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Abstract 
Numerous studies have shown that a software project’s 

cost, schedule and defect density escalate  as the rate  of 
requirements change increases.  Yet none of these studies 
have explored the effects of not making requirements 
changes in response to changes in user needs. This paper 
explains why a project incurs just as much, if not more, 
risk when requirements changes are suppressed. 

 
1. Introduction 

 

Although many papers have analyzed negative effects 
of requirements change, none have addressed positive 
effects of requirements change. This paper differentiates 
between requirement  and need. Although the two terms 
are synonyms according to thesauri, we use requirement 
to     indicate     a    documented,     externally-observable 
characteristic   of  a  desired   system  [1],  and  need  to 
indicate the actual need of users, customers, market, etc. 
Requirements change encompasses 

•  requirements   volatility,   a   term   defined   as   a 
measure of the number of requirements changes 
(additions,  deletions,  and  modifications)  [2] 
divided by the number of requirements for a given 
period of time [3], and 

• requirements creep, a term defined by Jones [4] as 
“frequent    changes in  requirements,” and    by 
Carter, et al. [5] as changes that  result  “in  exten- 

 
sions to and alterations of the software’s 
functionality and scope.” 

Three  factors  contribute  to  requirements  change:  (1) 
changes  to  actual  need,  (2)  changes  to  stakeholders’ 
perception of what is needed [6], and (3) changes to the 
requirements  document.  Instances  of  the  first  case  go 
unnoticed,  but  occur  nonetheless;  in  fact,  we  can  do 
nothing to alter their rate of occurrence. Instances of the 
second   case   emerge   as   a   result   of   requirements 
elicitation, prototyping, thinking, seeing an early version 
of the system, and so on. Obviously we can reduce their 
rate  of  occurrence  by  avoiding  practices  that  surface 
requirements, but that is mere folly. Instances of the third 
case are 100% controllable; we can choose to make such 
changes  or  not.  So,  what  do  authors  mean  when  they 
discuss  mechanisms  to  “control”  requirements  change? 
Figure 1 shows  the eight situations  related  to changes. 
This  figure  shows  how  it is  generally  good  to  change 
requirements  when  needs  change  (YYY)  and  generally 
good  to  not  change  requirements  when  needs  are  not 
changing (NYN and NNN). 
 
2. Why Do Requirements Change? 
 

After requirements  are agreed to, they will change as 
the result of [1]: (1) Stakeholders review the document 
and that will trigger the desire for something new,   (2) 
stake holders play with a prototype and  that  will  trigger 
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YNY: Req’ts 
changes being 
made for 
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pond to changing 
needs that we don’t 
know about 

NYY: Req’ts 
changes being 
made for 
capricious reasons 
NYN: No changes 
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because no needs 
are changing 

NNY: Req’ts changes 
being made for 
capricious reasons 
 
NNN: No changes 
made to req’ts 
because no real needs 
are changing 

Figure  1. Kinds of Requirements Change 
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the desire for something new, (3) the situation in which 
the system is used changes, and (4) customers use the 
current  version  of the  system  and  that  will  trigger the 
desire for something else they’d like to have done. Nur- 
muliani, et al. [7] investigated how developers classify 
requirements   changes.   Those   who   classified   require- 
ments changes by the reason for change (60% of the test 
subjects) used a combination of these categories: (1) 
changes to product strategy, (2) changes to environment, 
(3) scope reduction, (4) design improvement, (5) reali- 
zation that a requirement had been missing, (6) unclear 
requirement statement, (7) realization that original 
requirements were not testable, or (8) enhancement. 

Carter, et al., [5] provide insight into how risk analysis 
is essential for determining which requirements changes 
should be accepted for inclusion in an iteration. Lam and 
Shankararaman [8] provide many suggestions on how to 
manage  requirements  change,   including  being  more 
aware of changing user and customer needs (as opposed 
to documented requirements), performing risk analysis of 
making changes (also see Antón and Potts [9], who make 
an  excellent case for performing a  benefits analysis  of 
requirements   change   as   well),   identifying   conflicts 
among requirements and among requirements changes, 
and performing overt prioritization and triage [10]. 

On  average,  between  20%  [4]  and  53%  [11]  of  the 
original  requirements  change  by  the  time  the  project 
completes.  Yourdon  [12]  and  Young  [13]  report  that 
projects   became   over-budget   and/or   late   whenever 
requirements changes exceed ½-1% per month. We have 
no  doubt  that  this  is  true,  but  seriously  question  the 
alternative, namely to suppress requirements changes as 
needs evolve (box YYN in Figure 1). 

 

3. Perceived Negative Impact of Making 
Requirements Changes 

 

Most   authors   who   discuss  impact  of  requirements 
change emphasize negative impacts of such change, e.g. 

• “Requirements volatility (RV) is generally 
considered an undesirable property” [14]. 

• “Changing requirements are recognized as a major 
cause of project failure” [8]. 

• “Requirements volatility causes the software to have 
a higher defect density” [15]. 

• “Change . . . is often seen as a menace to established 
order” [16]. 

• “Requirements volatility is considered to be a major 
risk to . . . complex software projects” [7]. 

This  is  logical  when  considering  only  the  cost  of 
satisfying  documented  requirements.  We  know  for 
example  that  the  cost  to  develop  a  system  (CD)  is 
proportional   to   the   number   and   complexity   of   the 
elements of the set of originally specified requirements 

(R) and the number of and complexity of the elements of 
the  set  of  changes  made  to  those  requirements  (∆R) 
during the  development  process,  CD   ~  R, ∆R.  To see 
how silly it is to focus just on the cost to develop, we can 
minimize it quite easily: just minimize R. This may seem 
ridiculous, but when we talk about how requirements 
change  causes  problems  on  projects,  aren’t  we 
suggesting that we find a way to minimize ∆R,  which is 
just as ridiculous? 
 

4. Negative Impact of Not Making 
Requirements Changes 
 

It makes little sense to try to minimize CD; after all, it 
is trivial as shown previously. What we should be doing 
is trying to minimize the cost to satisfy (CS) the custom- 
mers’/market’s  needs.  And, this cost is  proportional to 
the number of elements in and the complexity of the 
elements  of  the  set  of  needs  (N)  and  the  number  of 
elements in and the complexity of the elements of the set 
of changes to those needs (∆N),  i.e., CS  ~ N, ∆N. But 
more  importantly,  CS    is  proportional  to  CD    and  the 
degree of discordance (δ) between R and N, and ∆R and 
∆N,  i.e., CS  ~ CD, δ(R, N),  δ(∆R, ∆N). Replacing CD, 
we get, CS   ~ R, ∆R, δ(R, N),  δ(∆R, ∆N).  Since we 
cannot control N  or ∆N,  attempts to minimize ∆R are 
moot. The only way to minimize CS   is to minimize 
discordance  of ∆R  and ∆N  regardless of the  negative 
side effect on CD. 

The  preponderance  of  data  indicates  that  the  more 
requirements change, the higher the cost, the longer the 
development, and the higher the defect density. We will 
use the term negative project success factors to capture 
the concept of customer dissatisfaction, in general, and 
higher   cost,   longer   development,   and   higher   defect 
density, specifically, as shown in Figure 21. However, let 
us examine in more detail the phenomena occurring at 
points A, B, and C on the graph of Figure 2. 

• At point A, requirements are not changing (bottom 
row of Figure 1), so there appears to be no negative 
impact on project success. However, what if needs 
are   changing,  and  we  inhibit  change  to  require- 
ments? This is common among organizations who 
think the solution to escalating costs is to prevent 
requirements  change.  Figure  3  expands  point  A. 
Note  that  if  needs  are  not  changing,  point  A  on 
Figure  2  is  accurate  and  minimal,  but  if 
requirements are not being updated and needs are 
changing, then negative project success factors grow 
(right side of Figure 3 culminating at point A′). 

 
1  Axes on this and subsequent figures are void of scale; 
the non-decreasing nature of the graph is important, not 
its shape. As the granularity of requirements increases, 
the graph’s shape becomes more predicttable, as 
demonstrated by Lavazza and Valetto [17]. 
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documented requirements are changing). Note that 
point B on Figure 2 is a minimal impact point, not a 
moderate impact point. 
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Figure  2. Relationship of Req’ts Change  to Negative 
Project  Success Factors 
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Figure  4. Relationship of Needs Change  to Negative 
Project  Success Factors  at Point C 
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Figure  3. Relationship of Needs Change  to Negative 
Project  Success Factors  at Point A 

 

• At point C, documented requirements are changing 
(top row of Figure 1), so there are negative impacts 
on project success factors. However, what if actual 
needs are not changing, and we are simply making 
changes to the documented requirements for non- 
project critical reasons such as poor leadership, ego 
gratification,   and   so  on?   Figure   4  expands  the 
situation  occurring  at  point  C.  Note  that  if  actual 
needs indeed are changing, point C on Figure 2 is 
accurate   but  is  a   minimal  impact   point,   not  a 
maximum impact point. If actual needs are not 
changing, but documented requirements are being 
changed nonetheless, then negative project success 
factors grow even more (left side of Figure 4, 
corresponding to boxes YNY, NYY, and NNY, 
culminating at point C′). 

• At point B, documented requirements are changing 
moderately,   so   there   are   moderate   impacts   on 
project  success  factors.  However,  what  if  actual 
needs are changing more rapidly? Or less rapidly? In 
both  cases,  project  success  becomes  less  likely. 
Figure 5 expands the situation occurring at point B 
(left side of the figure shows escalating risk when 
needs are not changing; right side shows escalating 
risk when needs are changing more rapidly than the 
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Figure  5. Relationship of Needs Change  to Negative 
Project  Success Factors  at Point B 

 

The phenomena at these points make it clear what is 
happening:  requirements  change  must  remain  propor- 
tional to change in actual needs. It is quite easy to control 
requirements  change:  simply  do  not  make  them.  The 
result  will  be  a  project  that  completes  on  schedule, 
within  budget,  and  with  minimal  defect  density,  the 
subjects  that are  so  often  correlated  with  “project  suc- 
cess.” However, if we consider the ultimate (most criti- 
cal) defect to be a failure to meet a customer need, then 
requirements changes must be proportional to needs 
changes (regardless of the timing of changes as reported 
in [15][18]), and will result in the lowest critical defect 
density. Putting Figs 3, 4, and 5 together gives us Figure 
6. Note that points A, B, and C of Figure 2 all become 
minimal points in Figure 6 when examined from the 
requirements change axis. This becomes more obvious 
when we rotate Figure 6 so that the “change rate for 
requirements” axis is facing us, as shown in Figure 7. 
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