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3D I-SLSJF: A Consistent Sparse Local Submap Joining Algorithm ér
Building Large-Scale 3D Map

Gibson Hu, Shoudong Huang and Gamini Dissanayake

Abstract— This paper presents an efficient and reliable algo- and then combined into a large-scale global map. However,
rithm for autonomous robots to build large-scale three dimen-  the consistency of the map estimate using EKF/EIF based
sional maps by combining small local submaps. The algorithm approach needs to be carefully analyzed [2][11].

is a generalization of our recent work on two dimensional map R fl fficient h timizati b d
joining algorithm — lIterated Sparse Local Submap Joining ecently, some eflicient graph opumization based ap-

Filter (I-SLSJF). The 3D local submap joining problem is Proach [6][10] are developed using the sparse graph represe
formulated as a least squares optimization problem and solved tations of the SLAM problem. Optimization based approach
by Extended Information Filter (EIF) together with smoothing  can provide more consistent estimate as compared with
and iterations. The resulting information matrix is exactly the filter based approach. However, a major issue of these

sparse and this makes the algorithm efficient. The smoothing hes is that the state di L hiah b
and iteration steps improve the accuracy and consistency of APProacnes is that the state dimension IS very nigh because

the estimate. The consistency and efficiency of 3D I-SLSJF is @ll the robot poses are included [6][10][14][17].
demonstrated by comparing the algorithm with some existing Very recently, we proposed the Iterated Sparse Local

algorithms using computer simulations. Submap Joining Filter (I-SLSJF) algorithm [13]. In I-SLSJF
the map joining problem was formulated as a least squares
l. INTRODUCTION problem and was solved by using multiple iterations at each
For an autonomous robot to navigate in an unknowmap fusion step. Two dimensional large-scale simulatiah an
environment, it is necessary to build up the knowledge afxperimental results show that the estimation results firom
the map of the environment and be aware of the locatiocBLSJF is more consistent as compared with that of EKF
of the robot itself within the map. Simultaneous localiaati SLAM [7] or Sparse Local Submap Joining Filter (SLSJF)
and mapping (SLAM) is the process of building a map of ah12].
environment while concurrently generating an estimate for In this paper, the 2D I-SLSJF algorithm [13] is generalized
the location of the robot (also called “robot pose”). SLAMto 3D to provide an efficient and consistent algorithm for
has been an active research topic for the past decade dudatge-scale 3D map building. In order to improve the quality
its numerous applications [1]. of the global map, we propose to use ML to build the
Recently a number of research has been focused on thieeal maps and then use 3D I-SLSJF to join the local maps
dimensional SLAM problems. For 3D SLAM using lasertogether.
or vision sensors, some approaches are “trajectory SLAM” The paper is organized as follows. The process of 3D
where scan/image matching based techniques are usedlaeal map building is stated in Section Il. The idea and
obtain the relative poses between frames and then nonline#eps of the 3D I-SLSJF algorithm is described in Section
optimization is applied to optimize the robot trajectorylll. Simulation results are provided in Section IV. Finally
[4][5][20][15]. The problem of this kind of approaches isSection V concludes the paper.
that the map model and the map uncertainty is not very Il THE 3D LOCAL MAP BUILDING
well presented, and the map is not updated directly using
the observation information. Consistent local maps are needed in I-SLSJF such that
For 3D feature based SLAM, most of the existing a|goconsistent global map can be obtained. In order to improve
rithms are using Extended Kalman Filter (EKF) or Extendedne quality of the local maps, the ML approach instead of
Information Filter (EIF) related techniques [8][19]. TheEKF is used to build the 3D local maps.
algorithms can be made more efficient by gpplying the local The observation and odometry information
map strategies [12][18]. In local submap joining, a seqeenc o ) . , .
of small sized local submaps are built by a SLAM algorithm The observation information describes the relative pasiti

(e.g. EKF SLAM [7] or maximal likelihood (ML) approaé of features with respect to the robot pose at which the
observation is made. Suppose the robot pose is
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1In this paper, the ML approach means to find the maximal likelihoo
of all the robot poses and all the observed feature positiairsg all the denoted as
information available. It is also called Smoothing and MappiBAM) [6]. X, = (l‘i, Yi, zi), (2)



then the relative position between the feature positign C. Marginalize out previous robot poses

and the robot pos&’ is The required format of the local maps for 3D I-SLSJF is
AT (X*,10) (10)
h(Xer) = ROt(amﬁra%") Y | — | Yr (3) S s .
2 2, where X* (the superscript ‘L’ stands for the local map) is

_ _ _ an estimate of the state vector
where Rot(«, 3,) is the rotation matrix.

L L L L
Suppose the observation value is denotedZgsthen the X' = (XX, X)) (11)

observation equation can be written as and I” is the associated information matrix (the inverse
. , , of the covariance matrix). The state vectdr” contains
Zi = MXi, Xo) + i @ the robot final poseX and all the local feature positions
where w; is the observation noise which is assumed to b&{, -, XL,
Gaussian with zero-mean and covariance maltx. Since all the robot poses are included in the state vector
The odometry information describes the relative pose aff ML, the previous robot poses need to be marginalized out
the two consecutive robot poses. Suppose the two posggch that the local map will have the format (10).
are denoted as\! = (xl,yl, zl al,BL4t) and X2 = Since the information matrix of the whole state vector
(22,92, 22, a2, 3%,72), then the relative pose (denoted ad ),z is available in the ML result. The infor-
- - mation matrix corresponding to the staté” in (10) can be
9(X;', X)) = (82r, 6yr, 02r, 6ty 6By, 01 () computed by the Schur Complement of the corresponding

can be obtained as follows. Féx,., §y,, 52, block in Inrr..
Sz 22 " [1l. THE 3D I-SLSJF ALGORITHM
Syr | = Rot(al, gL, AHT 2| — |yt (6) The input to the 3D I-SLSJF is a sequence of 3D local
0z 22 2z} maps each with the format (10). It is assumed that the robot

starts to build local mag: + 1 as soon as it finishes local
map k. Therefore the robot end pose of local miaps the
same as the robot start pose of local niap 1.

Rot(a}, B7,77) = Rot(éa, 36,,8v,)Rot(ay, Br,7,), (T) A, State vector of the global map

For 6o, 883, 6., using the relationship between the ro-
tation matrices

one gets (because the rotation matrix is orthogonal) The coordinate frame of the global map is the same as that
s o o Lo 1 of the first local map. The state vector of the global map are
Rot(bay, 0B, 6v,) = Rot(ay, By, v ) Rot(ey, Bry vy )" created by fusing each local maps together in sequence.
(8) After local mapsl to k are fused into the global map, the
Now the ZYX Euler anglesa,, d,, dv, can be obtained global state vector is denoted &%* (k) (the superscript ‘G’
from the rotation matrixiot(dcv,, 63, 07r) [16]. stands for the global map) and is given by
Suppose the odometry information is denotedds then X (k)
the odometry equation can be written as
= (X1G7"'5ch,;17XIG;a
O = g(X7, X}) + w?. ) XS X s XL
where w? is the odometry noise which is assumed to be XG Lo, XG L XG)
Gaussian with zero-mean and covariance maktix. The et e ke (12)
function g can be obtained by combining (6) and (8). wherex$ . ,,---,X$ .., are the global positions of those

features in local map but not in local mapl. The subscript

‘e’ stands for robots ‘end pose’. When fusing local niapl,
G

The ML approach finds the maximal likelihood of thegnly new featuresX$ , . . 11, XS4 e, and

robot poses and the observed feature positions using all tgs final posex & from the local magk + 1, are added

odometry and observation information available. And thi:@O (12) to form (tkhzl)r?llew global stat&® (k + 1).
process is performed after each step when new information

arrives. This is arguably the best one can do for estimatirg. Local map fusion as a least squares problem

the feature positions and the robot poses. Suppose local map is given by (X]L,IJ-L) and suppose
Due to the Gaussian assumption on the observation agigk features involved in local map are X%... ,Xﬁ in
odometry noises, the ML estimation problem is equivalenfe global map, then the local map state éstirﬂéfecan be
to a least squares formulation [6]. The least squares problgegarded as an observation of the true relative positiama fr
can be formulated using (4) and (9) similar to that in [6]. the robot start posé((G_l to the featuresX, .-, X&
Since both the number of robot poses and the numbgr | ihe robot end posjk’a.e That is ! !
of features involved in the local map are small, ML is 7€ ’
computationally efficient in building good quality local pg Xt = H;(xC(k) + W; (13)

J .

B. Build local map using ML



where H,; (X% (k)) is the vector of relative positions given Algorithm 3 Data association between local mag-1 and

by the global map
g(XjCi’Xg_l)e) Require: gl.obal map andlocal map k+1 .
h(XﬁaX(Gq)e 1: D_etermme the set of potentlally overlapping local maps

Hj(XG) = ] / 2: Find the set of potentially matched features
: 3: Recover the covariance submatrix associated \ff)
hMXG, XG0)e) and the potentially matched features
. L 4: Use statistical data association approach to find the
where h is given by (4) andg is given by (9), andW; match
is the zero-mean Gaussian “observation noise” whose ce-
i v i L __ Ly—1 s G —
variance matrix isP;* = (I7)"" (whenj =1, X{G_;). = Algorithm 4 Smoothing using least squares

(0,0,0,0,0,0)).
So the problem of fusing local magsto & is to estimate
the global stateX“ (k) using all the local map information
(13) forj =1,--- , k. This problem can be formulated as a

least squares problem:

1: Recompute the information matriX(k + 1) and the
information vectori(k + 1)

2: Compute the Cholesky Factorization bfk + 1)

3: Recover the global map state estimat€ (k + 1)

4: Repeat the above process un’ﬁF’(k + 1) converges.

k
min Y (XF— H;(XC (k)" THXF — Hi(X(K))).

XG(k)j:1 J J F. Efficiency and Consistency of I-SLSJF

(14) Since each local map only involves some “nearby objects”
— the features and the robot start/end poses involved in the
C. Overall structure of 3D I-SLSJF local map, the information matrix in 3D I-SLSJF is exactly

The details of 3D I-SLSJF is similar to that of 2D I-SLSJFsparse [12][13]. .
[13]. The main steps of the algorithm are listed below. For As pointed out in [13], the main reason why I-SLSJF

the details of each step, please refer to [13] and [12]. is more consistent as compared with SLSJF is because
The overall structure of the algorithm is presented i$moothing and iterations are used and the Jacobians are
Algorithm 1. evaluated at the final estimate. This avoids the scenarios
where the Jacobian with respect to the same feature/pose be

Algorithm 1 Overall structure of 3D I-SLSJF evaluated at different estimate data, which is one of themaj

causes of inconsistency for EIF/EKF SLAM algorithms [11].
In fact, the state estimate obtained in I-SLSJF is the optima
solution of the least squares problem (14).

1. Set local mapl as theglobal map
2: Fork =1:p—1 (pis the total number of local maps),
fuselocal map k + 1 into the global map

3: End IV. SIMULATION RESULTS

) ) ] In this section, simulations results are presented to-illus
The steps used in fusing local mépt- 1 into the global  (4te the consistency and efficiency of the 3D I-SLSJF over
map are listed in Algorithm 2. EKF SLAM and ML (the simulation data is available online:
http://services.eng.uts.edu.au/"sdhuang/reseanch.ht

Algorithm 2 Fuse local magk + 1 into global map

1. Data association A. Simulation results using a small data set

2: Initialization using EIF This relatively small data set is used to compare the
3: Update using EIF consistency of three different algorithms — 3D [|-SLSJF,
4. Use least squares to do smoothing when necessary EKF SLAM and ML.

The 100m x 100m x 15m simulation environment contains
a total of 1125 features distributed uniformly intd layers.
D. Data Association The robot starts from the center of this environment and

o o _ moves in a square shaped trajectory at the same time pivoting
Data association here refers to finding the features in locg| the » axis. The trajectory has a total ab0 steps. The

mapk + 1 that are already included in the global map andqp ot is aple to observe previous features on its path which
their corresponding indices in the global state vectoralt ¢ 4 1ows for loop closure, as shown in Fig. 1(a).

be performed using the same procedure as that in SLSJF [12]We assume the robot can observe all features within a

as described in Algorithm 3. distance of20m in front of it with a viewing angle+90
degrees. The observation data is generated by adding Gaus-
sian noise on the relative 3D position between the robot pose
The steps for smoothing using the least squares methadd the observed features. Subsequently the odometrysdata i
are listed in Algorithm 4. obtained by adding noise on the relative pose between two

E. Smoothing using least squares



TABLE |
NEESOF THE MAP ESTIMATES FROM DIFFERENT ALGORITHMS USING
THE 100 STEPS DATA SETS
ODOMETRY NOISE diag(0.5,0.5,0.5,0.1.0.1,0.1);
OBSERVATION NOISE diag(0.01,0.01,0.01)

Fig. 2(b) shows the 3D map obtained by ML. For 3D I-
SLSJF,44 small sized local maps are built by ML using the
odometry and measurement information. Fig. 2(c) shows XY
top view generated by fusing th&l local maps using 3D
I-SLSJF. It can be seen that the feature position estimates

simulationrun ML 3D I-SLSJF EKF _95% x* gate computed by 3D I-SLSJF methods are very close to the
1 57.95 108.41 52567 277.14 o ! o
2 54.03 138.74 341320 27714  true feature positions. Fig. 2(d) shows the sparse infaomat
3 51.89 157.94 42100 277.14  matrix from the 3D I-SLSJF result. There ar82866 non-
4 55.12 231.84 32379 277.14 2 _ —
: 9579 18093 1097500 57714 2870 elements antl974 — 192866 _.3703810. exactly zero
6 96.63 1009.58 479490 7714 €lements. The sparseness of the information matrix makes
7 129.92 362.84 102980 27714  the 3D I-SLSJF efficient.
8 111.63 57153 412390 277.14 i i
9 58.46 32347 31293 57714 Th_e XY views of the map obtalr!ed _by ML and th_e map
10 77.84 189.63 43154 277.14  obtained by EKF SLAM are shown in Fig. 2(e) and Fig. 2(f).

It is clear that the map obtained by EKF is not accurate.
The number of poses involved in ML is significantly larger
consecutive robot poses. The total number of observatioffzan that of 3D I-SLSJF (880 vs 44). Table Il compares some

made is672 and the total number of features observediis key factors of EKF SLAM, ML and 3D I-SLSJF in terms of
The odometry and the observation data are used to buificiency and consistency. The table shows that the results
the map by three different algorithms: 3D I-SLSJF, EKF an@f the 3D I-SLSJF appears to be acceptable although more
ML. 3D I-SLSJF involves dividing the data up inft9) local Monte Carlo runs are necessary to have a proper consistency
maps and then fuse them using the 3D I-SLSJF algorithm¢check using average NEES [2].
Ten simulation data sets were generated each with the
same parameters but different random seeds for the noises V. CONCLUSION
(Monte Carlo runs). The results from one of the data sets This paper extend the 2D I-SLSJF into 3D I-SLSJF to
are shown in Fig. 1(b) to 1(d). Fig. 1(b) shows the 3Defficiently build consistent 3D point feature based maps. By
map obtained by EKF SLAM algorithm where the estimatedreating each local map as an observation and including
feature positions (red circles) are significantly diffarfom  robot start/end poses in the global state vector, the map
the true feature positions (blue crosses). Fig. 1(c) shbes tjoining problem is formulated as a least squares problem.
map obtained by 3D I-SLSJF while Fig. 1(d) shows the magIF combined with the linearized least squares approach
obtained by ML. The estimated feature positions of thesare used in the map fusion step. As compared with filter
two algorithms are very accurate. based mapping algorithm, the consistency of the map is
To compare the consistency of the different mapping algomproved. As compared with the optimal ML approach,
rithms, the normalised estimation error squared (NEES) [3he computational cost is significantly reduced. Simuratio
of the map estimates from different algorithms are computedesults demonstrated the efficiency and consistency of the
The formula is proposed map joining algorithm.
) R A number of techniques can be applied to further reduce
NEES = (& = @irue) ' 1(& = Tiruc) (15 the computational cost of the 3D I-SLSJF algorithm. One
wherez: is the estimate of the map (the observed feature poskay is to use the “divide and conquer” idea [18] or tree
tions) andz,. is the corresponding true feature positionsPresentation [9] instead of the sequential map joining cur-
I is the information matrix (the inverse of the covariancdently being used. However, if the sequential map joining
matrix) obtained from the algorithm. is not used, then the data association is a critical issue to
Table | shows the NEES results of the different algorithm§€ resolved. Another way is to use the graph optimization
for the 10 runs and the5% x? (chi-square) gate. It is clear techniques [10] for the smoothing step of 3D I-SLSJF. In
that the EKF result can not be accepted to be consistent whif&is case, the correlation among the local map features need
the results of 3D I-SLSJF and ML are both acceptable. to be taken into account.
Currently we are in the process of testing the 3D I-SLSJF
B. Simulations results using a large data set using large-scale experimental data. In the future, we aim t
develop the robot path planning strategies such that it can

The same simulation environment is used wilvm x Perform the mapping tasks more effectively and efficiently.
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