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Abstract. This  paper discusses a methodology to manage wireless sen- 
sor networks (WSN) with self-organising feature maps, using co-operative 
Extended  Kohonen Maps (EKMs). EKMs have been successfully demon- 
strated in other machine-learning contexts such as learning sensori-motor 
control and feedback tasks.  Through  a quantitative  analysis of the algo- 
rithmic process, an indirect-mapping EKM can self-organise from a given 
input space, such as the WSN’s external factors, to administer the WSN’s 
routing and clustering functions with a control parameter space. 

Preliminary  results demonstrate  indirect  mapping  with  EKMs  pro- 
vide an economical control and feedback mechanism by operating in a 
continuous sensory control space when compared with direct mapping 
techniques.  By  training  the  control  parameter,  a  faster  convergence is 
made  with  processes such  as  the  recursive least  squares method.  The 
management of a WSN’s clustering and routing procedures are enhanced 
by the co-operation of multiple self-organising EKMs to adapt to actively 
changing conditions in the environment. 
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1    Introduction 
 

The  governance of wireless networks, particularly with WSNs,   is important in 
managing the routing and clustering mechanisms in a dynamic and volatile en- 
vironment [2].  Unlike  static  wired networks, the reliability and guarantees on 
communication stability can never be assured. Furthermore, the dependency on 
nodes to follow through on message relaying means that the failure of one node 
may lead to an entire branch losing total connectivity.  Another main aspect is 
security,  as the  security within the  network can  be prone to  denial-of-service 
attacks or technological espionage such as ‘packet sniffing’. These particular do- 
main concerns, among many more which are inherent with wireless networking, 
require the wireless network structure to adapt to changing environmental con- 
cerns to ensure the network’s continual stability and robustness [10]. 

As  with all open systems, wireless  sensor network communications is inher- 
ently dynamic, such that  the focus in achieving optimum conditions in a given 
environment is  to  determine the  efficient routing  path  through the  network. 

 
. 
 

mailto:zenon.chaczko@uts.edu.au
mailto:zenon.chaczko@uts.edu.au
mailto:christopher.chiu@uts.edu.au


 
 

Modelling the domain-level conditions in a WSN  is complex in nature,  with a 
multitude of variables that influence the optimum routing condition. Transform- 
ing the multi-dimensional concerns to a single map is a formative approach to 
reduce the problem space into a single-dimensional  map,  in which the routing 
conditions can be established for the network. 

The proposition for an alternate feature map approach is to be used for wire- 
less sensor network management concerns, through co-operative EKMs with in- 
direct mapping [8]. An  indirect-mapping EKM approach is novel to existing 
direct-mapping methods by utilising the following techniques [11]: 

 

–  Direct-Mapping Approaches 
Direct-mapping involves creating a Self-Organising Feature Map (SOM) that 
maps a sensory input directly to the node’s stimuli in the wireless network. 
This would include parameters such as signal-to-noise ratios, battery charge 
levels and available bandwidth. Therefore, Direct-mapping methods map the 
continuous sensory stimuli space to discrete clustering or routing directives 
for each node, as seen from a different perspective. 

–  Indirect-Mapping Approaches 
Indirect-mapping requires mapping the continuous sensory stimuli space to 
the node clustering or routing directive as an end result. The determination 
of the quality of clustering and routing approaches can be achieved through 
evaluating the cluster set data with validity matrices such as Dunn’s Separa- 
tion Index, Calinski-Harabasz and Davies-Bouldin’s indexing methodologies 
[3]. Hence,  the indirect-mapping approach maps sensory stimuli indirectly 
to a node clustering or routing directive with the utilisation of control pa- 
rameters. 

 
 

2    Examining Co-operative EKMs 
 

The  directives given to a node in a wireless sensor network’s control space is 
formed as  a  discrete set  of  commands to  be  used by  reinforcement learning 
algorithms [7,11],  or at  the minimum level, pre-defined static  rules. In  recent 
years, autonomous agent research in dynamic systems theory and reinforcement 
learning propose the operation of such directives in a continuous control space [7], 
to allow the indirect-mapping method to provide finer directive decisions than 
in direct mapping.  Focussing on the flexibility and precision in sensory stimuli 
control is imperative in a wireless network domain where external environmental 
factors directly affect the network’s robustness and reliability. 

In  traditional  contexts,  SOM   or EKM in passive learning control is estab- 
lished and documented by Ritter  [11]. However, the inconsequential problem of 
combining multiple SOMs  or EKMs for sophisticated system control is a poten- 
tial area of study.  If the sensory control is insufficiently clarified,  the routing or 
clustering decision made by a wireless node may be unexpected or undesirable, 
leading to a potential inertia to route data back to the sink or wireless gateway 
[7,8]. When  SOMs  or EKMs are established in the weighted-sum ensemble, a 
similar problem of inertia also takes place. 



 
 

To solve the problem of routing inertia, the combinational approach with co- 
operative EKMs will be applied to wireless sensor networks [8]. The co-operation 
and  competition  of  multiple  EKMs  that  similarly  self-organise can  enable a 
non-holonomic wireless node to  optimise its  routing and clustering choices in 
unexpected changes in its environment. In contrast, a node managed by the 
weighted-sum ensemble method will approach a routing inertia, even though the 
wireless network also implements a continuous sensory control space. 

The environmental concern for a given wireless network domain can be sum- 
marised in the following statement tasks shown in Figure 1 on the following page; 
of which the environmental concerns deal with external factors such as sensory 
stimuli and node conditions [9]: 

 
–  For an initial state described by the input vector u (0) in input space U ; 
–  Adapt  a  new clustering or routing  sequence of  control vectors c (t) , t  = 

0, . . . , T − 1 in the sensory control space C ; 
–  With  the resultant goal state elaborated by u (T ) ∈ U that adapts the net- 

work structure for a desired ob jective or target state. 
 

The following algorithmic categories have been considered for an adaptive wire- 
less sensor network environment which suits the above statement tasks: 

 
–  Feature Mapping 

By  using a  SOM   proposed by  Kohonen [5],  such as the  Extended  Koho- 
nen Map (EKM) [12], the map self-organises to partition continuous sensory 
space into discrete regions. The feature map’s generalisation capability arises 
from its self-organisation during training [6], such as when every node in the 
WSN  is effectively trained to map a localised sensor region.  This  approach 
increases the sensory representation’s resolution in the frequently encoun- 
tered stimuli regions [6]. This conduct reflects biological sensory perceptions 
where frequent practice leads to better predictive capability of common, an- 
ticipated events. 

–  Multivariate Regression 
An alternative approach formulates the statement task as a non-linear multi- 
variate regression problem. Uninterrupted mapping from U to C is done by 
training a multilayer perceptron (MLP), which offers possible generalisation 
capability  [3,10,12].  The  main disadvantage prior to  training  the  network 
is that  training samples must be collected for each time step ‘t’ to define 
quantitative error signals. As this sampling process can be very tedious and 
computationally  difficult,  it  is solved with  the  reinforcement learning ap- 
proach by providing a qualitative success or failure feedback only at the end 
of the executing control sequence [4]. 

 
 

3  Experimental Framework 
 

The  experiment to evaluate the effectiveness of co-operative EKMs on WSNs 
is   conducted   using   the   MATLAB   environment   originally   developed  by 



 
 

 
 

 
 

 
Fig. 1. Diagram  of Co-operative  EKM Functions 

 
Chaczko, et al in 2003 [1]. The simulation framework, depicted in Figure 2 on the 
current page, allows for convenient monitoring and tracking of WSN  events by 
programing event tra jectories in the network field. The experiment is completed 
with the following methodology: 

 
1.  A  population of n nodes is distributed randomly using the Fast  Mersenne- 

Twister method,  in a two-dimensional network area of 100m x 100m.  The 
total node population sampled include: 

 
(a)  100;                           (e) 2000; 
(b)  250;                           (f ) 3000; 
(c)  500;                           (g) 4000; 
(d)  1000;                         (h) 5000 nodes. 

 
2.  An  event tra jectory is executed from a point in the network area; of which 

the test path can take the following courses: 
(a)  Linear  Path 

A  linear path consists of an event tra jectory where the entry and exit 
point from the network area consists of a constant gradient level. 

(b)  Arc-formation Path 
An  arc-formation path consists of an event tra jectory where the entry 



 
 
 

 
 
 

Fig. 2. Event  Detection  and Localisation  Simulator  Screenshot 
 

 
 

and exit point of the network area will either be increasing or decreasing 
in the level of gradient, such that it forms a segment of a circle. 

(c)  Pseudo-random Path 
A  pseudo-random path  using the  Mersenne-Twister method combines 
elements of 2(a) and 2(b) at  various points throughout the tra jectory, 
until it reaches the exit point of the network area. 

3.  The algorithm selects the route from the node in range of the approximate 
tra jectory to be established to the sink; such that  the closer the algorithm 
is to calculating the event path,  the more optimum the route will be to 
establish successful communications to  the  sink.  The  two algorithms that 
are assessed: 
(a)  Linear  Approximation 

Linear approximation estimates the approximate tra jectory to determine 
the route path using general Euclidean geometry to calculate the final 
point of the event, based on the current nodes that  are in contact with 
the event and tracing a path between the previous and current nodes. 

(b)  Co-operative EKMs 
Co-operative EKMs use an indirect-mapping SOM  map to train the con- 
trol parameters in which to converge at the final tra jectory point, in such 
a fashion to actively train the neural network to seek positive outcomes 
in reaching a final route from the tra jectory’s path to the sink. 

4.  The experiment is executed for 1000 iterations to calculate the mean rate of 
successful identification of the tra jectory’s target point. 



 
 

(a)  A  successful identification is where the final point is within a 98% con- 
fidence interval of the entire network area. 

(b)  Therefore, a maximum margin of error is determined to be an area of 
2m x 2m of where the final approximate point is calculated. 

 
 

4    Results 
 

The results shown in Figure 3 on this page demonstrate that  in comparison to 
linear approximation and co-operative EKMs, the greatest promise in the final 
results can  be achieved when pseudo-random tra jectory tracking  is required. 
While linear approximation of pseudo-random tra jectories are expected to per- 
form inadequately due to the inflexibility of the algorithm to accept large degrees 
in variation or change in the final result, co-operative EKMs demonstrate a no- 
ticeable improvement in the identification rate over linear approximation. 

The analysis of co-operative EKMs in Table 1 on the next page, when assessed 
in terms of performance of pseudo-random tracking, requires more analysis into 
the algorithmic process. In particular, the thresholds established for determining 
positive or negative learning reinforcement is an issue that needs to be evaluated 
for an in-depth assessment. The tolerance levels used to calculate the thresholds 
is a delicate concern, as subtle variations in tolerance may yield undesirable 
results. As  a case in point,  reducing tolerance levels too far will result in the 
inflexibility of the algorithm to adapt to changes the event tra jectory; the corol- 
lary is that generous tolerance levels will yield undesirable tracking results when 
noise or faulty nodes produce invalid sensory data. 

As  a  consequence, the  potential  of  Co-operative  EKMs  to  identify  events 
within a  wireless sensor network show great promise; but  as with all  passive 
learning heuristic methods, a heuristic ensemble approach is required to train 

 
 

 
 

 
Fig. 3. Accuracy  of Target  Identification:  Experimental  Results 



 
 
 

Table  1. Comparative Assessment and Evaluation 
 

 Linear Approximation Co-operative  EKMs 
Quantitative 
Assessment 

Linear approximation  is limited 
with small node numbers as the 
sparse distribution  is a poor fit 

to the estimated euclidean 
geometry path 

Demonstrate  an indirect-
mapping  EKM can provide 

detection to optimise for local 
(obstruction)  and global (target  

seeking) concerns 
Qualitative 
Assessment 

Linear approximation  cannot 
compensate for path obstruction 

or unpredictable movement 
without further algorithmic 

improvement 

Preliminary  results show a 
smoother and finer tracking 

mechanism to monitor events in 
real-time,  compensating for 

random events [8,10] 
 
 
 

the algorithm to evaluate and determine the tolerance thresholds that are most 
suitable for the current conditions. The  implementation of co-operative EKMs 
with alternative heuristic algorithms such as genetic programming will be con- 
sidered to evaluate improvement in the mean identification rate. 

 
 

5    Conclusion 
 
 

An  innovative method of adaptive wireless sensor network governance respon- 
sibilities with co-operative EKMs  has been established through evaluation; the 
preliminary results demonstrate indirect-mapping EKM generates more profi- 
cient wireless network governance decisions than  other local learning methods 
like direct-mapping EKM. With  recursive least squares, the control parameters 
of the  indirect-mapping EKM can be trained to  allow rapid convergence and 
improved optimisation when compared to the gradient descent. 

The  experimental results show a  positive determination of the positive ca- 
pability  of co-operative EKMs  in wireless sensor network routing.  The  notable 
variability in the identification rate is a result in the need to improve the quality 
of training mechanisms to reinforce positive selection processes, so the aggrega- 
tion of the final routing selection is optimal for the given scenario. In addition, the 
current data-sets in future experimental assessments will be based on physical 
test-bed environments, in order to create a real-world scenario for quantitative 
evaluation of target identification and routing. 

While  linear and arc tra jectories can be easily predicted using co-operative 
EKMs, further experimental study  is required to  improve the  routing identi- 
fication results of pseudo-random tracking using the technique of unsupervised 
learning. There are limitations to the degree of success that can be achieved with 
passive learning methods, before active supervision is necessary to train the sys- 
tem to seek patterns in target behaviour and act  accordingly using weighting 
functions. 
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