
© [2008] IEEE. Reprinted, with permission, from Davis, Alan., Nurmuliani, Nur., Park,

Sooyong., & Zowghi, Didar. 2008, 'Requirements Change: What's the Alternative?'

32nd Annual IEEE International Computer Software and Applications Conference,

pp. 635-638.This material is posted here with permission of the IEEE. Such

permission of the IEEE does not in any way imply

IEEE endorsement of any of the University of Technology, Sydney's products or

services. Internal or personal use of this material is permitted. However, permission

to reprint/republish this material for advertising or promotional purposes or for

creating new collective works for resale or redistribution must be obtained from the

IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document,

you agree to all provisions of the copyright laws protecting it.

mailto:pubs-permissions@ieee.org

AAnnnuanuall IEIEEEEE IIntnteerrnanattiioonanall CCoompmpuutteerr SSooffttwawarree aandnd AAppppliclicaatitioonnss CCoonnffererenencece

663355

00773300--
3311557/7/0088 $$2255..0000 ©© 22000088 IIEEEEEE
DODOII
10 1109/COMPSAC 2008 216

Requirements Change: What’s the Alternative?

Alan M. Davis

U of Colorado at Colo Sprs
College of Business

PO Box 7150
Colorado Springs, CO

80933-7150 USA
adavis@uccs.edu

Nur Nurmuliani

U. of Technology, Sydney

Faculty of Info Technology
PO Box 123

Broadway, NSW 2007
AUSTRALIA

nur@igreen.net

Sooyong Park

Sogang University
Department of Computer
Science and Engineering
Seoul, SOUTH KOREA
sypark@sogang.ac.kr

Didar Zowghi

U. of Technology, Sydney

Faculty of Info Technology
PO Box 123

Broadway, NSW 2007
AUSTRALIA

didar@it.uts.au.edu

Abstract
Numerous studies have shown that a software project’s

cost, schedule and defect density escalate as the rate of
requirements change increases. Yet none of these studies
have explored the effects of not making requirements
changes in response to changes in user needs. This paper
explains why a project incurs just as much, if not more,
risk when requirements changes are suppressed.

1. Introduction

Although many papers have analyzed negative effects
of requirements change, none have addressed positive
effects of requirements change. This paper differentiates
between requirement and need. Although the two terms
are synonyms according to thesauri, we use requirement
to indicate a documented, externally-observable
characteristic of a desired system [1], and need to
indicate the actual need of users, customers, market, etc.
Requirements change encompasses

• requirements volatility, a term defined as a
measure of the number of requirements changes
(additions, deletions, and modifications) [2]
divided by the number of requirements for a given
period of time [3], and

• requirements creep, a term defined by Jones [4] as
“frequent changes in requirements,” and by
Carter, et al. [5] as changes that result “in exten-

sions to and alterations of the software’s
functionality and scope.”

Three factors contribute to requirements change: (1)
changes to actual need, (2) changes to stakeholders’
perception of what is needed [6], and (3) changes to the
requirements document. Instances of the first case go
unnoticed, but occur nonetheless; in fact, we can do
nothing to alter their rate of occurrence. Instances of the
second case emerge as a result of requirements
elicitation, prototyping, thinking, seeing an early version
of the system, and so on. Obviously we can reduce their
rate of occurrence by avoiding practices that surface
requirements, but that is mere folly. Instances of the third
case are 100% controllable; we can choose to make such
changes or not. So, what do authors mean when they
discuss mechanisms to “control” requirements change?
Figure 1 shows the eight situations related to changes.
This figure shows how it is generally good to change
requirements when needs change (YYY) and generally
good to not change requirements when needs are not
changing (NYN and NNN).

2. Why Do Requirements Change?

After requirements are agreed to, they will change as
the result of [1]: (1) Stakeholders review the document
and that will trigger the desire for something new, (2)
stake holders play with a prototype and that will trigger

Critical Needs Changing

Yes No
Perceptions Changing Perceptions Changing

Yes No Yes No

Requirements
Changing

Yes

No

YYY: Req’ts
changes made in
response to
changing needs
YYN: Req’ts
changes not
made in spite of
changing needs

YNY: Req’ts
changes being
made for
capricious reasons
YNN: Cannot res-
pond to changing
needs that we don’t
know about

NYY: Req’ts
changes being
made for
capricious reasons
NYN: No changes
made to req’ts
because no needs
are changing

NNY: Req’ts changes
being made for
capricious reasons

NNN: No changes
made to req’ts
because no real needs
are changing

Figure 1. Kinds of Requirements Change

mailto:adavis@uccs.edu
mailto:nur@igreen.net
mailto:sypark@sogang.ac.kr
mailto:didar@it.uts.au.edu

the desire for something new, (3) the situation in which
the system is used changes, and (4) customers use the
current version of the system and that will trigger the
desire for something else they’d like to have done. Nur-
muliani, et al. [7] investigated how developers classify
requirements changes. Those who classified require-
ments changes by the reason for change (60% of the test
subjects) used a combination of these categories: (1)
changes to product strategy, (2) changes to environment,
(3) scope reduction, (4) design improvement, (5) reali-
zation that a requirement had been missing, (6) unclear
requirement statement, (7) realization that original
requirements were not testable, or (8) enhancement.

Carter, et al., [5] provide insight into how risk analysis
is essential for determining which requirements changes
should be accepted for inclusion in an iteration. Lam and
Shankararaman [8] provide many suggestions on how to
manage requirements change, including being more
aware of changing user and customer needs (as opposed
to documented requirements), performing risk analysis of
making changes (also see Antón and Potts [9], who make
an excellent case for performing a benefits analysis of
requirements change as well), identifying conflicts
among requirements and among requirements changes,
and performing overt prioritization and triage [10].

On average, between 20% [4] and 53% [11] of the
original requirements change by the time the project
completes. Yourdon [12] and Young [13] report that
projects became over-budget and/or late whenever
requirements changes exceed ½-1% per month. We have
no doubt that this is true, but seriously question the
alternative, namely to suppress requirements changes as
needs evolve (box YYN in Figure 1).

3. Perceived Negative Impact of Making
Requirements Changes

Most authors who discuss impact of requirements
change emphasize negative impacts of such change, e.g.

• “Requirements volatility (RV) is generally
considered an undesirable property” [14].

• “Changing requirements are recognized as a major
cause of project failure” [8].

• “Requirements volatility causes the software to have
a higher defect density” [15].

• “Change . . . is often seen as a menace to established
order” [16].

• “Requirements volatility is considered to be a major
risk to . . . complex software projects” [7].

This is logical when considering only the cost of
satisfying documented requirements. We know for
example that the cost to develop a system (CD) is
proportional to the number and complexity of the
elements of the set of originally specified requirements

(R) and the number of and complexity of the elements of
the set of changes made to those requirements (∆R)
during the development process, CD ~ R, ∆R. To see
how silly it is to focus just on the cost to develop, we can
minimize it quite easily: just minimize R. This may seem
ridiculous, but when we talk about how requirements
change causes problems on projects, aren’t we
suggesting that we find a way to minimize ∆R, which is
just as ridiculous?

4. Negative Impact of Not Making
Requirements Changes

It makes little sense to try to minimize CD; after all, it
is trivial as shown previously. What we should be doing
is trying to minimize the cost to satisfy (CS) the custom-
mers’/market’s needs. And, this cost is proportional to
the number of elements in and the complexity of the
elements of the set of needs (N) and the number of
elements in and the complexity of the elements of the set
of changes to those needs (∆N), i.e., CS ~ N, ∆N. But
more importantly, CS is proportional to CD and the
degree of discordance (δ) between R and N, and ∆R and
∆N, i.e., CS ~ CD, δ(R, N), δ(∆R, ∆N). Replacing CD,
we get, CS ~ R, ∆R, δ(R, N), δ(∆R, ∆N). Since we
cannot control N or ∆N, attempts to minimize ∆R are
moot. The only way to minimize CS is to minimize
discordance of ∆R and ∆N regardless of the negative
side effect on CD.

The preponderance of data indicates that the more
requirements change, the higher the cost, the longer the
development, and the higher the defect density. We will
use the term negative project success factors to capture
the concept of customer dissatisfaction, in general, and
higher cost, longer development, and higher defect
density, specifically, as shown in Figure 21. However, let
us examine in more detail the phenomena occurring at
points A, B, and C on the graph of Figure 2.

• At point A, requirements are not changing (bottom
row of Figure 1), so there appears to be no negative
impact on project success. However, what if needs
are changing, and we inhibit change to require-
ments? This is common among organizations who
think the solution to escalating costs is to prevent
requirements change. Figure 3 expands point A.
Note that if needs are not changing, point A on
Figure 2 is accurate and minimal, but if
requirements are not being updated and needs are
changing, then negative project success factors grow
(right side of Figure 3 culminating at point A′).

1 Axes on this and subsequent figures are void of scale;
the non-decreasing nature of the graph is important, not
its shape. As the granularity of requirements increases,
the graph’s shape becomes more predicttable, as
demonstrated by Lavazza and Valetto [17].

N
eg

at
iv

e
Pr

oj
ec

t
Su

cc
es

s
Fa

ct
or

s
N

eg
at

iv
e

Pr
oj

ce
t

Su
cc

es
s

Fa
ct

or
s

N
eg

at
iv

e
Pr

oj
ce

t S
uc

ce
ss

 F
ac

to
rs

Ne

ga
tiv

e
Pr

oj
ce

t
Su

cc
es

s
Fa

ct
or

s

documented requirements are changing). Note that
point B on Figure 2 is a minimal impact point, not a
moderate impact point.

C'

C

B

C

A

Lo Hi
Change Rate for Requirements

Figure 2. Relationship of Req’ts Change to Negative
Project Success Factors

Lo Rate of Needs Change Hi

Figure 4. Relationship of Needs Change to Negative
Project Success Factors at Point C

A'
B' B''

B
A

Lo Hi

Rate of Needs Change

Figure 3. Relationship of Needs Change to Negative
Project Success Factors at Point A

• At point C, documented requirements are changing
(top row of Figure 1), so there are negative impacts
on project success factors. However, what if actual
needs are not changing, and we are simply making
changes to the documented requirements for non-
project critical reasons such as poor leadership, ego
gratification, and so on? Figure 4 expands the
situation occurring at point C. Note that if actual
needs indeed are changing, point C on Figure 2 is
accurate but is a minimal impact point, not a
maximum impact point. If actual needs are not
changing, but documented requirements are being
changed nonetheless, then negative project success
factors grow even more (left side of Figure 4,
corresponding to boxes YNY, NYY, and NNY,
culminating at point C′).

• At point B, documented requirements are changing
moderately, so there are moderate impacts on
project success factors. However, what if actual
needs are changing more rapidly? Or less rapidly? In
both cases, project success becomes less likely.
Figure 5 expands the situation occurring at point B
(left side of the figure shows escalating risk when
needs are not changing; right side shows escalating
risk when needs are changing more rapidly than the

Lo Rate of Needs Change Hi

Figure 5. Relationship of Needs Change to Negative
Project Success Factors at Point B

The phenomena at these points make it clear what is
happening: requirements change must remain propor-
tional to change in actual needs. It is quite easy to control
requirements change: simply do not make them. The
result will be a project that completes on schedule,
within budget, and with minimal defect density, the
subjects that are so often correlated with “project suc-
cess.” However, if we consider the ultimate (most criti-
cal) defect to be a failure to meet a customer need, then
requirements changes must be proportional to needs
changes (regardless of the timing of changes as reported
in [15][18]), and will result in the lowest critical defect
density. Putting Figs 3, 4, and 5 together gives us Figure
6. Note that points A, B, and C of Figure 2 all become
minimal points in Figure 6 when examined from the
requirements change axis. This becomes more obvious
when we rotate Figure 6 so that the “change rate for
requirements” axis is facing us, as shown in Figure 7.

N
eg

at
iv

e
Pr

oj
ec

t
Su

cc
es

s
Fa

ct
or

s
N

eg
at

iv
e

Pr
oj

ec
t S

uc
ce

ss

Fa
ct

or
s

A' C'

B'
C

References

[1] Davis, A., Just Enough Requirements Management, New

York: Dorset House, 2005.
[2] Costello, R., and D.-B. Liu, “Metrics for Requirements

Engineering,” J of Sys and Soft, 29, 1 (Apr 1995), 39-63.
[3] Nurmuliani, N., et al., "Requirements Volatility and its

Impact on Change Effort: Evidence-Based Research in
Software Development Projects," 2006 Australian
Workshop on Requirements Engineering, Adelaide,

B

A

Change Rate for
Needs

B''

Change Rate for
Requirements

Australia: U of South Australia, 2006.
[4] Jones, C., “Strategies for Managing Requirements Creep,”

IEEE Computer, 29, 5 (May 1996), pp. 92-94.
[5] Carter, R., et al., "Evolving Beyond Requirements Creep:

A Risk-Based Evolutionary Prototyping Model," Intern’l
Symp on Requirements Eng’g, Los Alamitos, CA: IEEE
Computer Society Press, 2001, pp. 94-101.

[6] Davis, A., and K. Nori, “Requirements, Plato’s Cave, and
Perceptions of Reality,” IEEE Work on Requirements
Eng’g for Services (REFS), Los Alamitos, CA: IEEE
Computer Society Press, 2007.

Figure 6. Overall Relationship of Req’ts Change and
Needs Change to Negative Project Success Factors

A' C'

B'

B''

C

B

A

Change Rate for Requirements
Figure 7. Relationship of Req’ts Change to Negative

Project Success Factors

5. Summary & Conclusions

Many researchers have accurately proclaimed that as
requirements change, the likelihood of project failure
increases. This paper argues that although this
phenomenon is important, equal attention should be
given to changes to users’ and customers’ needs, over
which we have no control. As critical changes occur to
these needs, we have a choice of incorporating them in
our requirements (thus increasing project risk but
simultaneously decreasing product risk [19]) or ignoring
them (thus decreasing project risk but simultaneously
increasing product risk [19]).

[7] Nurmuliani, N., et al., "Using Card Sorting
Techniques to Classify Requirements Change," Inter’l
Conf on Requirements Eng’g, Los Alamitos, CA: IEEE
Computer Society Press, 2004, pp. 240-248.

[8] Lam, W., and V. Shankararaman, "Requirements Change:
A Dissection of Management Issues," Inter’l Work on
Requirements Eng’g: Foundations for Software Quality,
Heidelberg, Germ, June 1999; also in 25th Euromicro
Conf, Los Alamitos, CA: IEEE CS Press, pp. 244-251.

[9] Antón, A., and C. Potts, "Functional Paleontology: The
Evolution of User-Visible System Services," IEEE Trans
Software Engineering, 29, 2 (Feb 2003), pp. 151-166.

[10] Davis, A., "The Art of Requirements Triage," IEEE
Computer, 36, 3 (March 2003), pp. 42-49.

[11] Standish Group, The CHAOS Report,
www.standishgroup.com, 1995.

[12] Yourdon, E., “A New Perspective on Metrics,” Total
Metrics, 1, 4 (September 2000), pp. 1, 6.

[13] Young, R., Effective Requirements Practices, Reading,
MA: Addison-Wesley, 2001.

[14] Nurmuliani, N., et al., "Analysis of Requirements
Volatility during Software Development Life Cycle,"
Austral Soft Eng’g Conf, Los Alamitos, CA: IEEE CS
Press, 2004, pp. 28-37.

[15] Malaiya, Y., and J. Denton, "Requirements Volatility and
Defect Density," Inter’l Symp on Soft Reliability Eng’g,
Los Alamitos, CA: IEEE CS Press, 1999, pp. 285-294.

[16] Regev, G., et al., "Creativity and the Age-Old Resistance
to Change Problem in RE," IEEE Inter’l Conf on
Requirements Eng’g, Los Alamitos, CA: IEEE Computer
Society Press, 2006.

[17] Lavazza, L., and G. Valetto, "Requirements-Based
Estimation of Change Costs," Empirical Software
Engineering, 5, 3 (November 2000), pp. 229-243.

[18] Javed, T., et al., "A Study to Investigate the Impact of
Requirements Instability on Software Defects," ACM
Software Engineering Notes, 29, 3 (May 2004), pp. 1-7.

[19] Gorschek, T., and A. Davis, "Assessing the Quality
Requirements Process Changes," Inter’l Work on
Requirements Eng’g Foundations for Soft Quality, Porto,
Portugal, 2005.

http://www.standishgroup.com/

