Programming with Heterogeneous Structures:
Manipulating XML data Using bondi

F. Y. Huang

School of Computing
Queen’s University
huang@cs.queensu.ca

Abstract

Manipulating semistructured data, such as XML, does
not fit well within conventional programming languages.
A typical manipulation requires finding all occurrences
of a structure matching a structured search pattern,
whose context may be different in different places, and
both aspects cause difficulty. If a special-purpose query
language is used to manipulate XML, an interface to
a more general programming environment is required,
and this interface typically creates runtime overhead for
type conversion. However, adding XML manipulation
to a general-purpose programming language has proven
difficult because of problems associated with expressive-
ness and typing.

We show an alternative approach that handles many
kinds of patterns within an existing strongly-typed
general-purpose programming language called bondi.
The key ideas are to express complex search patterns as
structures of simple patterns, pass these complex pat-
terns as parameters to generic data-processing functions
and traverse heterogeneous data structures by a gener-
alized form of pattern matching. These ideas are made
possible by the language’s support for pattern calculus,
whose typing on structures and patterns enables path
and pattern polymorphism. With this approach, adding
a new kind of pattern is just a matter of programming,
not language design.

Keywords: Pattern Calculus, functional program-
ming, heterogeneous data structure, XML processing

1 Introduction

When processing semistructured data such as XML,
a basic operation is to locate data items by their
position in a structured context, usually described
by a pattern or sequence of patterns. In some sit-
uations, these patterns can be as simple as match-
ing a single type of element, for example, in the
search for all population elements in a geographical
dataset, population is a simple pattern to match for
target data items. In other situations, search pat-
terns are more complex, but complex patterns can
usually be decomposed into simpler ones. For exam-
ple, in the search for the complex pattern population
of individual cities in Canada includes searches for a
country element with a countryName descendant ele-
ment having the value Canada, and some city de-

Copyright ©2006, Australian Computer Society, Inc. This pa-
per appeared at the T'wenty-Ninth Australasian Computer Sci-
ence Conference (ACSC2006), Hobart, Tasmania, Australia,
January 2006. Conferences in Research and Practice in In-
formation Technology (CRPIT), Vol. 48. Vladimir Estivill-
Castro and Gill Dobbie, Eds. Reproduction for academic, not-
for profit purposes permitted provided this text is included.

C. B. Jay

Faculty of Information Technology
University of Technology, Sydney
cbj@it.uts.edu.au

D. B. Skillicorn

School of Computing
Queen’s University
skill@cs.queensu.ca

scendant elements which in turn have population de-
scendant elements (we do not use attributes in our
examples, because attributes can be transformed into
elements easily).

There are two ways to compose simpler patterns
into more complex ones. The first is vertical com-
position, as in the search for the population of cities
of Canada. Such complex patterns match XML el-
ements from different levels of a hierarchy. We call
them vertical patterns. Location paths, expressed in
the popular XPath (Clark & DeRose 1999) language,
fall in this category. The second is horizontal compo-
sition, as in the search for cities having child elements
for name, population, either timezone or continent,
and zero or more rivers, i.e., the pattern (cityName,
population, timezone|continent, river™). Such com-
plex patterns match XML elements from the same
level of a hierarchy. We call them horizontal patterns.

Vertical and horizontal patterns can be combined
into even more complex search patterns. For exam-
ple, the pattern: contact phone numbers of city halls
of Canadian cities having child elements for name,
population and zero or more rivers, is a combination
of vertical and horizontal patterns.

Semistructured data processing poses a problem
for general-purpose programming languages. For ex-
ample, typical processing of XML data consists of a
search for all occurrences of a search pattern, extrac-
tion of the occurrences and some part of their context,
changes to these extracted data structures, and their
replacement in the entire data structure. General-
purpose programming languages have trouble typing
such programs because the target pattern can be com-
plex in different ways and can occur in different con-
texts; and they also have trouble expressing the im-
plied universal quantifier in the search.

These difficulties led to the design of special-
purpose XML query languages, emerging both from
the database community and the structured text com-
munity. The problem with using a query language
for manipulating XML is that it creates an inter-
face between data extraction and data use. For ex-
ample, in a typical web environment, the data it-
self is in a back-end system and the results of the
data query/transformation must be passed to a front-
end system for further processing. The existence
of a boundary requires a common format, usually
quite a low-level one such as a string, by which
the back-end and front-end communicate. This re-
quires extra programming effort, subject to secu-
rity holes and runtime overhead. This has been
called the impedance mismatch problem (Bancilhon
& Maier 1988, Wadler 2004).

There is an obvious benefit to extending general-
purpose programming languages so that they can
handle XML manipulation in native mode. Doing so

reduces or eliminates the impedance mismatch prob-
lem, since computations at the browser, front-end,
and back-end can all be done in the same language
environment. Because such languages are typed, se-
curity of programs can be verified statically, reducing
runtime overhead for dynamic type checking and the
chance of catastrophic failure or unintended leakage of
information. Also, because of the expressive power of
such languages, programs may be smaller and more
modular, making them cheaper and easier to build
and maintain.

Extending general-purpose programming lan-
guages to include XML manipulation directly has
proven difficult, although a number of attempts have
made some progress towards this goal. Such attempts
usually end up with a new or extended language that
can only handle specific kinds of hard-coded XML
search patterns which cannot be passed as typed pa-
rameters, and cannot be further extended without
changing the language.

In this paper we show that an existing general-
purpose functional-programming language, bondi, in
which structures and patterns are treated as of equal
importance to data and functions, allows XML ma-
nipulation to be expressed in a natural and general
way, and without any extensions to the language.

Rather than aggregate the features found in the
existing wide variety of XML query and transforma-
tion languages, bondi treats structures and patterns
as first-class objects. Hence, control flow can be de-
termined by structures, not just datum values; struc-
tures and structure-matching patterns are well typed
and can be passed as parameters. This respect for the
data creates new power for programming with hetero-
geneous data structures.

Because bondi is a general-purpose language, XML
applications can be seamlessly integrated into other
applications, including web and web service applica-
tions.

In this paper we show that:

o Existing approaches to XML processing only
handle limited kinds of search patterns, with
weaknesses in either type-safety, parameteriz-
ability, extensibility to other kinds of patterus,
or all three;

e The ability to handle structures and structure-
matching patterns in the same way as other pro-
gramming entities is the key to manipulating
XML in an effective, but also properly typed,
way;

e This increase in expressiveness comes with
greater simplicity, rather than greater complex-
ity, due to more powerful parameterization;

e With such expressiveness, adding a new kind of
pattern, either vertical or horizontal, to XML
processing is just a programming task, rather
than a language (re-)design task.

The rest of the paper is organized as follows. Sec-
tion 2 reviews existing XML processing approaches,
then the theory on which our approach is based. Sec-
tion 3 introduces the use of patterns as first-class ob-
jects and the construction of complex patterns from
simple ones, and shows how these patterns contribute
to better type-safety and higher parameterization.
Section 4 briefly shows how our approach extends
to new kinds of complex patterns. Section 5 draws
conclusion and discusses some open issues of our ap-
proach.

2 Related Work

2.1 XML Query Languages

In the early years of XML, special-purpose XML
query languages such as Lorel (Abiteboul, Quass,
McHugh, Widom & Wiener 1997), YATL (Cluet, De-
lobel, Siméon & Smaga 1998), XML-QL (Deutsch,
Fernandez, Florescu, Levy & Suciu 1999), XQL
(Robie, Lapp & Schach 1998) and XSLT (Clark 1999)
were invented to handle query and transformation of
XML data. They are typically untyped, handling
both tag names and element content as strings.

These query languages have very limited program-
ming power, unable to express sophisticated compu-
tations on XML data. In many settings, the queries
and their results must be passed, at runtime, to other
application programs for further processing. These
transfers are usually in a low-level format such as
strings, requiring extra programming effort and run-
time overhead for parsing and type-checking. The
type safety of XML manipulation programs then re-
lies on type-checking at runtime by explicit check-
ing code inserted by programmers at development
time. The correctness and completeness of the check-
ing code are not guaranteed.

XSLT uses XPath (Clark & DeRose 1999) expres-
sions as search patterns. XPath is powerful at ex-
pressing a wide range of complex vertical patterns,
but XSLT is limited in programming power, and in-
capable of sophisticated computation. The other lan-
guages are quite restricted both in expressing vertical
patterns and in programming. None of them is able to
express horizontal patterns systematically, although
they can hardcode individual ones (e.g. sibling axes
in XPath can represent simple horizontal patterns).

2.2 Native XML Processing

In recent years, attempts have been made to merge
XML processing into general-purpose programming
languages. Typical approaches use special types to
represent XML data and special expressions for search
patterns, in addition to regular programming lan-
guage features. The most recent efforts include XJ
(Harren, Raghavachari, Shmueli, Burke, Sarkar &
Bordawekar 2004), XQuery (Boag, Chamberlin, Fer-
nandez, Florescu, Robie & Simeon 2005) and Cw
(Bierman, Meijer & Schulte 2004, Meijer, Schulte
& Bierman 2003) focusing on vertical patterns, and
XDuce(Hosoya & Pierce 2003) and CDuce(Benzaken,
Castagna & Frisch 2003) focusing on horizontal pat-
terns. In terms of programming style, XJ and Cw are
object-oriented, while XQuery, XDuce and CDuce are
functional.

XJ and XQuery enforce static typing against XML
schemas rather than native types of the program-
ming languages, and express search patterns using
embedded strings; hence type mismatches still exist
to some extent. Cw, XDuce and CDuce express XML
data and search patterns fully in native mode with
static typing, so that XML processing can be han-
dled within a single language.

The inability to parameterize structures and pat-
terns, and poor extensibility, are two common short-
comings in all these languages. First, these languages
can only parameterize XML data items, not struc-
tures of these items, nor the patterns to match the
structures, because the latter are not first-class enti-
ties. Traversal of heterogeneous XML structures has
to rely on runtime type casts even if the XML data

are parsed into well-typed form, and patterns have to
be hard-coded in programs. Second, these languages
only allow specific kinds of patterns and cannot be
extended to other kinds easily in a type-safe way. An
extension to a new kind of pattern requires new fea-
tures to be added to the language; the type system
has to be modified; and so does the compiler.

XJ extends Java with XML data types and XPath
expressions, capable of handling vertical patterns con-
forming to XPath 1.0 (Clark & DeRose 1999). It ex-
presses XML element types as Java classes, and uses
special embedded strings containing XPath expres-
sions as search patterns. Static typing of these XML
types and embedded pattern strings against XML
schemas is enforced by a special type checker. Be-
cause the type checking is against XML schema types,
not native Java types, XML data and pattern expres-
sions are not fully type-safe in Java. Since search pat-
terns are just strings, there is a potential to include
patterns other than XPath expressions, but only in an
untyped way (or at best typed against XML schemas,
not Java). Also, the special type checking requires
that schemas for XML data are always available and
trustworthy, which is unrealistic in many situations.

XQuery is designed as a query language but is
equipped with some basic functional-programming
features. It is intended to be a language for XML
processing analogous to SQL for relational data pro-
cessing. It aggregates many features from older
XML query languages and SQL, and its data model
and type system fully conform to XML and XML
Schema specifications. It is a superset of XPath 2.0
(Berglund, Boag, Chamberlin, Fernndez, Kay, Robie
& Simon 2005), making XPath expressions native,
and so it is fully capable of handling vertical pat-
terns of the XPath form. On the other hand, XQuery
has only very limited functional programming fea-
tures. Except in user-interactive settings, its expres-
sions are supposed to be embedded in host programs
in other languages for processing of query results. In
such situation, the impedance mismatch problem still
exists, just as in XJ, since XQuery is only typed in
terms of XML schemas. The mismatch between XML
schema types and host-language types weakens the
safety of XML processing programs. The only advan-
tage over XJ is that, in the absence of XML schemas,
XQuery expressions can still be type-checked to some
extent based on the type information in the expres-
sions themselves.

Cw is intended to extend C#, another general-
purpose programming language, with native types
that support both object-oriented, relational and
semi-structured data models, so that it can unify the
processing of all these kinds of data. It introduces
three new kinds of types: stream, anonymous struct
and choice, roughly equivalent to list, heterogeneous
tuple and sum types in functional languages. It uses
the notion of content class for expression of XML
schemas. For example, suppose an XML schema for
geographical data has a country element type, with
name, population and zero or more provinces as child
elements. It then can be encoded as a content class
Country as:

class Country {
struct{ string name; float population; Province* provs; };
// appropriate constructor
void increasePopulation(float percentage){...}

}

which contains an anonymous struct holding name,
population and a stream of Province. In turn, Province
is another content class (declaration not shown here)
for province element type, which may have children

name, population and a stream of Ccity, and so on.
Suppose canada is an instance of Country. The pattern
to get the population of Canada can then be expressed
as canada.population. To accommodate XPath-style
vertical patterns, Cw also introduces filter expressions
such as Country[name=="Canada"], and transitive query
expressions such as Country...population for popula—
tion data appearing at arbitrary depth below coun-
tries. For example, the following method returns a
stream of populations of cities in a given country:

virtual float* getPopulation(Country c1) {
foreach (p in cl...City.population) yield return p;

}

The expressiveness of Cw for patterns in XML pro-
cessing is roughly equivalent to XPath 1.0 (Clark &
DeRose 1999) without backward axes. In contrast
to XJ and XQuery, XML data and pattern expres-
sions in Cw are fully native, expressed by identifiers
all having Cw native types. There is no impedance
mismatch problem. However, the pattern to search,
such as ci...City.population in the above method,
has to be hardcoded in the program and cannot be
passed to a method parameter in a typed manner,
so that it is not possible to have a general method
to search for user-defined target data, something
like get(somePatternType pattern, Country ci). More-
over, adding other kinds of patterns, for example
XPath backward axes, self-nested structures, or hor-
izontal patterns would require large changes to the
language.

XDuce and CDuce are functional-programming
languages with regular-expression types added to
general-purpose functional language features. These
two languages use regular expressions to denote XML
element types, and to define horizontal patterns to
match the elements. For example, the country ele-
ment type above can be declared in CDuce as:

type Country = <country>[Name Population (Province)x*]
type Province = <prov>[Name Population (City)x*]

type City = <city>[Name Population ...]

type Name = <name>[String]

type Population = <pop>[Int]

Traditional Pattern matching can be used to locate
all population items and make some update to them
in a piece of XML data:

let updatePop (x:<>[*]) :<>[*] =
let [y 1=
xtransform [x] with
<pop>[(z & Int)] -> [<pop>[(z*101/100)] 1
in y

This CDuce function uses regular-expression type
<>[*], meaning an element with any tag name and
any content, to constrain both the parameter and re-
sult, and regular-expression type <pop>[Int], mean-
ing an element with tag name “pop” and an integer
as content, to match target items for update. It tra-
verses the whole structure of a given piece of XML
data x using the macro iterative operator xtransform,
m(yatches any population element and increases it by
1%.

In XDuce and CDuce programs, patterns are well-
typed and handled natively. CDuce can even encode
XPath-like vertical patterns with child axes (though
not descendant axes). However, just as for Cw, search
patterns such as <pop>[Int] in the above CDuce pro-
gram are not first-class terms and cannot be refer-
enced and passed as well-typed parameters. And new
kinds of patterns are not easy to include without sig-
nificant extensions to the languages.

2.3 bondi and Pattern Calculus

bondi (Jay 2004a) is a general-purpose functional pro-
gramming language designed to allow many forms of
genericity. Instead of aggregating features for XML
data processing found in the existing wide variety of
XML query and transformation languages, bondi has
a very general extension to functional language fea-
tures to achieve a higher degree of modularity and
program re-use.

The extension is based on a sound theory, the
Pattern Calculus (Jay 2004¢, Jay 20040, Jay 2004d),
which:

e treats structures and patterns as first-class ob-
jects with equal importance to data and func-
tions, allowing them to be referenced and passed
as parameters, achieving parameterization of
structures, access paths and search patterns;

e allows a generalized form of pattern matching,
without requiring the pattern cases to be the
same type.

Hence, in bondi, control flow can be determined by
structures, not just datum values; and structures and
structure-matching patterns are natively well typed,
can be used as values, passed around as parameters,
and matched in a general way.

In the same way that data and function parame-
terization make data and function polymorphism pos-
sible, the treatment of structures and patterns and
the generalization of pattern matching in bondi make
possible three new forms of polymorphism: structure
polymorphism, path polymorphism and pattern poly-
morphism. They provide new expressive power and
create the opportunity to represent XML processing
in a well-typed, highly parametric and highly exten-
sible way. The next section will explain these forms
of polymorphism and how they can be used in XML
processing.

3 Parameterizing Structures and Patterns

Programming (and maintenance) are simpler when
programs are built so that as much of their behav-
ior is captured by parameters as possible. Often
this has a secondary benefit that the resulting pro-
gram is simpler and easier to understand (many of
the cases have become different parameter choices).
Programming languages that support the passing of
data and functions as parameters (higher-order func-
tions) or use subtyping to pass objects of varying
behavior are plentiful, but until the Pattern Cal-
culus (Jay 2004¢, Jay 2004b, Jay 2004d) there has
not been general account of how to pass around in-
formation about structures, and patterns to match
these structures within a typed programming lan-
guage. The Pattern Calculus, and its implementing
language bondi, support all these kinds of parame-
ter passing, achieving polymorphism on data, func-
tions, subtypes, structures, paths and patterns within
one typed programming language. The latter three,
achieved by parameterizing structures and patterns,
are particularly suited to describe XML access paths,
and can greatly simplify programming for XML ma-
nipulation. This section explains these three new
forms of polymorphism by introducing a sequence of
XML processing examples requiring deep parameter-
ization, and shows how simple and type-safe it is to
design highly-parametric functions for XML data pro-
cessing.

3.1 A Motivating Scenario

Suppose we have a data repository containing geo-
graphical information and we want to carry out the
following operation: Add 1% to the population of all
of Canadian cities. How could we express such an
operation?

The first way is what might be called assembly
language programming: a specific program that tra-
verses the structure in the repository, finds all of the
places where Canadian cities are present, and then
finds their population elements and adds 1% to them.
The problem is that if we decide to change the prob-
lem in any way we have to rewrite and recompile the
program.

All high-level programming languages allow the
amount by which the populations are to be incre-
mented to be extracted and expressed as a parameter.
So we might write something like:

IncrementPopsofCanadianCities (1%)

This small change increases the generality of the pro-
gram in the sense that we can make many different
changes without rewriting or recompiling the pro-
gram. The program is generic with respect to one
argument.

Many programming languages also allow us to
make the operation that is to be done to the pop-
ulations of Canadian cities into a parameter as well.
So we might write:

UpdatePopsofCanadianCities(incrementby, 1%)

Now it is trivial to decrement the populations instead.

The next level of generality is to make the parts
of the structure where the function is applied into a
parameter as well. So we might write:

updateCanadianCities(Pops, incrementby, 1%)

Now it is trivial to increment (or decrement) cities’
areas instead of their populations. Most query lan-
guages, either for databases or for semistructured
data, are powerful enough to allow this kind of pro-
gramming, but many general-purpose languages have
trouble because the contexts that define the regions
where the function is to be applied are constructed in
different ways and look different to the type system.

A further extension is to make the particular units
within Canada that are being considered into a pa-
rameter. So we might write:

updateInCanada(City, Pops, incrementby, 1%)

Now the program is generic in the pattern that de-
scribes where the increment is to be applied (cities
above populations). It will work regardless of whether
cities are immediately below countries, e.g., capitals
such as Ottawa or Washington D.C., or accessed via
intermediate layers such as states or provinces.

Now let us parameterize on the country too:

update(CountryName == “Canada”, City, Pops, incrementby, 1%)

The code involves a side-condition to check on a re-
lated structure.

Now we see that the parameters “Canada”, City
and Pops are all related and it is the connections be-
tween them that define the real parameter of interest.
So we could rewrite the code as:

update(Canadian_City_Pop, incrementby, 1%)

which has a (complex) pattern parameter. Now if
we want to search for more complicated structures
within the geographical database, we don’t have to
keep building more complicated functions; rather, the

complexity is expressed in the choice of a complex
pattern parameter of the standard update function.

This example shows the many levels of need for
genericity in processing semi-structured data. Most
programming languages and query languages can sat-
isfy some of these needs, but the following subsection
will show that bondi is the first to handle them all in
one language, and in a natural way.

3.2 Parameterizing in bondi

This subsection encodes the examples above in bondi;
they have all been executed and also appear in the
file “xmldata.bon” at the bondi web-site (Jay 2004 a).
Language features will be explained as they are used
without attempting a full introduction here. As a
convention, a, b, ¢, 4, ... are used as variables for
types and ..., w, X, y, z are variables for values.

Define a datatype of populations by

datatype popul = Pop of float;;
(* unit: thousand people *)

This declaration introduces both a new type popul
and, a new term, its constructor Pop of type
float->popul. We can define a function for updating
populations by pattern-matching:

let (atPoplIncrementBylPercent:popul->popul) x =
match x with
| Pop z => Pop (z * 1.01);;

When applied to a term of the form Ppop x it returns
Pop (x#1.01). This function can be parameterized with
respect to the action to be taken by defining

let (atPopApply: (float->float)->popul->popul) f x =
match x with
| Pop z -> Pop (f 2);;
let incrementBylPercent x = x*1.01;;
let atPopIncrementBylPercent = atPopApply incrementBylPercent;;

Evaluation of the new version of
atPopIncrementBylPercent reduces to the old one
by substituting for the variable £.

More generally, we can consider increasing pop-
ulations stored in larger data structures, e.g., lists
defined by

datatype list a =
| Nil
| Cons of a and list a;;

This example defines a data type 1ist which takes one
parameter, a, which is the type of the list elements. It
has two constructors: n§il which builds an empty list
and Cons which constructs a new list from an element
and a (sub)list. We use [x, y, z, ...] as syntax
sugar for (Cons x (Cons y (Cons z ...))) and [1 for
the empty list nil.

The function

let (listMap: (a->b) -> list a -> list b) f x =
match x with
| Nil -> Nil
| Cons y z => Cons (f y)(listMap f z);;

takes a function f as its first argument and applies
it to every element of the second argument, a list.
listMap is defined by pattern-matching over the two
list constructors. For example,

listMap incrementBylPercent

acts on lists of floats and

listMap atPopIncrementBylPercent

acts on lists of populations. This illustrates how
listMap is polymorphic in the choice of types a and
b that represent the list entries, i.e., listMap is data
polymorphic.

Of course, populations may appear as data in all
sorts of structures, not just lists. This situation can
be handled using a mapping function that is para-
metric in the choice of structure type as well as in the
choice of the data types, i.e., function
mapl: (a->b) > ca ->cb
whose type includes a type variable c representing the
structure, e.g., 1ist. We say function mapi is structure
polymorphic. The definition of map1 is more complex
than its type suggests as it relies on the theory of data
structures developed in (Jay 2004c).

Even map1, however, is not flexible enough for our
purposes, since a typical database is not going to be
as homogeneous as type (c popul), having only one
type of elements. There is no reason to single out
populations while ignoring, say, city names and areas.

Instead, let us define a function that acts on pop-
ulations wherever they occur, by

let (updatePops:(float->float)->d->d) f x =
match x with
| Pop z -> Pop (f 2z)
| vy z -> (updatePops f y) (updatePops f z)
| z -> z;;

Note that the patterns of three matching cases are
of different types. This generalized form of pattern
matching is allowed by Pattern Calculus with a less-
restricted typing requirement (Jay 2004c¢). The first
case is the same as atPop but the second and third
cases cause the action to be propagated to all parts of
the data structure. That is, the pattern y z matches
against any compound data structure (e.g., Cons s t),
and causes both parts of the compound (e.g., Cons s
and t) to be updated, while the final case is used to
terminate at atoms of data. They can match different
type of structure in each recursive call. For example,

updatePops incrementBylPercent [Pop x1, Pop x2]

evaluates to [Pop x1¥1.01,Pop x2%1.01]; but

updatePops incrementBylPercent ([Pop x1],Pop x2)

evaluates to ([Pop x1¥1.01],Pop x2%1.01) even though
the populations appear on different levels of the data
structure. Thus updatePops is path polymorphic since
it can adapt to different data access paths.

Examining the program above, it is clear that the
constructor Pop is playing a completely passive role,
and so is ripe for parameterization. Define

let (update:lin(a->b)->(a->a)->d->d) \P f x =
match x with
| Pz ->P (f z)
| y z => (update P f y) (update P f z)
|z -> z;;

so that function
update Pop.

updatePop Call NOW be defined by

The program update arises naturally from our ear-
lier examples, but has a number of unusual technical
features. First some conventions: capitalized vari-
ables such as P are always free unless explicitly bound
as in \P (to be thought of as AP). Thus, the pattern
P z contains a free variable P and a binding variable
z. Evaluation of update Pop will substitute Ppop for P

so that the pattern above becomes Pop z. That is,
update is pattern polymorphic since it takes a parame-
ter used to build patterns.

Some care is required when substituting into pat-
terns, so such variables are required to be linear as in-
dicated by the linear type 1in(a->b), meaning that the
function of type a->b uses its argument exactly once.
Linear terms are explained in detail in (Jay 2004b).
For this paper, we will pretend that all linear terms
are constructors though there are important alterna-
tives. So for now lin(a->b) is the type of a constructor
with an argument of type a for a data structure of
type b. For example, pop has type 1lin(float->popul).

Similarly, we can define a function check that sim-
ply checks that some property holds for some argu-
ment of the given constructor, by:

let (check:lin(a->b)->(a->bool)->d->bool) \P f x =
match x with
| Pz ->fz
| 'y 2z => (check P £ y) || (check P f z)
| z -> False;;

where True, False are two constant constructors of
type bool as usual and 1] is logical-or.

Suppose now that the goal is to update the popu-
lations of only cities, while leaving other populations
unchanged. For example, consider XML geographical
data conforming to the schema:

<xs:element name="cityname" type="xs:string"/>

<xs:element name="popul" type="xs:decimal"/>
<!-- unit: thousand people -->

<xs:element name="river" type="xs:string"/>

<xs:element name="city">
<xs:complexType><xs:sequence>
<xs:element ref="cityname"/>
<xs:element ref="popul"/>
<xs:element ref="river" minOccurs="0"
max0Occurs="unbounded" />
</xs:sequence></xs:complexType>
</xs:element>

<xs:element name="provname" type='"xs:string"/>
<xs:element name='"province">
<xs:complexType><xs:sequence>
<xs:element ref="provname"/>
<xs:element ref="popul"/>
<xs:element ref="city" minOccurs="0"
max0Occurs="unbounded" />
</xs:sequence></xs:complexType>
</xs:element>

<xs:element name='"countryname" type="xs:string"/>
<xs:element name="country">
<xs:complexType><xs:sequence>
<xs:element ref='"countryname"/>
<xs:element ref="popul"/>
<xs:element ref="province" minOccurs="0"
max0Occurs="unbounded" />
</xs:sequence></xs:complexType>
</xs:element>

In an implementation of our approach, a validat-
ing XML parser is needed to transform XML data into
bondidata format for processing. Assuming such pars-
ing, the above schema can be denoted as bondidata
structures:

datatype cityname = CityName of string;;

datatype popul = Pop of float;;

(* unit: thousand people *)

datatype river = River of string;;

datatype city = City of cityname * popul * list river;;

datatype provname
datatype province

= ProvName of string;;
= Prov of provname * popul * list city;;
datatype countryname=CountryName of string;;
datatype country = Country of
countryname * popul * list province;;

Here * represents product type with the usual func-
tional programming convention, and constructor Pair

of a and b represents pairing data items. (x, y) is
syntactic sugar for Pair x y, and tuple (x, y, z, ...)
is nested pairs. For programming convenience, we al-
ways encode children of an XML element as nested
pairs as in the above declarations, e.g. a city element
for Kingston are encoded as:

City("Kingston",Pop 100.0, ["St.Lawrence River"])

Now applying update Pop £ t0 a piece of geograph-
ical data will act on all of the city, province and coun-
try populations indiscriminately. However, the func-
tion

update City (update Pop f)

gives the desired behavior. Although correct, this is
not quite satisfactory, since it requires two updates.
More complicated access patterns typical of XML will
then require three or more updates, and there is still
the challenge of checking side-conditions, e.g., that
the city is in Canada.

The solution is to construct an abstract structure
type for the complex patterns that represents all of
the information about how to access the data items.
In simple cases this will be given by a complete hierar-
chical path, but in general the access information will
be partial. For example, it is not necessary to know
everything above a city to update its population, and
most information along the path down to that city is
not interesting. Let us call such a partial description
of a path a signpost since it guides the way to target
data items.

For the purposes of encoding the motivating ex-
amples, let us consider three sorts of signposts. It
will be easy to add more sorts as needed. A goal is
a constructor whose argument is the singular pattern
of the target item of interest. A stage is a constructor
that constructs a signpost from a leading simple pat-
tern of the path and the rest of the path. A detour is
a path that has a side-path with a filtering condition
to check before continuing on the main path. Thus
we obtain a structure:

datatype signPost
at abc =
|Goal of lin(c->b)
at (al,a2) (b1,b2) c =
|Stage of lin (al->bl) and signPost a2 b2 c
|Detour of detourPath al bl and signPost a2 b2 c;;

Here “ at” indicates pattern matching with different
forms of the type arguments. signPost takes three
type arguments, the first two of which can be pairs of
types. detourPath is a helper structure to represent a
filtering condition in a signPost:

datatype detourPath
at a b =
| DetourGoal of lin(a->b) and (a->bool)
at (al,a2) (b1,b2) =
| DetourStage of lin(al->bl) and detourPath a2 b2;;

signPost and detourPath are similar in form to data
structures such as 1list, but they are not data struc-
tures any more because they contain pattern type
lin(a->b), which is not data type. We call them pat-
tern structures.

Note that in signPost an extra parameter type
c is used to expose the content type of the fi-
nal element, the goal, for programming conve-
nience. It enables general programming of compu-
tation with such paths as parameters. For exam-
ple, to search for all populations with the partial
path (...country...city...popul), the compound pat-
tern can be encoded as:

let popPathl = Stage Country (Stage City (Goal Pop));;

and to search for all populations of Canadian cities,
we use Detour:

let dpath = DetourGoal CountryName ((==) "Canada");;
let popPath2 = Stage Country
(Detour dpath (Stage City (Goal Pop)));;

Note that (==) is a boolean function of type
a->b->bool, which takes two arguments, so that ((==
"Canada") is a boolean function of type a->bool.

Now function check can be modified to act on
detourPath, and update be modified to act on signPost,
as follows.

let (checkd:(detourPath a b)->d->bool) p x =
match p with
| DetourGoal \P f -> check P f x
| DetourStage \P pl -> check P (checkd pl) x;;

let (updates:(signPost a b ¢)->(c—>¢c)->d->d) s f x =

match s with
| Goal \P -> update P f x
| Stage \P sl -> update P (updates sl f) x
| Detour dpl sl ->

if (checkd dpl x) (* the detour *)

then updates s1 f x
else x;;

Note that function updates (“s” stands for signpost)
invokes the simple version update for singular pat-
terns. It uses pattern matching to explore the struc-
ture of a given path pattern, that is, a signPost. If
the path pattern is a singular pattern, update is in-
voked directly. If the path pattern is a Stage, update
is used to search for the preceding singular pattern,
then from the matching points the search for the rest
of the path pattern continues. checkd also acts in a
similar way.

If the path pattern given to function updates is a
Detour, the function checks whether the detour path
got a match and whether the content of the match
satisfies the carried boolean function. If so, the func-
tion goes back to the starting point and continue the
search for the rest of the main path pattern. If the
detour does not get a match or the carried boolean
function fails, the function returns unchanged data.
Now it is straightforward to increment all populations
of all Canadian cities, if data is the data repository
containing geographical information:

updates popPath2 incrementBylPercent data

Note that this executes independently of the presence
of provinces.

3.3 Folding

Given bondi’s support for parameterization over data
structures and data access patterns, we can design
other general functions in much the same way as
mapl, update and updates. In this subsection we de-
fine functions for the folding operation, which is the
basis of many common operations on heterogeneous
data structures. We also show by an example the
simplicity of using the folding functions in XML data
processing.

A function foldlefti can be defined (Jay 2004c¢),
similar to mapi1, as:

foldleftl: (a->b->a) -> a -> c b -> a

It traverses a homomorphic structure of type (c b)
with all elements being only one type b, applying a
given function to the values of all elements it finds to

modify the given value of type a. For example, given
a definition of integer addition function add, the ap-
plication foldlefti add 0 AList0fInt produces the sum
of all integers in a list of type (1ist int).

In the same way that update handles singular pat-
terns appearing in various contexts of arbitrary het-
erogeneous data structures, a generalized foldleftp
for heterogeneous structures can be defined, again
simply using three-case pattern matching;:

let (foldleftp:lin(a->b)->(e->a->e)->e->d->e) \P f x w =
match w with
| Pz->fxz
| y z -> foldleftp P f (foldleftp P f x y) z
Iz > x;5;

A more sophisticated version that folds elements
satisfying a complex path pattern (signPost) looks
like this:

let (foldlefts:(signPost a b c)->(e->c—>e)->e->d->e) s f x w =

match s with
| Goal \P -> foldleftp P f x w
| Stage \P s1 -> foldleftp P (foldlefts sl f) x w
| Detour dpl s1 ->

if (checkd dpl w)

then foldlefts s1 f x w
else x;;

Many essential XML processing operations can be
expressed as using foldleftp and foldlefts. For ex-
ample, extracting information from XML data based
on a search pattern and a filter is the most common
kind of XML query. It can be easily implemented by
foldlefts.

Suppose we want a list of names of cities whose
population is bigger than 300 (in units of thousands).
This query consists of three components: the pattern
to search for: ...city...cityname; the data filter: pop-
ulation > 300; and the way to construct the result.
The search pattern is easy to describe by an instance
of a signPost, and the filter is a boolean function car-
ried by a Detour pattern:

let dpath = DetourGoal Pop ((>) 300.0);;
let namePath = Stage City (Detour dpath (Goal CityName));;

Collecting matching items into a final result is a
foldlefts operation in bondi. An accumulating func-
tion will be given to the folding function as a param-
eter, to accumulate matching items. Users can use
different accumulating functions for different ways of
constructing the final result. If the result is to be a
list of strings for city names, i.e., of type 1list string,
the accumulating function can be as simple as:

let (listInsert:
match x with
| Nil -> Coms y Nil
| Cons z w -> Cons y (Cons z w);;

list a => a -> list a) x y =

Of course more sophisticated accumulating functions
can be designed, for example to check for duplicates,
or to construct results into a structure other than a
flattened string list.

Given the pattern and accumulating function, the
task is straightforward (again, data is the geographi-
cal data repository):

let nl = foldlefts namePath listInsert [] data;;

Many other essential XML processing operations,
such as extraction while preserving or restructuring
original structures, indexing and sorting, are basically
folding operations as well and can be implemented
in a similar way using the folding functions. More
examples are available in one of our earlier reports
(Huang, Jay & Skillicorn 2005b).

Designing highly-parametric general functions in
bondi, such as update, updates, foldleftp and
foldlefts, is as simple as pattern-matching several
cases. Such simple functions allow us to perform a
large class of XML search and transformation oper-
ations within a general-purpose programming envi-
ronment easily. These functions can be formalized as
library components of bondi. The only task left for
users is to map complex search patterns into instances
of appropriate pattern structures such as signPost,
and this may also be automated.

4 More Complex Patterns

Besides designing new generic functions, another way
to extend XML processing capability is to include
more kinds of patterns. In the previous section we
defined a pattern structure, signPost, which is able
to express a large class of common vertical patterns.
To handle more complex patterns, we can add more
constructors to signPost, or even define new pattern
structures as appropriate. In bondi this is a program-
ming task, in contrast to other existing XML pro-
cessing approaches where new kinds of patterns need
new language features at best, and are impossible at
worst.

We have experimented how to extend our ap-
proach to handle complex patterns in XPath style,
vertical regular-expression style, and horizontal
regular-expression style. These patterns have been
considered individually in other existing approaches
but have never appeared fully together in one lan-
guage. Our extensions for these new patterns only
need declarations of new pattern structures and
changes to programs processing data using these
structures. None of our extensions require any
changes to the language bondi itself.

For example, we can declare a pattern structure to
represent regular expressions:

datatype regexp
at a b =
| Single of lin(a->b)
| Kstar of lin(a->b)
at (al,a2) (bl,b2)
| Concat of regexp al bl and regexp a2 b2
| Altern of regexp al bl and regexp a2 b2;;

and use this structure to encode patterns of horizontal
regular-expression style. We can design functions for
search, update and folding of target data matching
such patterns.

Further details about handling complex patterns
in XPath style, vertical regular-expression style and
horizontal regular-expression style can be found in the
report (Huang, Jay & Skillicorn 2005a).

5 Conclusion

The strongly-typed general-purpose programming
language bondi, based on Pattern Calculus, treats
structures and patterns as first-class objects, and al-
lows a generalized form of pattern matching with less
restricted typing rules. These increases in expressive-
ness create new forms of polymorphism, especially
path polymorphism and pattern polymorphism. Path
polymorphism enables traversal of data with hetero-
geneous structures, automatically adapting to differ-
ent data-access paths on the fly in a well-typed man-
ner. Pattern polymorphism allows data-access pat-
terns to be passed as well-typed parameters, and be
composed into complex pattern structures.

With the new expressive power, we have shown
that we can define general programs using gener-
alized pattern matching and parameterizing struc-
tures and patterns, implementing a large class of
essential XML processing operations. Compared
with those from other existing XML processing ap-
proaches, bondi programs are simpler and more mod-
ular due to higher parameterization and more free-
dom for pattern matching. These programs are also
safer because static typing is enforced not only on
data items and functions, but also on structures and
patterns.

With the new expressive power, we have also
shown that we can easily create new pattern struc-
tures or expand existing ones to handle new kinds of
complex patterns in XML manipulation. These pat-
tern structures can be treated as freely as data struc-
tures. They can be constructed, pattern-matched,
traversed at runtime, and passed as values to param-
eters, making programming with them very flexible
and simple. They carry all necessary type informa-
tion, enabling static type verification for the programs
that use them. Extensions to new kinds of patterns
require only programming not, as in the other existing
approaches, language design or revision. This makes
our approach highly extensible, and applicable for a
richer set of complex patterns than other XML query
and transformation languages.

Given that our approach manipulates XML within
one programming language with simplicity, strong
type-safety and high extensibility, it is easy to inte-
grate back-end data-access programming with front-
end user-interface programming in a single system.
The approach thus represents the first steps to solv-
ing the impedance mismatch problem.

Of course, there is still a long way to go to use
this approach in practical applications. A lot of im-
plementation effort is required and some issues are
still open for further investigation.

e It is not expected that XML data users has to
do the bondi programming. They will even not
need to know about patterns and pattern struc-
tures. A library for common XML computations
such as search, update and folding can be built.
Pattern structure declarations and constructions
could be automated, and XML- and XPath-style
expressions could be adopted as syntax sugar.

e Currently only an interpreter for bondi is avail-
able. Given the high level of language abstrac-
tion and polymorphism, it is desirable to compile
bondi programs into a format that can be opti-
mized for performance.

e Examples given in this paper assume that XML
data are transformed into bondi data structures
in memory. When facing large-scale data, al-
though bondi data structures could also be stored
in external repositories, it is not yet clear how to
optimize the data access for the performance of
the repositories.

References

Abiteboul, S., Quass, D., McHugh, J., Widom, J. &
Wiener, J. (1997), ‘The Lorel query language for

semistructured data’, Int. J. on Digital Libraries
1(1), 68-88.

Bancilhon, F. & Maier, D. (1988), Multi-language
object-oriented systems: New answers to old
database problems, in K. Fuchi & L. Kott, eds,

‘Future Generation Computers II’, Amsterdam,
North-Holland.

Benzaken, V., Castagna, G. & Frisch, A. (2003),
Cduce: an xml-centric general-purpose language,
in ‘Proc. of 2003 ACM SIGPLAN Int. Conf. on
Functional Programming’, ACM Press.

Berglund, A., Boag, S., Chamberlin, D., Fernndez,
M., Kay, M., Robie, J. & Simon, J. (2005), ‘Xml
path language (xpath) 2.0 - w3c working draft’.
www.w3.org/TR/2005/WD-xpath20-20050211/.

Bierman, G., Meijer, E. & Schulte, W. (2004),
‘The essence of data access in cw’. research.
microsoft.com/"emeijer/Papers/popl.pdf.

Boag, S., Chamberlin, D., Fernandez, M., Florescu,
D., Robie, J. & Simeon, J. (2005), ‘Xquery 1.0:
An xml query language - w3c working draft’.

Clark, J. (1999), ‘Xsl transformation(xslt): Version
1.0 - w3c recommendation’.

Clark, J. & DeRose, S. (1999), ‘Xml path language
(xpath): Version 1.0 - w3c recommendation’.
www.w3.org/TR/xpath.

Cluet, S., Delobel, C., Siméon, J. & Smaga, K.
(1998), Your mediators need data conversion!,
in ‘ACM SIGMOD International Conference
on Management of Data’, Seattle, Washington,
USA, pp. 177-188.

Deutsch, A., Fernandez, M., Florescu, D., Levy, A. &
Suciu, D. (1999), ‘A query language for XML’,
Computer Networks 31(11-16), 1155-1169.

Harren, M., Raghavachari, B., Shmueli, O., Burke,
M., Sarkar, V. & Bordawekar, R. (2004), XJ: In-
tegration of XML processing into Java, in ‘Proc.
WWW2004’, New York, NY, USA.

Hosoya, H. & Pierce, B. (2003), ‘Xduce: A typed
XML processing language’, ACM Transactions
on Internet Technology 3(2), 117-148.

Huang, F. Y., Jay, C. B. & Skillicorn, D. B. (2005a),
Dealing with complex patterns in XML process-
ing, Technical Report 2005-497, School of Com-
puting, Queen’s University. www.cs.queensu.
ca/TechReports/Reports/2005-497 . pdf.

Huang, F. Y., Jay, C. B. & Skillicorn, D. B.
(2005b), Programming with heterogeneous struc-
ture: Manipulating XML data using bondi,
Technical Report 2005-494, School of Comput-
ing, Queen’s University. www.cs.queensu.ca/
TechReports/Reports/2005-494.pdf.

Jay, C. B. (2004a), ‘bondi web-page’. www-staff.it.
uts.edu.au/"cbj/bondi.

Jay, C. B. (2004b), ‘Higher-order pat-
terns’. www-staff.it.uts.edu.au/"cbj/
Publications/higherorderpatterns.pdf.

Jay, C. B. (2004c¢), ‘The pattern calculus’, ACM
Trans. Program. Lang. Syst. 26(6), 911-937.

Jay, C. B. (2004q), ‘Unifiable subtyp-
ing’. www-staff.it.uts.edu.au/"cbj/
Publications/unifablesubtyping.pdf.

Meijer, E., Schulte, W. & Bierman, G. (2003), Uni-
fying tables, objects and documents, in ‘Proc.
DP-COOL 2003’, Uppsala, Sweden.

Robie, J., Lapp, J. & Schach, D. (1998), ‘Xml query
language (XQL)’. www.w3.org/TandS/QL/QL98/
pp/xql.html.

Wadler, P. (2004), ‘Links’. homepages.inf.ed.ac.
uk/wadler/papers/links/links-blurb.pdf.

