1, after addition of 10 µM kB1, after a PBS wash and then a 

subsequent re-addition of 10 µM kB1. The right hand side are Bode plots of corresponding 

POPC tBLMs. These data confirm that the presence of ethanolamine lipid head groups are 

required for kB1 activity and that the effects of kB1 on lipid membranes are recoverable 

following a PBS wash step.  
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Figure 4 A The equivalent circuit used to fit the phase and impedance magnitude EIS data. Qs 

and Qm are the CPE values (imperfect capacitances) at the gold electrode and the lipid 

membrane, respectively, and αs and αm are their respective exponents. Gm is the membrane 

conductance and Ge the conductance of the PBS bathing solution. B is a plot of the change in 

membrane conduction in response to 10 µM KB1 and subsequent wash steps with PBS. C are 

the associated changes in membrane capacitances (Qm) and D, the changes in the exponent 

values αm in response to 10 µM kB1 and subsequent wash steps with PBS. E and F highlight 

how the capacitances and exponent values are minimally altered by the presence of 10 µM kB1 

and subsequent wash steps. 
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Figure 5 A Conduction changes (Gm) over a period of 10 hours to a 1 µM dose of kB1. B, the 

capacitances (Qm) over the same period.  
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Figure 6. A, the impact of kB1 on tBLM conduction and B, capacitance, at pH 5 compared to 

pH 7. There is a clear dampening of the response at pH 5 supporting the model that kB1 lowers 

the overall CPP of the bilayer inducing a more curved-like membrane. The tBLM contains 

POPC/POPE (80:20) lipids. 
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