
A Self-Organising Network based on Lightweight
Agents

John Debenham and Ante Prodan

Faculty of Information Technology,
University of Technology, Sydney, Australia
{debenham, aprodan}@it.uts.edu.au

Abstract. A lightweight multiagent system is deployed at each node in a com-
munications network with the aim of self-organising the network as usage alters.
The distributed, light-weight, co-operative multiagent system guarantees scala-
bility of the approach. As the solution is distributed it is unsuitable to achieve
any global optimisation goal — it simply seeks to continually improve network
performance as demands change. Algorithms are described for adjusting the com-
munication channels and for adjusting the network links. Experiments show that
the method is robust and delivers good performance.

1 Introduction

The work discussed is based on previous work in the area of mesh networking and in
particular in distributed algorithms at Columbia University, Microsoft Research, Uni-
versity of Maryland and Georgia Institute of Technology. In particular: [1], [2], [3] and
[4].

There are three principal inputs to this work that we assume are available to the
proposed methods:

– A load model. Given any contiguous set of nodes in a mesh, the load model speci-
fies the actual or desired level of traffic flowing into, or out of, nodes in that set.

– A load balancing algorithm. Given any contiguous set of nodes in a mesh and the
load model for that set, the load balancing algorithm determines how the traffic is
allocated to links in the mesh so as to reach its desired destination where it leaves
the mesh.

– An interference model. Given any contiguous set of nodes in a mesh, the interfer-
ence model stipulates the interference level that each node in the mesh gives to the
other nodes in the mesh given a known level of background interference due to
transmission devices that are external to the mesh.

The work described below makes no restrictions on these three inputs other than that
they are available to every node in the mesh. The load model, and so too the load
balancing algorithm, will only be of value to a method for self-organisation if together
they enable future load to be predicted with some certainty. We assume that the load is
predictable.

Below we introduce some terms, concepts and notation. Section 2 describes the
role of the load balancing algorithm that our methods take as a given input. The mea-
surement of interference cost is discussed in Section 3. Methods for the adjusting the
channels in a multi-radio mesh networks for predictable load are described in Section 4,
and for adjusting the links in Section 5. Future plans are described in Section 6.

The discrete time intervals mentioned below, e.g. t, t+ 1, are sufficiently spaced to
permit what has to be done to be done.

A node is a set of radio interfaces (or “antennae”) where each interface is associated
with a particular channel, together with a controller that (intelligently we hope) assigns
the channel on each interface. Interfaces that are part of the same node are assumed to
be ‘close’ topologically, but this is not important. We assume for simplicity that each
interface has its own, independent MAC layer.

A link is a pair of interfaces where each interface is assigned the same channel. The
idea is that two interfaces communicate through a shared link. That is, if an interface
is part of a link its state will be “listening and transmitting”, otherwise its state will be
“listening only”.

Notation: nodes are denoted by Latin letters: a, b, c,. . . , the interfaces for node a are
denoted by: a[i] for i = 1, . . . , and links are denoted by Greek letters: α, β, γ,. . . . The
interfaces communicate using an illocutionary communication language that is defined
informally (for the time being) with illocutions being encapsulated in quotation marks:
“·”.

For any node n, Sn is the set of nodes in node n’s interference range. Likewise, for
any link α, Sα is the set of links that contain nodes n’s interference range ∀n ∈ α.

Given a node a, define Va = ∪n∈SaSn.
Γ tx is channel used by x to communicate at time twhere xmay be either an interface

or a link.
f(·, ·) is an interference cost function that is defined between two interfaces or two

links. It estimates the cost of interference to one interface caused by transmission from
the other interface. This function relies on estimates of the interference level and the
level of load (i.e.: traffic volume). So this function requires an interference model and a
load model. This function is described in Section 3.

An interface is either ‘locked’ or ‘unlocked’. A locked interface is either locked be-
cause it has committed to lock itself for a period of time on request from another inter-
face, or it is ‘self-locked’ because it has recently instigated one of the self-organisation
procedures in Section 4.

The abbreviation SNIR means “signal to noise plus interference ratio”.

2 The Load Balancing Algorithm

We assume that if the external demands on a set of nodes S are known and that there
is a load balancing algorithm — that may or may not be intelligent — that determines
how the load is routed through S. Figure 1 shows a set of twelve nodes connected by
a mesh that is shown as dashed lines. The load on the mesh is shown by the four solid
arrows. We assume that the load balancing algorithm will determine how the load is
allocated to the links in the mesh.

Fig. 1. The load balancing algorithm determines the allocation of load.

3x

x

x

x

3 Measuring Interference Cost

Suppose that during some time interval ∆t two interfaces a and b are transmitting and
receiving on channels Γa and Γb. During ∆t, the interference limit that interface x
imposes on interface y, τy|x, is a ratio being the loss of traffic volume that interface y
could receive if interface xwere to transmit persistently divided by the volume of traffic
that interface y could receive if interface x was silent:

τy|x =
(my | interface x silent)− (my | interface x persistent)

my | interface x silent

where my is the mean SNIR observed by interface y whilst listening on channel Γy ,
where as many measurements are made as is expedient in the calculation of this mean1.
The interference load of each interface, va and vb, is measured as a proportion, or
percentage, of some time interval during which that interface is transmitting. Then the
observed interference caused by interface b transmitting on channel Γb as experienced
by interface a listening on channel Γa is: τa|b × vb, and the observed interference cost
to interface a is2:

f(a | b) , τa|b × vb × (1− va)

and so to interface b:
f(b | a) = τb|a × va × (1− vb)

Now consider the interference between one interface a and two other interfaces c
and d. Following the argument above, the observed interference caused by interfaces c
and d as experienced by interface a is3: τa|c × vc + τa|d × vd − τa|{c,d} × vc × vd. The
observed interference cost to interface a is:

f(a |{c, d}) = (1− va)×
(
τa|c × vc + τa|d × vd − τa|{c,d} × vc × vd

)
1 For τy|x to have the desired meaning, my should be a measurement of link throughput. How-

ever, link throughput and SNIR are approximately proportional — see [5].
2 We assume here that whether or not interfaces a and b are transmitting are independent random

events [6]. Then the probability that a is transmitting at any moment is va, and the probability
that b is transmitting and a is listening at any moment is: (1− va)× vb.

3 That is, the interference caused by either interface c or interface d.

Suppose that vβ is the proportion of ∆t for which either interface c or interface d is
transmitting. Then for some κβ , 0 ≤ κβ ≤ 1: vc = κβ × vβ , and vd = (1− κβ)× vβ .
Thus:

f(a | β) = (1− va)× vβ ×
(
τa|c × κβ + τa|d × (1− κβ)

)
Now suppose that interfaces a and b are linked, and that vα is the proportion of ∆t for
which either interface a or interface b is transmitting. Then for some κα, 0 ≤ κα ≤ 1:
va = κα × vα, vb = (1− κα)× vα. Then as a will only receive interference when it is
listening to b transmitting:

f(a | β) = vb × vβ ×
(
τa|c × κβ + τa|d × (1− κβ)

)
and so:

f(α | β) =(1− κα)× vα × vβ ×
(
τa|c × κβ + τa|d × (1− κβ)

)
+ κα × vα × vβ ×

(
τb|c × κβ + τb|d × (1− κβ)

) (1)

Note that vα, vβ , κα and κβ are provided by the load model, and the τx|y are provided
by the interference model.

4 Adjusting the channels

Our solution is based on the distinction in multiagent systems between proactive and
reactive reasoning. Proactive reasoning is concerned with planning to reach some goal.
Reactive reasoning is concerned with dealing with unexpected changes in the agent’s
environment. So in the context of self-organising networks we distinguish between:

– a reactive logic that deals with problems as they occur. The aim of our reactive
module is simply to restore communication to a workable level that may be sub-
stantially sub-optimal.

– a proactive logic that, when sections of the network are temporarily stable, attempts
to adjust the settings on the network to improve performance.

The reactive logic provides an “immediate fix” to serious problems. The proactive logic,
that involves deliberation and co-operation of nearby nodes, is a much slower process.

Informally the proactive logic uses the following procedure:

– Elect a node a that will manage the process
– Choose a link α from a to another node — precisely a trigger criterion (see below)

permits node a to attempt to improve the performance of one of its links α 3 a
with a certain priority level.

– Measure the interference
– Change the channel setting if appropriate

The following is a development of the ideas in [1].

choose node a at time t− 2;
set Va = ∪n∈SaSn;
∀x ∈ Va transmit “propose organise[a, x, p]”;
unless ∃x ∈ Va receive “overrule organise[a, x, q]” in

[t− 2, t− 1] where q > p do {
∀x ∈ Va transmit “propose lock[a, x, t, t+ 1]”;
if ∀x ∈ Va receive “accept lock[a, x, t, t+ 1]” in [t− 1, t]
then {

unless ∃x ∈ Va receive “reject lock[a, x, t, t+ 1]”
do {improve a;}

}
}
where: improve a = {

choose link α 3 a on channel Γ tα;
set B ←

∑
β∈Sα f(α | β) +

∑
β∈Sα f(β | α);

if (feasible) re-route α’s traffic;
for Γα = 1, . . . ,K, Γα 6= Γ tα do{

if
∑
β∈Sα f(α | β) +

∑
β∈Sα f(β | α) < B × ε then{

Γ t+1
α ← Γα;

selflock node a in [t+ 1, t+ k];
break;

};
};
∀x ∈ Va transmit “α’s interference test signals”;
apply load balancing algorithm to Sa;

}

The statement selflock is to prevent a from having to activate the method too frequently.
The constant ε < 1 requires that the improvement be ‘significant’ both for node a and
for the set of nodes Sa. The stability of this procedure follows from the fact that it
produces a net improvement of the interference cost within Sa. If a change of channel
is effected then there will be no resulting change in interference outside Sa.

Interference model. We assume that each node, a, knows the channel of every node
in Va. We assume that each node is capable of measuring the strength of signals from
every node in Va. So if each node had access to all of this information from the point of
view of every node in Va, and, perhaps the level of background noise around Va then a
can derive estimates for the τx|y factors for all x and y in Va. In particular, awill be able
to estimate all these factors to evaluate Equation 1 as required by the above algorithm.
In addition, the procedure above suggests that if node a is involved in changing its
channel then at the end of this process — time permitting — it should transmit a ‘beep-
silence-beep-silence’ message to enable every other node in Va to observe the actual τ
values. Further, it is reasonable to suggest that this transmission of test signals could
be carried out periodically in any case when network load permits.

Fig. 2. Interference cost reduction as a function of node density.

4.1 Results and Discussion

Impact of network (node) density on the performance. As the density of network
increases (i.e. an increase in the number of routers located within the same area) the IC
reduction relatively decreases. This trend is shown across all the topologies. The impact
of node density on the algorithm is relatively consistent for all topologies at the same
router densities. From Figure 2 it can also be observed that the range of the interference
reduction across the topologies at router densities of 35 routers and 100 routers is 1.55
and 1.58, respectively.
Impact of typical topologies on the interference cost. Figure 3 shows the variation in
the interference cost reduction as a function of network topology across different node
densities. It can be deduced that the impact of the topologies on the performance of the
algorithm (i.e. in terms of interference cost reduction) is insignificant. The mean of IC
reduction calculated from the data obtained shows that the topology with the smallest
average IC reduction is the completely random with a mean of 36.02 and topology with
the most IC reduction is the random grid with a mean of 37.12. The difference in per-
formance between best and worst case is just 1.1 which confirms that the performance
of the algorithm is almost completely independent of the type of topology.
Performance Comparison across the Network. In this study, we obtained interference
cost (IC) in different regions of the MR-WMN for the same set of links before and after
the self-organisation algorithm is invoked. Comparison of the results obtained is shown
in Figure 4 where the Interference cost is on the X-axis. From Figure 4 we can see that
there were no nodes (red dots) that caused more interference after the self-organisation
than it had caused before (blue dots) the self-organisation was invoked.

5 Adjusting the links

The algorithm for adjusting the links is precisely the same as the algorithm in Section 4
but with the following ‘improve’ methods.

Fig. 3. Interference cost reduction as a function of topologies.

Fig. 4. Comparison of IC across the network before (blue) and after (red) selforganisation.

Link adjustment with known traffic load. Suppose that node a has interference range Sa.
Let Ma be the set of nodes in Sa excluding node a. Then use the method in Section 4
with the following ‘improve’ method:

improve a = {
for link α 3 a, where α = [a, b]
suppose α is on channel Γ tα;
set B ←

∑
β∈Sα f(α | β) +

∑
β∈Sα f(β | α);

if (feasible) re-route α’s traffic;
set γ ← α;
for y ∈Ma do {

for Γ[a,y] = 1, . . . ,K, do {
if
∑
β∈Sa f([a, y] | β) +

∑
β∈Sa f(β | [a, y]) < B × ε

then {
set γ ← [a, y];

selflock node a in [t+ 1, t+ k];
break;

};
};

};
∀x ∈ Va transmit “γ’s interference test signals”;
apply load balancing algorithm to Sa;

}

Trigger for attempting to adjust a link with known traffic load. Consider a mesh with
known traffic load such as that illustrated in Figure 1. Suppose that the load balancing
algorithm has allocated load to links on the mesh, and let link (a, b) = arg maxx∈Nta ρ(x).
If replacing (a, b) with (a, x) would mean that there exists a cut through the mesh that
traverses (a, x) and that all other links on that cut have a load < ρ(a, b) then let node
a initiate the link adjusting procedure. Likewise if replacing (a, b) with (y, b). This is
provisional. Have to double check. There could be a smarter way.

5.1 Reactive Logic

The relationship between the reactive and proactive logics is determined by:

if event [link α is broken] then {
activate [activate the Reactive Method for link α];
∀x ∈ α if state [node x locked by “accept lock[a, x, s, t]”
then {transmit “reject lock[a, x, s, t]”;}
}

where the Reactive Method is as follows; it simply fixes disasters as they occur possibly
with a configuration that is less satisfactory than the prior. It has no implications for
neighbouring interfaces, and so it presents no instability issues.

Reactive Method. Important assumption for the functioning of the reactive logic dis-
cussed here is that all interfaces capable of reactive reconfiguration use omnidirectional
antennas. The benefits and shortcomings of the usage of different antennas are dis-
cussed in details in our previous report. Two interfaces connected through directional
antenna behave similarly to a wired point to point link because they cannot connect to
any other interface to which their antennas are not aligned. This does not represent an
impediment for the proposed architecture since majority of nodes will be equipped with
omnidirectional antenna.

For the implementation of reactive logic we propose usage of simple mechanisms
that are derived from routing protocols recently developed for stationary multi-radio
mesh networks [4]. In conjunction with an appropriate routing protocol these mecha-
nisms should ensure high reactivity in minimising effect of link interruptions caused by
various factors.

Fig. 5. Frequency distribution of the path length (in hops) without and with link substitution
algorithm at 100 node network density and 10 additional links.

Link adjustment with unknown traffic load. Suppose that node a has interference range
Sa. Let Ma be the set of nodes in Sa excluding node a. For nodes x, y ∈ Sa, let
c(x, y) denote the cost4 of the least cost path that connects x and y. We assume that:
(∀x, y)c(x, y) = c(y, x), and that if the least cost path between nodes u and v is a
subset of the least cost path between x and y then c(u, v) ≤ c(x, y). Let N t

a be the
set of links in Sa at time t, and N t

a([a, x],⊕[a, y]) denotes the network configuration
with link [a, x] replaced by [a, y]. Let C(N t

a) denote the cost of the path of greatest cost
in Sa: C(N t

a) , maxx,y∈Sa c(x, y). Choose the pair of nodes b and c by:

(b, c) = arg min
(x,y)|[a,x]∈Nta,y∈Ma

C(N t
a([a, x],⊕[a, y]))

and swap link [a, b] for link [a, c] if:

C(N t
a([a, b],⊕[a, c])) < C(N t

a)× ε

where ε < 1 is a threshold constant [7].

5.2 Results and Discussion

This part of study firstly proposes the method for the link substitution that results with
the reduction of the path length. Secondly, to provide the insight in algorithms effec-
tiveness we produce over 3000 simulations. The simulation results are statistically pro-
cessed and the outcomes for 3 different densities (35,70 and 100) are obtained.

Simulation parameters. We have used a Java based framework to carry out the
simulations for the results shown and discussed in this section. The key attributes of the
simulation were:

4 The precise meaning of this cost function does not matter. It could be simply the number of
hops, or some more complex measure involving load and/or interference.

– Number of interfaces per router was randomly selected from 3 to 5.
– Default signal strength was 100 mW (20 dBm — Signal strength for each interface

was randomly generated with +/- 25% variation.
– Network size had an area of 750m× 500m

In addition to the simulation parameters described above we limited the number of
links to n − 1; where n is number of router (density) in a network. Consequently, the
number of links created was 34,69 and 99 for the corresponding network densities. In
addition to these link numbers we tested the effectiveness of the link substitution algo-
rithm by creating additional 10 links when link substitution reached efficiency thresh-
old. The number of the substituted link was limited in all simulation to (10, 20, 30, 40
and 50) and separate results are shown. We now compare path lengths with and without
link substitution. From the Figure 5 we can observer that our method significantly re-
duces path length by eliminating longer paths (maximum path length is 8 with the link
substitution and 14 without it). This method also increases the number of shortest path
(in particular paths 2 and 3 hops long).

6 Conclusion and Future Work

Through the work described in this report we have examined motivation and developed
an algorithm for the topological control of MR-WMN. The goal of this algorithm is
to increase the number of shortest paths to the portal nodes without adversely effect-
ing interference cost. In addition to interference cost reduction implementation of this
algorithm on MR-WMN further improve the system capacity.

Our future work will be focused on the development of our Java framework that is
multi threaded so each node is represented as an independent thread. We believe that
this will enable us to develop algorithms for tuning the capacity of the network links
according to fluctuations in demand by mobile users.

References

1. Ko, B.J., Misra, V., Padhye, J., Rubenstein, D.: Distributed Channel Assignment in Multi-
Radio 802.11 Mesh Networks. Technical report, Columbia University (2006)

2. Mishra, A., Rozner, E., Banerjee, S., Arbaugh, W.: Exploiting partially overlapping channels
in wireless networks: Turning a peril into an advantage. In: ACM/USENIX Internet Measure-
ment Conference. (2005)

3. Mishra, A., Shrivastava, V., Banerjee, S.: Partially Overlapped Channels Not Considered
Harmful. In: SIGMetrics/Performance. (2006)

4. Akyildiz, I.F., Wang, X., Wang, W.: Wireless mesh netowrks: a survey. Computer Networks
(2005) 445–487

5. Vasudevan, S.: A Simulator for analyzing the throughput of IEEE 802.11b Wireless LAN
Systems. Master’s thesis, Virginia Polytechnic Institute and State University (2005)

6. Leith, D., Clifford, P.: A self-managed distributed channel selection algorithm for wlans. In:
Proceedings of RAWNET, Boston, MA, USA (2006) 1–9

7. Ramachandran, K., Belding, E., Almeroth, K., Buddhikot, M.: Interference-aware channel as-
signment in multi-radio wireless mesh networks. In: Proceedings of Infocom 2006, Barcelona,
Spain (2006) 1–12

