
Programming with Heterogeneous Structures�

Manipulating XML data Using bondi

F� Y� Huang

School of Computing
Queen�s University
huang�cs�queensu�ca

C� B� Jay

Faculty of Information Technology
University of Technology� Sydney

cbj�it�uts�edu�au

D� B� Skillicorn

School of Computing
Queen�s University
skill�cs�queensu�ca

Abstract

Manipulating semistructured data� such as XML� does
not �t well within conventional programming languages�
A typical manipulation requires �nding all occurrences
of a structure matching a structured search pattern�
whose context may be di�erent in di�erent places� and
both aspects cause di�culty� If a special�purpose query
language is used to manipulate XML� an interface to
a more general programming environment is required�
and this interface typically creates runtime overhead for
type conversion� However� adding XML manipulation
to a general�purpose programming language has proven
di�cult because of problems associated with expressive�
ness and typing�

We show an alternative approach that handles many
kinds of patterns within an existing strongly�typed
general�purpose programming language called bondi�
The key ideas are to express complex search patterns as
structures of simple patterns� pass these complex pat�
terns as parameters to generic data�processing functions
and traverse heterogeneous data structures by a gener�
alized form of pattern matching� These ideas are made
possible by the language�s support for pattern calculus�
whose typing on structures and patterns enables path
and pattern polymorphism� With this approach� adding
a new kind of pattern is just a matter of programming�
not language design�

Keywords� Pattern Calculus� functional program�
ming� heterogeneous data structure� XML processing

� Introduction

When processing semistructured data such as XML�
a basic operation is to locate data items by their
position in a structured context� usually described
by a pattern or sequence of patterns� In some sit�
uations� these patterns can be as simple as match�
ing a single type of element� for example� in the
search for all population elements in a geographical
dataset� population is a simple pattern to match for
target data items� In other situations� search pat�
terns are more complex� but complex patterns can
usually be decomposed into simpler ones� For exam�
ple� in the search for the complex pattern population

of individual cities in Canada includes searches for a
country element with a countryName descendant ele�
ment having the value Canada� and some city de�

Copyright c������ Australian Computer Society� Inc� This pa�
per appeared at the Twenty�Ninth Australasian Computer Sci�
ence Conference �ACSC������ Hobart� Tasmania� Australia�
January ����� Conferences in Research and Practice in In�
formation Technology �CRPIT�� Vol� �	� Vladimir Estivill�
Castro and Gill Dobbie� Eds� Reproduction for academic� not�
for pro
t purposes permitted provided this text is included�

scendant elements which in turn have population de�
scendant elements �we do not use attributes in our
examples� because attributes can be transformed into
elements easily��

There are two ways to compose simpler patterns
into more complex ones� The �rst is vertical com�
position� as in the search for the population of cities
of Canada� Such complex patterns match XML el�
ements from di�erent levels of a hierarchy� We call
them vertical patterns� Location paths� expressed in
the popular XPath �Clark 	 DeRose
���� language�
fall in this category� The second is horizontal compo�
sition� as in the search for cities having child elements
for name� population� either timezone or continent�
and zero or more rivers� i�e�� the pattern �cityName�

population� timezone�continent� river��� Such com�
plex patterns match XML elements from the same
level of a hierarchy� We call them horizontal patterns�

Vertical and horizontal patterns can be combined
into even more complex search patterns� For exam�
ple� the pattern� contact phone numbers of city halls
of Canadian cities having child elements for name�
population and zero or more rivers� is a combination
of vertical and horizontal patterns�

Semistructured data processing poses a problem
for general�purpose programming languages� For ex�
ample� typical processing of XML data consists of a
search for all occurrences of a search pattern� extrac�
tion of the occurrences and some part of their context�
changes to these extracted data structures� and their
replacement in the entire data structure� General�
purpose programming languages have trouble typing
such programs because the target pattern can be com�
plex in di�erent ways and can occur in di�erent con�
texts and they also have trouble expressing the im�
plied universal quanti�er in the search�

These di�culties led to the design of special�
purpose XML query languages� emerging both from
the database community and the structured text com�
munity� The problem with using a query language
for manipulating XML is that it creates an inter�
face between data extraction and data use� For ex�
ample� in a typical web environment� the data it�
self is in a back�end system and the results of the
data query�transformation must be passed to a front�
end system for further processing� The existence
of a boundary requires a common format� usually
quite a low�level one such as a string� by which
the back�end and front�end communicate� This re�
quires extra programming e�ort� subject to secu�
rity holes and runtime overhead� This has been
called the impedance mismatch problem �Bancilhon
	 Maier
���� Wadler ������

There is an obvious bene�t to extending general�
purpose programming languages so that they can
handle XML manipulation in native mode� Doing so

reduces or eliminates the impedance mismatch prob�
lem� since computations at the browser� front�end�
and back�end can all be done in the same language
environment� Because such languages are typed� se�
curity of programs can be veri�ed statically� reducing
runtime overhead for dynamic type checking and the
chance of catastrophic failure or unintended leakage of
information� Also� because of the expressive power of
such languages� programs may be smaller and more
modular� making them cheaper and easier to build
and maintain�

Extending general�purpose programming lan�
guages to include XML manipulation directly has
proven di�cult� although a number of attempts have
made some progress towards this goal� Such attempts
usually end up with a new or extended language that
can only handle speci�c kinds of hard�coded XML
search patterns which cannot be passed as typed pa�
rameters� and cannot be further extended without
changing the language�

In this paper we show that an existing general�
purpose functional�programming language� bondi� in
which structures and patterns are treated as of equal
importance to data and functions� allows XML ma�
nipulation to be expressed in a natural and general
way� and without any extensions to the language�

Rather than aggregate the features found in the
existing wide variety of XML query and transforma�
tion languages� bondi treats structures and patterns
as �rst�class objects� Hence� control �ow can be de�
termined by structures� not just datum values struc�
tures and structure�matching patterns are well typed
and can be passed as parameters� This respect for the
data creates new power for programming with hetero�
geneous data structures�

Because bondi is a general�purpose language� XML
applications can be seamlessly integrated into other
applications� including web and web service applica�
tions�

In this paper we show that�

� Existing approaches to XML processing only
handle limited kinds of search patterns� with
weaknesses in either type�safety� parameteriz�
ability� extensibility to other kinds of patterns�
or all three

� The ability to handle structures and structure�
matching patterns in the same way as other pro�
gramming entities is the key to manipulating
XML in an e�ective� but also properly typed�
way

� This increase in expressiveness comes with
greater simplicity� rather than greater complex�
ity� due to more powerful parameterization

� With such expressiveness� adding a new kind of
pattern� either vertical or horizontal� to XML
processing is just a programming task� rather
than a language �re��design task�

The rest of the paper is organized as follows� Sec�
tion � reviews existing XML processing approaches�
then the theory on which our approach is based� Sec�
tion � introduces the use of patterns as �rst�class ob�
jects and the construction of complex patterns from
simple ones� and shows how these patterns contribute
to better type�safety and higher parameterization�
Section � brie�y shows how our approach extends
to new kinds of complex patterns� Section � draws
conclusion and discusses some open issues of our ap�
proach�

� Related Work

��� XML Query Languages

In the early years of XML� special�purpose XML
query languages such as Lorel �Abiteboul� Quass�
McHugh� Widom 	 Wiener
����� YATL �Cluet� De�
lobel� Sim�eon 	 Smaga
����� XML�QL �Deutsch�
Fernandez� Florescu� Levy 	 Suciu
����� XQL
�Robie� Lapp 	 Schach
���� and XSLT �Clark
����
were invented to handle query and transformation of
XML data� They are typically untyped� handling
both tag names and element content as strings�

These query languages have very limited program�
ming power� unable to express sophisticated compu�
tations on XML data� In many settings� the queries
and their results must be passed� at runtime� to other
application programs for further processing� These
transfers are usually in a low�level format such as
strings� requiring extra programming e�ort and run�
time overhead for parsing and type�checking� The
type safety of XML manipulation programs then re�
lies on type�checking at runtime by explicit check�
ing code inserted by programmers at development
time� The correctness and completeness of the check�
ing code are not guaranteed�

XSLT uses XPath �Clark 	 DeRose
���� expres�
sions as search patterns� XPath is powerful at ex�
pressing a wide range of complex vertical patterns�
but XSLT is limited in programming power� and in�
capable of sophisticated computation� The other lan�
guages are quite restricted both in expressing vertical
patterns and in programming� None of them is able to
express horizontal patterns systematically� although
they can hardcode individual ones �e�g� sibling axes
in XPath can represent simple horizontal patterns��

��� Native XML Processing

In recent years� attempts have been made to merge
XML processing into general�purpose programming
languages� Typical approaches use special types to
represent XML data and special expressions for search
patterns� in addition to regular programming lan�
guage features� The most recent e�orts include XJ
�Harren� Raghavachari� Shmueli� Burke� Sarkar 	
Bordawekar ������ XQuery �Boag� Chamberlin� Fer�
nandez� Florescu� Robie 	 Simeon ����� and C�
�Bierman� Meijer 	 Schulte ����� Meijer� Schulte
	 Bierman ����� focusing on vertical patterns� and
XDuce�Hosoya 	 Pierce ����� and CDuce�Benzaken�
Castagna 	 Frisch ����� focusing on horizontal pat�
terns� In terms of programming style� XJ and C� are
object�oriented� while XQuery� XDuce and CDuce are
functional�

XJ and XQuery enforce static typing against XML
schemas rather than native types of the program�
ming languages� and express search patterns using
embedded strings hence type mismatches still exist
to some extent� C�� XDuce and CDuce express XML
data and search patterns fully in native mode with
static typing� so that XML processing can be han�
dled within a single language�

The inability to parameterize structures and pat�
terns� and poor extensibility� are two common short�
comings in all these languages� First� these languages
can only parameterize XML data items� not struc�
tures of these items� nor the patterns to match the
structures� because the latter are not �rst�class enti�
ties� Traversal of heterogeneous XML structures has
to rely on runtime type casts even if the XML data

are parsed into well�typed form� and patterns have to
be hard�coded in programs� Second� these languages
only allow speci�c kinds of patterns and cannot be
extended to other kinds easily in a type�safe way� An
extension to a new kind of pattern requires new fea�
tures to be added to the language the type system
has to be modi�ed and so does the compiler�

XJ extends Java with XML data types and XPath
expressions� capable of handling vertical patterns con�
forming to XPath
�� �Clark 	 DeRose
����� It ex�
presses XML element types as Java classes� and uses
special embedded strings containing XPath expres�
sions as search patterns� Static typing of these XML
types and embedded pattern strings against XML
schemas is enforced by a special type checker� Be�
cause the type checking is against XML schema types�
not native Java types� XML data and pattern expres�
sions are not fully type�safe in Java� Since search pat�
terns are just strings� there is a potential to include
patterns other than XPath expressions� but only in an
untyped way �or at best typed against XML schemas�
not Java�� Also� the special type checking requires
that schemas for XML data are always available and
trustworthy� which is unrealistic in many situations�

XQuery is designed as a query language but is
equipped with some basic functional�programming
features� It is intended to be a language for XML
processing analogous to SQL for relational data pro�
cessing� It aggregates many features from older
XML query languages and SQL� and its data model
and type system fully conform to XML and XML
Schema speci�cations� It is a superset of XPath ���
�Berglund� Boag� Chamberlin� Fernndez� Kay� Robie
	 Simon ������ making XPath expressions native�
and so it is fully capable of handling vertical pat�
terns of the XPath form� On the other hand� XQuery
has only very limited functional programming fea�
tures� Except in user�interactive settings� its expres�
sions are supposed to be embedded in host programs
in other languages for processing of query results� In
such situation� the impedance mismatch problem still
exists� just as in XJ� since XQuery is only typed in
terms of XML schemas� The mismatch between XML
schema types and host�language types weakens the
safety of XML processing programs� The only advan�
tage over XJ is that� in the absence of XML schemas�
XQuery expressions can still be type�checked to some
extent based on the type information in the expres�
sions themselves�

C� is intended to extend C�� another general�
purpose programming language� with native types
that support both object�oriented� relational and
semi�structured data models� so that it can unify the
processing of all these kinds of data� It introduces
three new kinds of types� stream� anonymous struct
and choice� roughly equivalent to list� heterogeneous
tuple and sum types in functional languages� It uses
the notion of content class for expression of XML
schemas� For example� suppose an XML schema for
geographical data has a country element type� with
name� population and zero or more provinces as child
elements� It then can be encoded as a content class
Country as�

class Country f
structf string name� float population� Province� provs� g�
��� �� appropriate constructor
void increasePopulation�float percentage�f���g
���

g

which contains an anonymous struct holding name�
population and a stream of Province� In turn� Province

is another content class �declaration not shown here�
for province element type� which may have children

name� population and a stream of City� and so on�
Suppose canada is an instance of Country� The pattern
to get the population of Canada can then be expressed
as canada�population� To accommodate XPath�style
vertical patterns� C� also introduces �lter expressions
such as Country�name���Canada��� and transitive query
expressions such as Country���population for popula�
tion data appearing at arbitrary depth below coun�
tries� For example� the following method returns a
stream of populations of cities in a given country�

virtual float� getPopulation�Country c�� f
foreach �p in c����City�population� yield return p�

g

The expressiveness of C� for patterns in XML pro�
cessing is roughly equivalent to XPath
�� �Clark 	
DeRose
���� without backward axes� In contrast
to XJ and XQuery� XML data and pattern expres�
sions in C� are fully native� expressed by identi�ers
all having C� native types� There is no impedance
mismatch problem� However� the pattern to search�
such as c	���City�population in the above method�
has to be hardcoded in the program and cannot be
passed to a method parameter in a typed manner�
so that it is not possible to have a general method
to search for user�de�ned target data� something
like get�somePatternType pattern� Country c	�� More�
over� adding other kinds of patterns� for example
XPath backward axes� self�nested structures� or hor�
izontal patterns would require large changes to the
language�

XDuce and CDuce are functional�programming
languages with regular�expression types added to
general�purpose functional language features� These
two languages use regular expressions to denote XML
element types� and to de�ne horizontal patterns to
match the elements� For example� the country ele�
ment type above can be declared in CDuce as�

type Country � �country	
Name Population �Province���
type Province � �prov	
Name Population �City���
type City � �city	
Name Population ����
type Name � �name	
String�
type Population � �pop	
Int�

Traditional Pattern matching can be used to locate
all population items and make some update to them
in a piece of XML data�

let updatePop �x�� 	
 ��� �� 	
 �� �
let
 y � �

xtransform
 x � with
�pop	
�z Int�� �	
 �pop	
�z���������� �

in y

This CDuce function uses regular�expression type

 �� ��� meaning an element with any tag name and
any content� to constrain both the parameter and re�
sult� and regular�expression type
pop��Int�� mean�
ing an element with tag name �pop� and an integer
as content� to match target items for update� It tra�
verses the whole structure of a given piece of XML
data x using the macro iterative operator xtransform�
matches any population element and increases it by

��

In XDuce and CDuce programs� patterns are well�
typed and handled natively� CDuce can even encode
XPath�like vertical patterns with child axes �though
not descendant axes�� However� just as for C�� search
patterns such as
pop��Int� in the above CDuce pro�
gram are not �rst�class terms and cannot be refer�
enced and passed as well�typed parameters� And new
kinds of patterns are not easy to include without sig�
ni�cant extensions to the languages�

��� bondi and Pattern Calculus

bondi �Jay ����a� is a general�purpose functional pro�
gramming language designed to allow many forms of
genericity� Instead of aggregating features for XML
data processing found in the existing wide variety of
XML query and transformation languages� bondi has
a very general extension to functional language fea�
tures to achieve a higher degree of modularity and
program re�use�

The extension is based on a sound theory� the
Pattern Calculus �Jay ����c� Jay ����b� Jay ����d��
which�

� treats structures and patterns as �rst�class ob�
jects with equal importance to data and func�
tions� allowing them to be referenced and passed
as parameters� achieving parameterization of
structures� access paths and search patterns

� allows a generalized form of pattern matching�
without requiring the pattern cases to be the
same type�

Hence� in bondi� control �ow can be determined by
structures� not just datum values and structures and
structure�matching patterns are natively well typed�
can be used as values� passed around as parameters�
and matched in a general way�

In the same way that data and function parame�
terization make data and function polymorphism pos�
sible� the treatment of structures and patterns and
the generalization of pattern matching in bondi make
possible three new forms of polymorphism� structure
polymorphism� path polymorphism and pattern poly�
morphism� They provide new expressive power and
create the opportunity to represent XML processing
in a well�typed� highly parametric and highly exten�
sible way� The next section will explain these forms
of polymorphism and how they can be used in XML
processing�

� Parameterizing Structures and Patterns

Programming �and maintenance� are simpler when
programs are built so that as much of their behav�
ior is captured by parameters as possible� Often
this has a secondary bene�t that the resulting pro�
gram is simpler and easier to understand �many of
the cases have become di�erent parameter choices��
Programming languages that support the passing of
data and functions as parameters �higher�order func�
tions� or use subtyping to pass objects of varying
behavior are plentiful� but until the Pattern Cal�
culus �Jay ����c� Jay ����b� Jay ����d� there has
not been general account of how to pass around in�
formation about structures� and patterns to match
these structures within a typed programming lan�
guage� The Pattern Calculus� and its implementing
language bondi� support all these kinds of parame�
ter passing� achieving polymorphism on data� func�
tions� subtypes� structures� paths and patterns within
one typed programming language� The latter three�
achieved by parameterizing structures and patterns�
are particularly suited to describe XML access paths�
and can greatly simplify programming for XML ma�
nipulation� This section explains these three new
forms of polymorphism by introducing a sequence of
XML processing examples requiring deep parameter�
ization� and shows how simple and type�safe it is to
design highly�parametric functions for XML data pro�
cessing�

��� A Motivating Scenario

Suppose we have a data repository containing geo�
graphical information and we want to carry out the
following operation� Add �� to the population of all
of Canadian cities� How could we express such an
operation�

The �rst way is what might be called assembly
language programming� a speci�c program that tra�
verses the structure in the repository� �nds all of the
places where Canadian cities are present� and then
�nds their population elements and adds
� to them�
The problem is that if we decide to change the prob�
lem in any way we have to rewrite and recompile the
program�

All high�level programming languages allow the
amount by which the populations are to be incre�
mented to be extracted and expressed as a parameter�
So we might write something like�

IncrementPopsofCanadianCities����

This small change increases the generality of the pro�
gram in the sense that we can make many di�erent
changes without rewriting or recompiling the pro�
gram� The program is generic with respect to one
argument�

Many programming languages also allow us to
make the operation that is to be done to the pop�
ulations of Canadian cities into a parameter as well�
So we might write�

UpdatePopsofCanadianCities�incrementby� ���

Now it is trivial to decrement the populations instead�

The next level of generality is to make the parts
of the structure where the function is applied into a
parameter as well� So we might write�

updateCanadianCities�Pops� incrementby� ���

Now it is trivial to increment �or decrement� cities�
areas instead of their populations� Most query lan�
guages� either for databases or for semistructured
data� are powerful enough to allow this kind of pro�
gramming� but many general�purpose languages have
trouble because the contexts that de�ne the regions
where the function is to be applied are constructed in
di�erent ways and look di�erent to the type system�

A further extension is to make the particular units
within Canada that are being considered into a pa�
rameter� So we might write�

updateInCanada�City�Pops� incrementby� ���

Now the program is generic in the pattern that de�
scribes where the increment is to be applied �cities
above populations�� It will work regardless of whether
cities are immediately below countries� e�g�� capitals
such as Ottawa or Washington D�C�� or accessed via
intermediate layers such as states or provinces�

Now let us parameterize on the country too�

update�CountryName �� �Canada��City�Pops� incrementby� ���

The code involves a side�condition to check on a re�
lated structure�

Now we see that the parameters �Canada�� City
and Pops are all related and it is the connections be�
tween them that de�ne the real parameter of interest�
So we could rewrite the code as�

update�Canadian City Pop� incrementby� ���

which has a �complex� pattern parameter� Now if
we want to search for more complicated structures
within the geographical database� we don�t have to
keep building more complicated functions rather� the

complexity is expressed in the choice of a complex
pattern parameter of the standard update function�

This example shows the many levels of need for
genericity in processing semi�structured data� Most
programming languages and query languages can sat�
isfy some of these needs� but the following subsection
will show that bondi is the �rst to handle them all in
one language� and in a natural way�

��� Parameterizing in bondi

This subsection encodes the examples above in bondi
they have all been executed and also appear in the
�le �xmldata�bon� at the bondi web�site �Jay ����a��
Language features will be explained as they are used
without attempting a full introduction here� As a
convention� a� b� c� d� ��� are used as variables for
types and ���� w� x� y� z are variables for values�

De�ne a datatype of populations by

datatype popul � Pop of float��
�� unit� thousand people ��

This declaration introduces both a new type popul

and� a new term� its constructor Pop of type
float�popul� We can de�ne a function for updating
populations by pattern�matching�

let �atPopIncrementBy�Percent�popul�	popul� x �
match x with
� Pop z �	 Pop �z � �������

When applied to a term of the form Pop x it returns
Pop �x�	��	�� This function can be parameterized with
respect to the action to be taken by de�ning

let �atPopApply��float�	float��	popul�	popul� f x �
match x with
� Pop z �	 Pop �f z���

let incrementBy�Percent x � x�������
let atPopIncrementBy�Percent � atPopApply incrementBy�Percent��

Evaluation of the new version of
atPopIncrementBy	Percent reduces to the old one
by substituting for the variable f�

More generally� we can consider increasing pop�
ulations stored in larger data structures� e�g�� lists
de�ned by

datatype list a �
� Nil
� Cons of a and list a��

This example de�nes a data type list which takes one
parameter� a� which is the type of the list elements� It
has two constructors� Nil which builds an empty list
and Cons which constructs a new list from an element
and a �sub�list� We use �x� y� z� ���� as syntax
sugar for �Cons x �Cons y �Cons z ������ and � � for
the empty list Nil�

The function

let �listMap� �a�	b� �	 list a �	 list b� f x �
match x with
� Nil �	 Nil
� Cons y z �	 Cons �f y��listMap f z���

takes a function f as its �rst argument and applies
it to every element of the second argument� a list�
listMap is de�ned by pattern�matching over the two
list constructors� For example�

listMap incrementBy�Percent

acts on lists of �oats and

listMap atPopIncrementBy�Percent

acts on lists of populations� This illustrates how
listMap is polymorphic in the choice of types a and
b that represent the list entries� i�e�� listMap is data
polymorphic�

Of course� populations may appear as data in all
sorts of structures� not just lists� This situation can
be handled using a mapping function that is para�
metric in the choice of structure type as well as in the
choice of the data types� i�e�� function

map�� �a�	b� �	 c a �	 c b

whose type includes a type variable c representing the
structure� e�g�� list� We say function map	 is structure
polymorphic� The de�nition of map	 is more complex
than its type suggests as it relies on the theory of data
structures developed in �Jay ����c��

Even map	� however� is not �exible enough for our
purposes� since a typical database is not going to be
as homogeneous as type �c popul�� having only one
type of elements� There is no reason to single out
populations while ignoring� say� city names and areas�

Instead� let us de�ne a function that acts on pop�
ulations wherever they occur� by

let �updatePops��float�	float��	d�	d� f x �
match x with
� Pop z �	 Pop �f z�
� y z �	 �updatePops f y� �updatePops f z�
� z �	 z��

Note that the patterns of three matching cases are
of di�erent types� This generalized form of pattern
matching is allowed by Pattern Calculus with a less�
restricted typing requirement �Jay ����c�� The �rst
case is the same as atPop but the second and third
cases cause the action to be propagated to all parts of
the data structure� That is� the pattern y z matches
against any compound data structure �e�g�� Cons s t��
and causes both parts of the compound �e�g�� Cons s

and t� to be updated� while the �nal case is used to
terminate at atoms of data� They can match di�erent
type of structure in each recursive call� For example�

updatePops incrementBy�Percent
Pop x�� Pop x��

evaluates to �Pop x	�	��	�Pop x��	��	� but

updatePops incrementBy�Percent �
Pop x���Pop x��

evaluates to ��Pop x	�	��	��Pop x��	��	� even though
the populations appear on di�erent levels of the data
structure� Thus updatePops is path polymorphic since
it can adapt to di�erent data access paths�

Examining the program above� it is clear that the
constructor Pop is playing a completely passive role�
and so is ripe for parameterization� De�ne

let �update�lin�a�	b��	�a�	a��	d�	d� nP f x �
match x with
� P z �	 P �f z�
� y z �	 �update P f y� �update P f z�
� z �	 z��

so that function updatePop can now be de�ned by
update Pop�

The program update arises naturally from our ear�
lier examples� but has a number of unusual technical
features� First some conventions� capitalized vari�
ables such as P are always free unless explicitly bound
as in nP �to be thought of as �P�� Thus� the pattern
P z contains a free variable P and a binding variable
z� Evaluation of update Pop will substitute Pop for P

so that the pattern above becomes Pop z� That is�
update is pattern polymorphic since it takes a parame�
ter used to build patterns�

Some care is required when substituting into pat�
terns� so such variables are required to be linear as in�
dicated by the linear type lin�a�b�� meaning that the
function of type a�b uses its argument exactly once�
Linear terms are explained in detail in �Jay ����b��
For this paper� we will pretend that all linear terms
are constructors though there are important alterna�
tives� So for now lin�a�b� is the type of a constructor
with an argument of type a for a data structure of
type b� For example� Pop has type lin�float�popul��

Similarly� we can de�ne a function check that sim�
ply checks that some property holds for some argu�
ment of the given constructor� by�

let �check�lin�a�	b��	�a�	bool��	d�	bool� nP f x �
match x with
� P z �	 f z
� y z �	 �check P f y� �� �check P f z�
� z �	 False��

where True� False are two constant constructors of
type bool as usual and �� is logical�or�

Suppose now that the goal is to update the popu�
lations of only cities� while leaving other populations
unchanged� For example� consider XML geographical
data conforming to the schema�

�xs�element name��cityname� type��xs�string��	
�xs�element name��popul� type��xs�decimal��	

���� unit� thousand people ��	
�xs�element name��river� type��xs�string��	

�xs�element name��city�	
�xs�complexType	�xs�sequence	

�xs�element ref��cityname��	
�xs�element ref��popul��	
�xs�element ref��river� minOccurs����

maxOccurs��unbounded��	
��xs�sequence	��xs�complexType	

��xs�element	

�xs�element name��provname� type��xs�string��	
�xs�element name��province�	

�xs�complexType	�xs�sequence	
�xs�element ref��provname��	
�xs�element ref��popul��	
�xs�element ref��city� minOccurs����

maxOccurs��unbounded��	
��xs�sequence	��xs�complexType	

��xs�element	

�xs�element name��countryname� type��xs�string��	
�xs�element name��country�	

�xs�complexType	�xs�sequence	
�xs�element ref��countryname��	
�xs�element ref��popul��	
�xs�element ref��province� minOccurs����

maxOccurs��unbounded��	
��xs�sequence	��xs�complexType	

��xs�element	

In an implementation of our approach� a validat�
ing XML parser is needed to transform XML data into
bondidata format for processing� Assuming such pars�
ing� the above schema can be denoted as bondidata
structures�

datatype cityname � CityName of string��
datatype popul � Pop of float��
�� unit� thousand people ��
datatype river � River of string��
datatype city � City of cityname � popul � list river��

datatype provname � ProvName of string��
datatype province � Prov of provname � popul � list city��

datatype countryname�CountryName of string��
datatype country � Country of

countryname � popul � list province��

Here � represents product type with the usual func�
tional programming convention� and constructor Pair

of a and b represents pairing data items� �x� y� is
syntactic sugar for Pair x y� and tuple �x� y� z� ����

is nested pairs� For programming convenience� we al�
ways encode children of an XML element as nested
pairs as in the above declarations� e�g� a city element
for Kingston are encoded as�

City��Kingston��Pop ������
�St�Lawrence River���

Now applying update Pop f to a piece of geograph�
ical data will act on all of the city� province and coun�
try populations indiscriminately� However� the func�
tion

update City �update Pop f�

gives the desired behavior� Although correct� this is
not quite satisfactory� since it requires two updates�
More complicated access patterns typical of XML will
then require three or more updates� and there is still
the challenge of checking side�conditions� e�g�� that
the city is in Canada�

The solution is to construct an abstract structure
type for the complex patterns that represents all of
the information about how to access the data items�
In simple cases this will be given by a complete hierar�
chical path� but in general the access information will
be partial� For example� it is not necessary to know
everything above a city to update its population� and
most information along the path down to that city is
not interesting� Let us call such a partial description
of a path a signpost since it guides the way to target
data items�

For the purposes of encoding the motivating ex�
amples� let us consider three sorts of signposts� It
will be easy to add more sorts as needed� A goal is
a constructor whose argument is the singular pattern
of the target item of interest� A stage is a constructor
that constructs a signpost from a leading simple pat�
tern of the path and the rest of the path� A detour is
a path that has a side�path with a �ltering condition
to check before continuing on the main path� Thus
we obtain a structure�

datatype signPost
at a b c �
�Goal of lin�c�	b�
at �a��a�� �b��b�� c �
�Stage of lin �a��	b�� and signPost a� b� c
�Detour of detourPath a� b� and signPost a� b� c��

Here � at� indicates pattern matching with di�erent
forms of the type arguments� signPost takes three
type arguments� the �rst two of which can be pairs of
types� detourPath is a helper structure to represent a
�ltering condition in a signPost�

datatype detourPath
at a b �
� DetourGoal of lin�a�	b� and �a�	bool�
at �a��a�� �b��b�� �
� DetourStage of lin�a��	b�� and detourPath a� b���

signPost and detourPath are similar in form to data
structures such as list� but they are not data struc�
tures any more because they contain pattern type
lin�a�b�� which is not data type� We call them pat�
tern structures�

Note that in signPost an extra parameter type
c is used to expose the content type of the ��
nal element� the goal� for programming conve�
nience� It enables general programming of compu�
tation with such paths as parameters� For exam�
ple� to search for all populations with the partial
path ����country���city���popul�� the compound pat�
tern can be encoded as�

let popPath� � Stage Country �Stage City �Goal Pop����

and to search for all populations of Canadian cities�
we use Detour�

let dpath � DetourGoal CountryName ����� �Canada����
let popPath� � Stage Country

�Detour dpath �Stage City �Goal Pop�����

Note that ���� is a boolean function of type
a�b�bool� which takes two arguments� so that �����

�Canada�� is a boolean function of type a�bool�

Now function check can be modi�ed to act on
detourPath� and update be modi�ed to act on signPost�
as follows�

let �checkd��detourPath a b��	d�	bool� p x �
match p with
� DetourGoal nP f �	 check P f x
� DetourStage nP p� �	 check P �checkd p�� x��

let �updates��signPost a b c��	�c�	c��	d�	d � s f x �
match s with
� Goal nP �	 update P f x
� Stage nP s� �	 update P �updates s� f� x
� Detour dp� s� �	

if �checkd dp� x� �� the detour ��
then updates s� f x

else x��

Note that function updates ��s� stands for signpost�
invokes the simple version update for singular pat�
terns� It uses pattern matching to explore the struc�
ture of a given path pattern� that is� a signPost� If
the path pattern is a singular pattern� update is in�
voked directly� If the path pattern is a Stage� update

is used to search for the preceding singular pattern�
then from the matching points the search for the rest
of the path pattern continues� checkd also acts in a
similar way�

If the path pattern given to function updates is a
Detour� the function checks whether the detour path
got a match and whether the content of the match
satis�es the carried boolean function� If so� the func�
tion goes back to the starting point and continue the
search for the rest of the main path pattern� If the
detour does not get a match or the carried boolean
function fails� the function returns unchanged data�
Now it is straightforward to increment all populations
of all Canadian cities� if data is the data repository
containing geographical information�

updates popPath� incrementBy�Percent data

Note that this executes independently of the presence
of provinces�

��� Folding

Given bondi�s support for parameterization over data
structures and data access patterns� we can design
other general functions in much the same way as
map	� update and updates� In this subsection we de�
�ne functions for the folding operation� which is the
basis of many common operations on heterogeneous
data structures� We also show by an example the
simplicity of using the folding functions in XML data
processing�

A function foldleft	 can be de�ned �Jay ����c��
similar to map	� as�

foldleft�� �a�	b�	a� �	 a �	 c b �	 a

It traverses a homomorphic structure of type �c b�
with all elements being only one type b� applying a
given function to the values of all elements it �nds to

modify the given value of type a� For example� given
a de�nition of integer addition function add� the ap�
plication foldleft	 add � AListOfInt produces the sum
of all integers in a list of type �list int��

In the same way that update handles singular pat�
terns appearing in various contexts of arbitrary het�
erogeneous data structures� a generalized foldleftp
for heterogeneous structures can be de�ned� again
simply using three�case pattern matching�

let �foldleftp�lin�a�	b��	�e�	a�	e��	e�	d�	e� nP f x w �
match w with
� P z �	 f x z
� y z �	 foldleftp P f �foldleftp P f x y� z
� z �	 x��

A more sophisticated version that folds elements
satisfying a complex path pattern � signPost� looks
like this�

let �foldlefts��signPost a b c��	�e�	c�	e��	e�	d�	e� s f x w �
match s with
� Goal nP �	 foldleftp P f x w
� Stage nP s� �	 foldleftp P �foldlefts s� f� x w
� Detour dp� s� �	

if �checkd dp� w�
then foldlefts s� f x w

else x��

Many essential XML processing operations can be
expressed as using foldleftp and foldlefts� For ex�
ample� extracting information from XML data based
on a search pattern and a �lter is the most common
kind of XML query� It can be easily implemented by
foldlefts�

Suppose we want a list of names of cities whose
population is bigger than ��� �in units of thousands��
This query consists of three components� the pattern
to search for� ���city���cityname the data �lter� pop�
ulation � ��� and the way to construct the result�
The search pattern is easy to describe by an instance
of a signPost� and the �lter is a boolean function car�
ried by a Detour pattern�

let dpath � DetourGoal Pop ��	� ��������
let namePath � Stage City �Detour dpath �Goal CityName����

Collecting matching items into a �nal result is a
foldlefts operation in bondi� An accumulating func�
tion will be given to the folding function as a param�
eter� to accumulate matching items� Users can use
di�erent accumulating functions for di�erent ways of
constructing the �nal result� If the result is to be a
list of strings for city names� i�e�� of type list string�
the accumulating function can be as simple as�

let �listInsert� list a �	 a �	 list a� x y �
match x with
� Nil �	 Cons y Nil
� Cons z w �	 Cons y �Cons z w���

Of course more sophisticated accumulating functions
can be designed� for example to check for duplicates�
or to construct results into a structure other than a
�attened string list�

Given the pattern and accumulating function� the
task is straightforward �again� data is the geographi�
cal data repository��

let nl � foldlefts namePath listInsert
 � data��

Many other essential XML processing operations�
such as extraction while preserving or restructuring
original structures� indexing and sorting� are basically
folding operations as well and can be implemented
in a similar way using the folding functions� More
examples are available in one of our earlier reports
�Huang� Jay 	 Skillicorn ����b��

Designing highly�parametric general functions in
bondi� such as update� updates� foldleftp and
foldlefts� is as simple as pattern�matching several
cases� Such simple functions allow us to perform a
large class of XML search and transformation oper�
ations within a general�purpose programming envi�
ronment easily� These functions can be formalized as
library components of bondi� The only task left for
users is to map complex search patterns into instances
of appropriate pattern structures such as signPost�
and this may also be automated�

� More Complex Patterns

Besides designing new generic functions� another way
to extend XML processing capability is to include
more kinds of patterns� In the previous section we
de�ned a pattern structure� signPost� which is able
to express a large class of common vertical patterns�
To handle more complex patterns� we can add more
constructors to signPost� or even de�ne new pattern
structures as appropriate� In bondi this is a program�
ming task� in contrast to other existing XML pro�
cessing approaches where new kinds of patterns need
new language features at best� and are impossible at
worst�

We have experimented how to extend our ap�
proach to handle complex patterns in XPath style�
vertical regular�expression style� and horizontal
regular�expression style� These patterns have been
considered individually in other existing approaches
but have never appeared fully together in one lan�
guage� Our extensions for these new patterns only
need declarations of new pattern structures and
changes to programs processing data using these
structures� None of our extensions require any
changes to the language bondi itself�

For example� we can declare a pattern structure to
represent regular expressions�

datatype regexp
at a b �
� Single of lin�a�	b�
� Kstar of lin�a�	b�
at �a��a���b��b��
� Concat of regexp a� b� and regexp a� b�
� Altern of regexp a� b� and regexp a� b���

and use this structure to encode patterns of horizontal
regular�expression style� We can design functions for
search� update and folding of target data matching
such patterns�

Further details about handling complex patterns
in XPath style� vertical regular�expression style and
horizontal regular�expression style can be found in the
report �Huang� Jay 	 Skillicorn ����a��

� Conclusion

The strongly�typed general�purpose programming
language bondi� based on Pattern Calculus� treats
structures and patterns as �rst�class objects� and al�
lows a generalized form of pattern matching with less
restricted typing rules� These increases in expressive�
ness create new forms of polymorphism� especially
path polymorphism and pattern polymorphism� Path
polymorphism enables traversal of data with hetero�
geneous structures� automatically adapting to di�er�
ent data�access paths on the �y in a well�typed man�
ner� Pattern polymorphism allows data�access pat�
terns to be passed as well�typed parameters� and be
composed into complex pattern structures�

With the new expressive power� we have shown
that we can de�ne general programs using gener�
alized pattern matching and parameterizing struc�
tures and patterns� implementing a large class of
essential XML processing operations� Compared
with those from other existing XML processing ap�
proaches� bondi programs are simpler and more mod�
ular due to higher parameterization and more free�
dom for pattern matching� These programs are also
safer because static typing is enforced not only on
data items and functions� but also on structures and
patterns�

With the new expressive power� we have also
shown that we can easily create new pattern struc�
tures or expand existing ones to handle new kinds of
complex patterns in XML manipulation� These pat�
tern structures can be treated as freely as data struc�
tures� They can be constructed� pattern�matched�
traversed at runtime� and passed as values to param�
eters� making programming with them very �exible
and simple� They carry all necessary type informa�
tion� enabling static type veri�cation for the programs
that use them� Extensions to new kinds of patterns
require only programming not� as in the other existing
approaches� language design or revision� This makes
our approach highly extensible� and applicable for a
richer set of complex patterns than other XML query
and transformation languages�

Given that our approach manipulates XML within
one programming language with simplicity� strong
type�safety and high extensibility� it is easy to inte�
grate back�end data�access programming with front�
end user�interface programming in a single system�
The approach thus represents the �rst steps to solv�
ing the impedance mismatch problem�

Of course� there is still a long way to go to use
this approach in practical applications� A lot of im�
plementation e�ort is required and some issues are
still open for further investigation�

� It is not expected that XML data users has to
do the bondi programming� They will even not
need to know about patterns and pattern struc�
tures� A library for common XML computations
such as search� update and folding can be built�
Pattern structure declarations and constructions
could be automated� and XML� and XPath�style
expressions could be adopted as syntax sugar�

� Currently only an interpreter for bondi is avail�
able� Given the high level of language abstrac�
tion and polymorphism� it is desirable to compile
bondi programs into a format that can be opti�
mized for performance�

� Examples given in this paper assume that XML
data are transformed into bondi data structures
in memory� When facing large�scale data� al�
though bondi data structures could also be stored
in external repositories� it is not yet clear how to
optimize the data access for the performance of
the repositories�

References

Abiteboul� S�� Quass� D�� McHugh� J�� Widom� J� 	
Wiener� J� �
����� �The Lorel query language for
semistructured data�� Int� J� on Digital Libraries
��
�� �� ���

Bancilhon� F� 	 Maier� D� �
����� Multi�language
object�oriented systems� New answers to old
database problems� in K� Fuchi 	 L� Kott� eds�

�Future Generation Computers II�� Amsterdam�
North�Holland�

Benzaken� V�� Castagna� G� 	 Frisch� A� �������
Cduce� an xml�centric general�purpose language�
in �Proc� of ���� ACM SIGPLAN Int� Conf� on
Functional Programming�� ACM Press�

Berglund� A�� Boag� S�� Chamberlin� D�� Fernndez�
M�� Kay� M�� Robie� J� 	 Simon� J� ������� �Xml
path language �xpath� ��� � w�c working draft��
www�w��org�TR������WD	xpath��	������

��

Bierman� G�� Meijer� E� 	 Schulte� W� �������
�The essence of data access in c��� research�
microsoft�com��emeijer�Papers�popl�pdf�

Boag� S�� Chamberlin� D�� Fernandez� M�� Florescu�
D�� Robie� J� 	 Simeon� J� ������� �Xquery
���
An xml query language � w�c working draft��

Clark� J� �
����� �Xsl transformation�xslt�� Version

�� � w�c recommendation��

Clark� J� 	 DeRose� S� �
����� �Xml path language
�xpath�� Version
�� � w�c recommendation��
www�w��org�TR�xpath�

Cluet� S�� Delobel� C�� Sim�eon� J� 	 Smaga� K�
�
����� Your mediators need data conversion!�
in �ACM SIGMOD International Conference
on Management of Data�� Seattle� Washington�
USA� pp�
��
���

Deutsch� A�� Fernandez� M�� Florescu� D�� Levy� A� 	
Suciu� D� �
����� �A query language for XML��
Computer Networks ���

���

��

���

Harren� M�� Raghavachari� B�� Shmueli� O�� Burke�
M�� Sarkar� V� 	 Bordawekar� R� ������� XJ� In�
tegration of XML processing into Java� in �Proc�
WWW������ New York� NY� USA�

Hosoya� H� 	 Pierce� B� ������� �Xduce� A typed
XML processing language�� ACM Transactions
on Internet Technology �����

�
���

Huang� F� Y�� Jay� C� B� 	 Skillicorn� D� B� �����a��
Dealing with complex patterns in XML process�
ing� Technical Report ��������� School of Com�
puting� Queen�s University� www�cs�queensu�
ca�TechReports�Reports�����	���pdf�

Huang� F� Y�� Jay� C� B� 	 Skillicorn� D� B�
�����b�� Programming with heterogeneous struc�
ture� Manipulating XML data using bondi�
Technical Report ��������� School of Comput�
ing� Queen�s University� www�cs�queensu�ca�
TechReports�Reports�����	���pdf�

Jay� C� B� �����a�� �bondi web�page�� www	staff�it�
uts�edu�au��cbj�bondi�

Jay� C� B� �����b�� �Higher�order pat�
terns�� www	staff�it�uts�edu�au��cbj�
Publications�higherorderpatterns�pdf�

Jay� C� B� �����c�� �The pattern calculus�� ACM
Trans� Program� Lang� Syst� ������ �

 ����

Jay� C� B� �����d�� �Uni�able subtyp�
ing�� www	staff�it�uts�edu�au��cbj�
Publications�unifablesubtyping�pdf�

Meijer� E�� Schulte� W� 	 Bierman� G� ������� Uni�
fying tables� objects and documents� in �Proc�
DP�COOL ������ Uppsala� Sweden�

Robie� J�� Lapp� J� 	 Schach� D� �
����� �Xml query
language �XQL��� www�w��org�TandS�QL�QL��
pp�xql�html�

Wadler� P� ������� �Links�� homepages�inf�ed�ac�
uk�wadler�papers�links�links	blurb�pdf�

