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Abstract— This paper describes an approach to recognizing
and localizing centers of mature lettuce heads in the field
when the lettuce leaves obscure the distinctions between plants.
This is of great value when using an automatic harvester in
cluttered or closely planted vegetation. The aim of this work
is to investigate and verify the potential use of spatial rather
than visual clues for recognition and localisation, with a view to
implementing a more robust and sophisticated system if promise
is shown. Colour/texture information was difficult to use so
spatial information was used instead. A laser range finder was
used to generate a height plot from above the plants. Lettuce
examples were used to learn the radial distribution of the lettuce
model. This was compared with the distributions of arbitrary
locations in new scans to locate possible lettuce locations.
Planting distance information was then used to localize the
final lettuce positions. The algorithm was able to successfully
locate 15 out of 16 sample lettuces.

I. INTRODUCTION
Automatic harvesting of vegetation is currently an at-

tractive area of research. The problem being addressed in
this paper relates to the accurate localization of mature
lettuce heads in a very cluttered and visually unrecognizable
environment. Even when the locations where the lettuce have
been planted are known exactly, when they grow, the mature
lettuce head may deviate by as much as 70 mm or more in
any given direction. The lettuce harvesting process requires
a maturity test by pressing on the center of the lettuce head
to carry out a stiffness measurement. An average lettuce is
170mm-200mm in diameter so a 70 mm deviation is too large
to successfully carry out the maturity test before harvesting.
Hence there is a need to accurately determine the centers
of fully grown lettuce heads. A successful system would
alleviate the need for manual localization and harvesting,
which is very labour intensive.

Most automated vegetation recognition systems attempt to
use vision systems which are responsible for recognizing and
locating the individual plants so that they can be harvested
in some fashion. In many cases this is a trivial task as the
plants are well spaced and visual information provides a good
contrast between the plant and background.

The most common application of vegetation recognition
and localization in the literature is for weed control. The
general approach taken involves gray scale visual image
segmentation to contrast the background from the plants.
Next morphological shape features of the 2D silhouettes are
used to distinguish between vegetation and weeds. Examples

of this approach can be found in [1] and [2]. A real-time
algorithm was implemented to detect weeds amongst tomato
plants in [3]. The accuracy of a process based on shape
features was moderate with a high level of both false positive
and false negative detections.

Colour information was used to provide extra visual
features in [4] to locate weeds amongst sugar beet plants.
The use of colour properties along with shape information
proved to be very useful in discriminating crop from weeds
and resulted in a successful classifier with a high detection
rate. Recognition of lettuce has been attempted by [5].
They also used shape information to locate weeds amongst
lettuce, however the planting separation was significant and
so the plants could easily be segmented visually. Colour
information was used by [6] to localize radicchio lettuce
plants. They used colour images to take advantage of the
contrast between the maroon coloured head of this particular
species of lettuce and the green leaves. They were able to
successfully localize lettuce even if the head was occluded

This visual segmentation approach is viable in these
situations because the weed control is started soon after
planting. The plants and weeds occupy only a small fraction
of the total ground resulting in easily detectable differences
between dirt and plants. Even as the plants grow to maturity
this contrast generally remains.

However in situations where there is no clear distinction
between neighboring plants or background, this method be-
comes difficult or impossible to apply. An example of this is
a field of mature lettuce that are planted closely together. The
leaves of neighboring plants overlap removing the contrast
between plant and background. The colour and texture of the
leaves are very similar to that of the lettuce head, or are still
covering the head, making visual information almost useless.
Figure 1 shows an example of this. The lettuces are difficult
to detect visually as some leaves are still covering the lettuce
head whilst other leaves are not. Figure 2 shows the locations
of the lettuces for comparison.

Our approach to this problem is instead based on spatial
information acquired by a laser range finder. The lettuces can
be modeled spatially in 3D and this provides much more
useful information for recognition. The main aim of this
paper is the investigation and verification of the potential
use of spatial information as opposed to visual clues for
recognition and localisation. If promise is shown then a more



Fig. 1. Image of lettuce, illustrating the difficulty of using colour or texture
information for recognition

Fig. 2. Image of lettuce with lettuce locations marked with crosses

robust and sophisticated system will be investigated further.
A Laser Range Finder is used by [7] to localize spherical

oranges on a tree. However their method differs in that
range information is combined with attenuation information
to determine colour properties to aid in recognition. Oranges
show good contrast compared with the green to brown trees
they grow on. They are near spherical and so are more easily
recognized compared with lettuce or other similar vegetation.

Section II describes the general approach we have taken
to recognize the lettuce. The collection and preprocessing
of the lettuce range datasets is described in Section III. In
Section IV we describe in detail the methods used to analyze
the datasets, extract the significant features and construct the
lettuce model to be used with an error function. The results
of this method are presented in Section V. The advantages
and limitations of this technique is discussed in Section VI.

II. APPROACH

A SICK Laser Range Finder was mounted above a lettuce
field and was used to generate height plots of the lettuce.
This provided information about the spatial distribution of
the heights of the lettuce plants. The locations of the lettuce
were recorded and then the appropriate regions of the height
plots were extracted to act as the lettuce training example

set. A similar number of regions was chosen at random to
provide a training set of negative lettuce example regions
that would be used to compare the discriminatory abilities
of extracted features.

Due to the approximately circular nature of the lettuce, a
radial distribution was found to provide the best and most
consistent information about the relative height distribution.
This method eliminates orientation from the distribution,
vastly reducing the model complexity. Height distributions
for discrete distances from the center of a region were calcu-
lated and histograms were used to represent this information.
Histograms were also used to represent 3D shapes in [8].
They only used a single histogram of an entire 2D region,
rather than also incorporating spatial information.

Various features and attributes were extracted from this
set of distributions. Each attribute was tested for clustering
within positive lettuce example scans and the for discrimina-
tion from negative lettuce examples. Four parameters were
chosen and these formed the learned model of a lettuce.

Datasets with known lettuce locations were then used to
verify the accuracy of the learned lettuce model. Regions
were extracted sequentially from the dataset and the four
attributes were calculated and used to describe that region
in parameterized form. The error between the learned model
vector and the region vector was found using a weighted
Euclidean distance. Prior information of the row and inter
row plant spacing was incorporated to reduce both false
positives and false negatives. Regions of extremely low error
were then assigned as lettuce locations.

III. DATASETS

A. Experimental Setup

In a future practical set up, a vehicle would be traversing
the lettuce fields carrying out the gathering of laser range
data. To emulate this situation a laser range finder mounted
on a rail at a height (z coordinate) of 590 mm from the
ground looking down at the top of the lettuce crop was
traversed at increments of 10 mm (in x direction) perpen-
dicular to the scanning plane of the range finder. The laser
range finder was set to an angular resolution of 0.5◦ and
the scanning range was set to ±50◦. This corresponds to
a y direction resolution of approximately 5 mm. A total
traversing distance of 2 m was covered for each plot. The
number of plots traversed is 2.

B. Preprocessing

As the laser range finder provided data in polar form, the
data needed to be converted to cartesian form to allow for
easy calculation of the radial distributions. This was done
using standard trigonometric relations. The data was then
interpolated to produce a 2D height grid with a resolution of
10mm in the x and y directions, to aid in computation.

IV. ANALYSIS

This section describes the techniques used to learn the
attributes of lettuce examples and apply them to recognize
lettuce in arbitrary datasets.



A. Generating Radial Distributions

The lettuce examples were represented spatially as the
height distribution against radial distance from the center
of the lettuce. This was used as it provided a simpler and
more descriptive representation than separate X and Y height
distributions, due to the inherent quasi circular nature of the
lettuce. Another advantage of the radial method is that it
ignores the orientation of the lettuce to the sensor.

Each height point in the 300 x 300mm region was assigned
a radial distance from the central point in the region. This
distance was rounded to the nearest 10mm. The heights
that fell in each radial segment (16 segments running from
0mm - 150mm) were grouped together to form the height
distribution for that segment. Those heights that were further
than 150mm from the center were ignored.

B. Normalizing to Remove Height Variation

The heights in each region were locally normalized to lie
between 0 and 1 so as to eliminate the overall variation in
height of different lettuces. Some lettuces grew taller than
others and thus had a higher mean height. The overall shape
was similar and by normalizing the height, the variation
between different lettuce were dramatically reduced.

C. Choice of Attributes

In order to attempt to learn the characteristic lettuce
model it was necessary to determine a few key attributes
that distinguish it. Ideally the representation would be as
compact as possible both in the number of attributes and
the representation of each attribute. This compactness is
obviously advantageous from a computational point of view
for real-time implementation. Also the principle of Ockham’s
Razor favours simpler models.

As a large number of the radial height distributions were
approximately gaussian in nature, the mean and standard
deviation of the distributions were chosen as obvious can-
didates. The positive and negative lettuce training sets were
used to determine which of these attributes would be useful.
This required that the lettuce examples cluster closely (low
standard deviation) and that they discriminate between posi-
tive and negative examples (a significant difference between
the means examples exists).

To quantify this usefulness, the Fisher ratio F was pro-
posed, as suggested in [1]. This formula quantifies the
difference between a positive lettuce example distribution l
and a negative lettuce example distribution l. To make the
distinctions between useful and useless attributes clearer, the
squared Fisher ratio F 2 was used instead.

F 2 =

∣∣∣∣∣ (xl − xl)
2

σ2
l + σ2

l

∣∣∣∣∣
The mean x and standard deviation σ for each radial

segment in each training example was found individually.
The overall means (µ(x) and µ(σ)) and standard deviations
(σ(x) and σ(σ)) for each radial segment were then calcu-
lated. These were used to find the squared Fisher ratios for

each radial segment. The rule of thumb used was that values
greater than 0.5 are useful, and values close to 0.0 are useless.
Table I summarizes this information.

TABLE I
SUMMARY OF RADIAL DISTRIBUTIONS

10 0.81 2.43 0.069 1.02
20 0.79 1.97 0.068 2.63
30 0.76 2.14 0.093 2.67
40 0.71 1.31 0.113 2.31
50 0.66 0.73 0.150 1.37
60 0.60 0.22 0.189 0.59
70 0.54 0.007 0.227 0.057
80 0.51 0.006 0.245 0.005
90 0.50 0.033 0.259 0.061

Note that these values were calculated after normalization
and the removal of outlier points as mentioned in the next
section. The values for radial segment 0mm are not shown
as this distribution consists of a single point and so standard
deviations are meaningless, and the sample size of 1 is far
too small to be useful.

Table I shows that possible attributes are the means
of radial segments from 0mm to 50mm and the standard
deviations of radial segments from 0mm to 60mm.

To minimize the number of attributes it was decided to
combine neighboring radial segments into larger segments.
This also has the benefit of increasing the number of points
in each distribution and thus minimizing the effects of noisy
measurements. The segments chosen to combine were 0mm
to 30mm and 40mm to 50mm for both the mean and standard
deviations, as the mean values were similar over each of
these ranges. Therefore combining them will have minimal
effect on their discriminatory value. This provides a compact
representation for the lettuce model lµ, which consists of a
vector containing only 4 parameters.

lµ = [µ(x0−30) µ(x40−50) µ(σ0−30) µ(σ40−50)]

For later use as a scaling factor in the error calculations,
the standard deviations lσ of these four parameters were also
recorded along with their means. This effectively makes the
representation into eight parameters.

lσ = [σ(x0−30) σ(x40−50) σ(σ0−30) σ(σ40−50)]

D. Removing Outlier Points

Another preprocessing technique that was found to be very
useful was to remove the outlier points from each region
before calculating the region’s distributions and descriptors.
Heights that were further than 1.28 standard deviations away
from the mean were eliminated. This value was chosen as
it will eliminate the top and bottom 10% of points on a
normal distribution. This is appropriate as the majority of the
useful radial distributions can be reasonably approximated by
a normal distribution.

This had the effect of dramatically improving the discrim-
inatory value of the attributes. Some of the lettuce examples



were skewed as they contained unusually high leaves, and
this distorted the normalized distributions. On those lettuce
examples that were not skewed and the examples of arbitrary
regions, this technique had minimal effect on the distribu-
tions and descriptors as they contained few outliers.

Table II shows the effect of removing the top outliers
and the bottom outliers using 1.28 standard deviations from
the mean value as the threshold. The values shown are for
the 0-30mm mean radial distribution. Similar trends were
seen in the other radial distributions. The Squared Fisher
Ratio was again used to determine the relative change in
discriminatory ability. This shows that by removing only the
top 10% outliers, the greatest improvement was to be gained.

TABLE II
EFFECT OF REMOVING OUTLIERS FROM 0-30MM RADIAL DISTRIBUTION

Outliers Removed F 2(x) F 2(σ)
None 1.62 1.08
Top 10% 2.03 2.68
Bottom 10% 1.50 0.045
Top and Bottom 10% 1.77 0.91

E. Error Function

To recognize arbitrary regions as lettuce, an error function
was used. This function is based on the weighted vector
distance between the arbitrary region parameter vector rµ and
the learned lettuce model vector lµ. The distance function
used was the Euclidean Distance. The error of each attribute
was scaled by the lettuce model standard deviations lσ .

E =

√√√√∑
i

wi

(
ri − li

σi

)2

The error terms were weighted using a weight vector w.
The values below were found to work well in practice. They
are roughly based on the Squared Fisher Ratios.

w = [1 1 5 5]

The standard deviation errors were weighted higher than
the mean error terms as they were shown to have a much
higher detection rate than the mean errors. However they
also gave a large number of false positive detections. The
mean error on the other hand, while having a lower detection
ability, was a more reliable detector. Thus the weighted
combination of the errors was used and showed better
performance than either individual error plot.

The use of prior knowledge of the plant spacing, as
described below, removed much of the need for the mean
terms as it was able to successfully remove the majority of
the false positives detected by the standard deviation error
terms. However the mean terms were retained for now due
to the risk of overfitting by removing them. A larger sample
will be required to verify this.

Another improvement to the error function involved the
standard deviation error terms. Intuitively low standard de-
viation is desirable, yet a segment with lower standard

deviation than the lettuce model was unfairly punished. A
dead zone was introduced to the standard deviation error
terms so that the error component would only be non-zero if
the sample standard deviation was higher than that of the
trained model, as can be seen in Figure 3. This had the
dramatic effect of solidifying the low error clusters associated
with actual lettuce locations rather than having a ring of low
error with higher error in the very center, as can be seen in
Figure 4. Darker regions correspond to lower error and so
more likely to be a lettuce.

Fig. 3. Standard deviation σ error deadzone. The solid blue line shows
error as sample σ varies. Lettuce model σ in this case is at 0.05 and is the
point of 0 error. The dashed green line shows the deadzone where the error
is 0 when the sample σ is less than the model σ.

Fig. 4. The addition of dead zones to the standard deviation error terms
solidified the low error clusters. The left plot is without the dead zones,
while the right plot uses a dead zone. Darker red regions have lower error.

F. Location of Lettuce in Error Plot

Lettuces were located by assigning clusters of very low
error to being lettuces. However the size, shape and error
magnitude varied greatly amongst the lettuces and were also
similar to some non lettuce regions as well. These areas of
low error were used as a starting point and plant spacing
information was used to distinguish between areas that were
lettuce and those that were not. Figure 6 shows the lettuce
scan before (left) and after (right) the error function has been
applied. Dark clusters show likely lettuce locations.

G. Planting Distance Information

The lettuce were planted in rows at regular intervals. While
they were seeded very accurately, as the lettuce grew, they
grew away from the original planting location in a semi
random direction. Variables such as the direction of sunlight
may bias this but for simplicity it was assumed that this



Fig. 5. The left plot shows the original laser height plot. The right plot
shows the error function values with dark red being lowest error. The
locations of lettuce are marked with crosses.

had a negligible effect. It is known as prior knowledge that
the rows were planted 400mm apart. This information was
used to look for clusters of potential lettuce locations that lie
within the same row and that are also approximately 400mm
away from similar bands of clusters.

The error plot was normalized and then inverted so that
the most likely lettuce locations had a value of 1.0, with
0.0 being least likely. A simple segmentation was performed
with a threshold of 0.5 being used. A histogram was found
by summing the plot along the Y direction. Assuming the
lettuces in each row had approximately the same X position,
peaks in this histogram should correspond to the position
of rows of lettuce. This is similar to the method used for
row detection by [9] where they summed grayscale image
intensities to detect rows as the peaks.

Due to the false positives present in the error plot there was
likely to be more peaks than actual rows. To determine which
peaks corresponded to rows, the weight and spacing relative
to other peaks were taken into account. The histogram peak
detection algorithm used was based on ideas from [10] where
they used a Multiresolution Peak Detection Algorithm.

These detected rows were then used to mask the error
plot to remove many of the false positives that did not occur
within a planted row. The mask used was trapezoidal in
shape.

This process was then repeated within each row to locate
the y position of the lettuces within each row. The row was
extracted, the threshold applied, and the region was summed
in the x direction. The peaks in the y direction were found
using the same peak detection method as for the rows. Those
peaks of significant height and being consistently spaced

were chosen as being the y coordinate of a lettuce. For
each of these y coordinates, a smaller window of y±50mm
was extracted from the row and the single peak within the
histogram of this region was chosen to be the x coordinate
of that lettuce.

V. RESULTS

The algorithm was run through two lettuce plot scans.
Each scan consisted of 8 lettuces of marked locations, which
were used as the training examples for the other plot. While
this is not ideal for testing purposes, should these results
show promise then a large dataset will be procured that
will be used to validate the method and results. The results,
while pending this further validation, are presented here to
demonstrate the potential of this technique. This matter will
be discussed further later.

A. Lettuce Scan 1

Table III shows that all eight lettuces were located with an
average position error of 35mm. The first two columns are
the actual lettuce positions, while the next two columns show
the positions found by the algorithm. The ninth lettuce found
at first appears to be a false positive, but upon inspection
of the original scan, it is indeed a ninth lettuce. However
as it was not initially recorded as such its exact position is
unknown and so its exact error is also unknown.

TABLE III
LETTUCE SCAN 1 RESULTS

X(mm) Y(mm) Alg X (mm) Alg Y(mm) Error (mm)
400 270 390 280 14.1
410 640 390 670 36.1
400 1010 390 1040 31.6
450 1360 420 1370 31.6
810 430 770 430 40
800 760 780 770 22.4
840 1150 820 1110 44.7
870 1490 810 1510 63.2

- - 770 10 -

B. Lettuce Scan 2

Table IV shows that seven out of the eight lettuces in the
plot were successfully located with an average position error
of 38mm. The eighth lettuce that was not located, did present
a strong cluster within the original error plot, however it had
grown substantially to one side of the row. This meant that
when the rows were found and the mask was applied, the
majority of this lettuce was removed from the row and so
the algorithm failed to find it.

C. Overall Results

From the two plots used, 15 out of the 16 lettuces
were located successfully with an average position error of
36.5mm. The average lettuce diameter was 170-200mm so
this error is reasonable. Excluding the ninth lettuce located
in scan 1, there were no false positive detections. The spread
of the position errors are shown in Figure 6.



TABLE IV
LETTUCE SCAN 2 RESULTS

X(mm) Y(mm) Alg X (mm) Alg Y(mm) Error (mm)
270 200 260 210 14.1
280 540 220 530 60.8
260 940 230 930 31.6
280 1290 260 1240 53.9
550 310 - - -
650 660 640 660 10
670 1060 650 990 72.8
680 1360 680 1380 20

Fig. 6. Algorithm Location Error in X and Y directions

VI. DISCUSSION

A. Robustness of Algorithm

Despite the successful recognition of the lettuce by this
algorithm, it should be noted that the dataset used was small
and so a test set of reasonable size could not be used. The
dataset used consisted of two laser scans with 8 lettuce each.
All 16 were used as training examples and test sets. However
to mitigate this somewhat, two runs were performed with
one scan being the training set and the other the set and vice
versa. The algorithm still runs the risk of having overfit the
training data and providing overly optimistic results. A larger
dataset is currently being sought and will be used to verify
the true accuracy and robustness of this algorithm.

The algorithm currently relies on all the lettuces being
at approximately the same maturity level as each other and
as the training examples. This will usually be the case for
lettuces in the same field, however in its present form the
algorithm will most likely need to be calibrated for different
lettuce fields. This could be done by providing it with lettuce
locations from that field to learn the lettuce model based
on the particular characteristics of that field such as lettuce
species, maturity level and planting distances.

The peak detection method is not optimal over the 2D
error plot as it finds the peaks in each axis individually, so
the peak found may not be the true peak. It is possible that
more sophisticated methods such as finding the centroid of
the error plot would improve the accuracy of this system.

The row mask used was also too restrictive. Examination of
the error plots for those lettuce located with high location
error revealed that while the lettuce were prominent in the
original error plot, the mask had marginalised them as they
were significantly offset from the row. A better method of
masking the rows is needed to greatly improve the accuracy
of these outlying cases.

VII. CONCLUSIONS

The algorithm presented was shown to have promising per-
formance when attempting to localize lettuce in the field. The
use of spatial information from a laser range finder overcame
the difficulties involved with using visual colour information
due to the occlusion of lettuces by their leaves along with
those of neighboring lettuces. The use of radial distributions
to model a lettuce combined with prior information of row
and interplant spacings proved successful in locating 15 out
of 16 lettuces with a mean accuracy of 36.5mm.

It was noted that the generality and robustness of this
technique are areas where further work is required. A larger
dataset is being sought and will be used to validate the
results. In order for this technique to be used in a real
system, improvements to the algorithm, in several areas as
previously noted, will be required to ensure its robustness and
real time capabilities. However the original aim of proving
the feasibility of this approach has been achieved and the
use spatial information appears to be an area of promise in
difficult localisation cases such as this.
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