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ABSTRACT. This paper introduces a behavioral sentiment model to explore the styl-

ized facts in limit order markets. Simulation results show that both the noise and sen-

timent trading can generate the absence of autocorrelationin returns, long memory in

the absolute returns and bid-ask spread, and the hump shapedmean depth profile of

the order book. However, sentiment trading plays a unique role in explaining the fat

tails in the return distribution, long memory in the tradingvolume, an increasing and

non-linear relationship between trade imbalance and mid-price returns, and also the

diagonal effect or event clustering in order submission types, all of which cannot be

explained by noise trading. Therefore, behavioral sentiment is an important driving

force behind some of the well-documented stylized facts in limit order markets.
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1. INTRODUCTION

Recently, various stylized facts in limit order markets have been documented in mar-

ket microstructure literature. According to surveys by Chakraborti, Toke, Patriarca and

Abergel (2011a), Chen, Chang and Du (2012) and Gould, Porter, Williams, Fenn and

Howison (2013), apart from the stylized facts in the time series of returns, including

fat tails, the absence of autocorrelation in returns, volatility clustering, long memory

in the absolute returns, the limit order has its own stylizedfacts, such as long memory

in the bid-ask spread and trading volume, hump shapes in meandepth profiles of or-

der books, non-linear relationships between trade imbalance and mid-price return, and

diagonal effect or event clustering in order submission types, which are the most com-

mon and important statistical regularities in limit order markets. They have become

the most important criteria to justify the explanatory power of financial market mod-

els, in particular agent-based models in limit order markets with a continuous double

auction.

Among these agent-based models of market microstructure that are able to repli-

cate some of the stylized facts, they are either zero-intelligence models or heteroge-

nous agent models (see Chakraborti, Toke, Patriarca and Abergel (2011b), Chen et al.

(2012) and Gould et al. (2013)). The zero-intelligence models assume that traders’

behavior is very simple (without learning or strategy), andthe stylized facts are gen-

erated by trading mechanism, instead of agents’ strategic behavior. Some of them are

able to generate fat tails, but only a few can generate volatility clustering (Raberto and

Cincotti (2005)), and event clustering in order submissiontypes (Ladley and Schenk-

Hoppé (2009)). Different from the zero-intelligence models, the heterogenous agent

models consider agents’ strategic behaviors as potential explanations to the stylized

facts. For example, chartist-fundamentalist models find that the chartist behavior con-

tributes to fat tails, volatility clustering (see Anufrievand Panchenko (2009), Chiarella,
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Iori and Perellò (2009) and Chiarella, He and Pellizzari (2012)) and the diagonal effect

in correlations of some order submission types (Kovaleva and Iori (2014)). However,

replicating most of these stylized facts simultaneously remains very challenging for

agent-based models.1 As Gould et al. (2013) point out, “no single model has yet been

capable of simultaneously reproducing all of the statistical regularities, and there is

no clear picture about how the stylized facts emerge as a consequence of the actions

of many heterogeneous traders”.

Motivated by Chen et al. (2012) and in particular Gould et al.(2013), in this pa-

per we explore the unique role played by behavioral sentiment in explaining some

of the stylized facts in limit order markets. Different for the zero-intelligence mod-

els and heterogenous agent models (chartist-fundamentalist models), we show that

behavioral sentiment plays an important role in explainingthe stylized facts in limit

order markets. In our model, traders are heterogeneous in their investment time hori-

zons. Traders are bounded rational in the sense that although they observe changes

in the fundamental value, they may underreact or overreact to those changes. More

precisely, we model behavioral sentiment by following Barberis, Shleifer and Vishny

(1998) (henceforth BSV98). The sentiment orBSVtraders update their beliefs follow-

ing a learning scheme using Baye’s rule, however they believe that the mean growth

rate of the observed fundamental value follows a Markov switching process, whereas

the true process is a random walk. Furthermore, we compare the model with BSV

traders to the one withnoisetraders who believe that the mean growth rate of the ob-

served fundamental value is random. Our results show that certain stylized facts can

only be generated in the market with BSV traders.

The modeling approach follows Chiarella et al. (2009), in which traders are utility

maximizers and the order sizes are optimal given their submitted prices. There is a

1Most of agent-based financial models focus on daily frequency, instead of intra-day, see Chen et al.
(2012).
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risky asset and a risk-free asset and traders cannot short-sell both assets. The short-sale

constraint puts an upper bound on the submission price at which a trader would sell all

her current holdings of the risky asset, and also a lower bound at which a trader would

use all her cash to purchase shares of the risky asset. Different from Chiarella et al.

(2009) who assume the submission price is randomly chosen between the upper and

lower bounds, we assume that the submission price is either equal to the upper bound

or the lower bound and the probability of buy/sell depends onthe distance between the

upper/lower bound and the no-trade price, at which it is optimal not to trade at all.

Our main finding is that both noise and BSV trading can generate the absence of

autocorrelation in returns, volatility clustering, long memory in the bid-ask spread, and

the hump shape in the mean depth profile of the order book.2 However, BSV trading

leads to fat tails in the return distribution, long memory inthe trading volume, an

increasing and non-linear relationship between trade imbalance and mid-price return,

and event clustering in order submission types, all of whichcannot be explained by

noise trading, which means that behavioral sentiment rather than noise trading is the

driving force behind these stylized facts.

The rest of paper is organized as follows. The model is outlined in Section 2. Section

3 compares the stylized facts generated by in a market populated by BSV traders and

in a market populated by noise traders using simulation analysis. Section 4 concludes.

2. THE MODEL

We consider a limit order market with many heterogeneous traders who arrive the

market and submit orders with different trading time horizons. Traderi with a trading

time horizonτ i has a probability1/τ i of entering the market at the start of each period,

2The differences are that BSV trading leads to significantly stronger serial correlations in the bid-ask
spread and a hump share closer to the best quotes in the mean depth profile of the order book shape,
comparing to the noise trading.
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which implies that traderi is expected to arrive at the market everyτ i periods and each

period corresponds to a short time interval such as one minute. We assume thatτ i

follows a uniform distribution between the shortest horizon τ and the longest horizon

τ̄ , and restrictτ i to be positive integers. To simplify the analysis, we assumethat the

fundamental priceFt follows

ln(Ft+1) = ln(Ft) + σǫt+1, ǫt+1

i.i.d∼ N (0, 1), (2.1)

which means that the log fundamental price is a martingale withEt[ln(Ft+τ )] = ln(Ft)

for τ ≥ 1 or the growth rate of the fundamental value is a random walk, where the

volatility per period is measured byσ. Traders do not monitor the market continuously.

When traderi enters the market at timet, she knows the fundamental value of the

current periodFt, and the historical fundamental values everyτ i periods, but she does

not know the fundamental value process (2.1). Her information set is given byI it ≡
{Ft, Ft−τ i, · · · , Ft−N iτ i}, whereN i measures the length of her observations.3

2.1. Behavioral Sentiment. We follow BSV98 and assume that traders have behav-

ioral sentiment in their beliefs of the fundamental value, and are thus calledBSV

traders. More precisely, traderi believes that the log fundamental priceln(Ft) fol-

lows

ln(Ft+τ i) = ln(Ft) + θt+τ i + σǫt+τ i , (2.2)

3Traders also have information about past transaction prices. If no transaction occurs at a given timet,
the mid-price of the best ask priceat and the best bid pricebt, that ispt = 1

2
(at + bt). If there are no

bids or asks in the book, then the previous transaction priceis used as a proxy.
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whereǫt+τ i
i.i.d∼ N (0,

√
τ i) and the mean growth rateθt+τ i follows a two-state Markov

chain with transition matrix among two states{−θi, θi},

θt+τ i = θi θt+τ i = −θi

θt = θi πt+τ i 1− πt+τ i

θt = −θi 1− πt+τ i πt+τ i

(2.3)

whereθi = σ
√
τ i. Therefore, traderi believes that there is a good stateθi and a

bad state−θi in which the mean growth rate of the fundamental price is positive and

negative, respectively. Given the current state, the probability of staying in the same

state is given byπt+τ i . Whenθi is different from zero, traderi exhibits behavioral

sentiment in the same spirit as in BSV98, believing that future growth rate of the

fundamental value is predcitable4. Furthermore, as in BSV98, traderi believes that the

transition probabilityπt+τ i also follows a Markov chain of two states{πL, πH} with

transition matrix,

πt+τ i = πL πt+τ i = πH

πt = πL 1− λ1 λ1

πt = πH λ2 1− λ2.

(2.4)

meaning that traderi believes that there is one stateπt = πL in which the mean growth

rate is more likely to remain the same as the last period and a state (πt = πH ) in which

the mean growth rate is more likely to switch from one state toanother, in whichλ1

andλ2 measure the switching intensities.

Traders do not observe the mean growth rateθt and they update their probability

beliefs aboutθt andπt using Baye’s rule. More explicitly, let

qiθ,t ≡ P(θt = θi|I it), qiπ,t ≡ P(πt = πL|I it),

4Whenθi = 0, traderi becomes fully rational believing the true fundamental value process (2.1).
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whereI it ≡ {Ft, Ft−τ i, · · · , Ft−Nτ i}. LetRt+τ i ≡ ln(Ft+τ i/Ft). Traderi updates her

probabilities after observingRt+τ i according to

qiθ,t+τ i = qiπ,tP(θt+τ i = θi|πt = πL, Rt+τ i) + (1− qiπ,t)P(θt+τ i = θi|πt = πH , Rt+τ i),

qiπ,t+τ i = qiθ,tP(πt+τ i = πL|θt = θi, Rt+τ i) + (1− qiθ,t)P(πt+τ i = πL|θt = −θi, Rt+τ i),

where

P(θt+τ i = θi|πt, Rt+τ i) =
P(θt+τ i = θi|πt)P(Rt+τ i |θt+τ i = θi)

∑

θ
t+τi

∈{θi,−θi} P(θt+τ i = θ|πt)P(Rt+τ i |θt+τ i)
,

P(πt+τ i = πL|θt, Rt+τ i) =
P(πt+τ i = πL)P(Rt+τ i |θt, πt+τ i = πL)

∑

π
t+τi

∈{πL,πH} P(πt+τ i)P(Rt+τ i|θt, πt+τ i)
,

P(Rt+τ i |θt+τ i) ∝ exp

(

− (Rt+τ i − θt+τ i)
2

σ2τ i

)

,

P(Rt+τ i |θt, πt+τ i) ∝ πt+τ i exp

(

− (Rt+τ i − θt)
2

σ2τ i

)

+ (1− πt+τ i) exp

(

− (Rt+τ i + θt)
2

σ2τ i

)

and

P(θt+τ i = θi|πt) = qiθ,tπt + (1− qiθ,t)(1− πt),

P(θt+τ i = −θi|πt) = qiθ,t(1− πt) + (1− qiθ,t)πt,

P(πt+τ i = πL) = qiπ,t(1− λ1) + (1− qiπ,t)λ2,

P(πt+τ i = πH) = qiπ,tλ1 + (1− qiπ,t)(1− λ2)

for θt, θt+τ i ∈ {−θi, θi} andπt, πt+τ i ∈ {πL, πH}.

Given her estimated probabilitiesqiπ,t and qiθ,t, traderi makes aτ i-period ahead

forecast of the mean and variance of log fundamental price

E
i
t[ln(Ft+τ i)] = ln(Ft) + E

i
t[θt+τ i ], (2.5)



8 CHIARELLA, HE, SHI AND WEI

V
i
t[ln(Ft+τ i)] = σ2τ i + (θi)2 − (Ei

t[θt+τ i ])
2, (2.6)

where

E
i
t[θt+τ i ] = P(πt+τ i = πL|I it)

(

qiθ,t 1− qiθ,t

)





πL 1− πL

1− πL πL









θi

−θi





+ P(πt+τ i = πH |I it)
(

qiθ,t 1− qiθ,t

)





πH 1− πH

1− πH πH









θi

−θi



 .

Note that without sentiment (θi = 0), the belief of BSV traders in (2.5) and (2.6)

becomes

E
i
t[ln(Ft+τ i)] = ln(Ft), and V

i
t[ln(Ft+τ i)] = σ2τ i, (2.7)

which characterizes the true fundamental value process.

2.2. Optimal Demand. We now consider the investment decision of traders. Follow-

ing Chiarella et al. (2009), we assume that traders maximizea CARA utility function

of their wealth. When traderi enters the market at timet, she determines the optimal

demand on the risky asset to maximize the expected utility ofher wealth at the end of

her trading horizon at timet + τ i based on her belief. Letsit be the number of shares

of the risky asset andcit be the amount of cash traderi holds at timet. Traderi submits

an order with pricepit and quantityzit, thus her wealth at the end of the trading period

is given by5

W i
t+τ i = (sit + zit)pt+τ i + cit − zitp

i
t. (2.8)

5We assume the risk-free rate is zero.
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We assume that traderi’s expected utility can be approximated by the conditional mean

and variance of her terminal wealth, thus her objective can be written as

max
zi
t

(

E
i
t[Wt+τ i ]−

αi

2
V

i
t[Wt+τ i ]

)

, (2.9)

whereαi measures traderi’s risk aversion. Solving equation (2.9) yields

zi∗t =
E
i
t[rt+τ i ]

αipitV
i
t[rt+τ i]

− sit,

wherert+τ i ≡ pt+τ i/p
i
t − 1 is the rate of return over the period[t, t + τ i]. For conve-

nience, we usert+τ i ≈ ln(pt+τ i/p
i
t), which is a good approximation whenτ i is small.

Thus, the optimal demand in equation (2.10) becomes

zi∗t =
E
i
t[ln(pt+τ i)]− ln(pit)

αipitV
i
t[ln(pt+τ i)]

− sit. (2.10)

2.3. Order submission. Now to determine the submission pricepit for traderi, we

assume that traders cannot short sell and nor can they borrowat the risk-free rate. For

traderi, this implies that

zi∗t ≥ −sit and zi∗t p
i
t ≤ cit.

From which we obtain the following low and upper bounds for the submission pricepit

of traderi,

pi,mt ≤ pit ≤ pi,Mt ,

where

pi,Mt = exp{Ei
t[ln(pt+τ i)]}

andpi,mt is determined implicitly by

E
i
t[ln(pt+τ i)]− ln(pi,mt )

αiVi
t[ln(pt+τ i)]

= cit + sitp
i,m
t .
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Definepi∗t as theno trade pricefor agenti, which solves

E
i
t[ln(pt+τ i)]− ln(pi∗t )

αipi∗t V
i
t[ln(pt+τ i)]

= sit.

It can be show that

pi,mt ≤ pi∗t ≤ pi,Mt .

Furthermore, we assume that

E
i
t[ln(pt+τ i)] = E

i
t[ln(Ft+τ i)], V

i
t[ln(pt+τ i)] = V

i
t[ln(Ft+τ i)],

meaning that traders belief about the future price is determined by their belief about

the future fundamental value.

The order submission of traderi is in the following way. When entering the market,

traderi tries to either sellsit shares of the risky asset at a maximum price ofpi,Mt or buy

cit/p
i,m
t shares of the risky assets at a minimum price ofpi,mt . If the best askat < pi,mt or

the best bidbt > pi,Mt , then traderi submits a market order to buy or order. Otherwise

she submits a limit order at pricepit to buy (whenzi∗t > 0) or sell (whenzi∗t < 0)

and the number of shares is determined by (2.10).6 Furthermore, we assume that the

probability of submitting a buy or sell order is given by

Pbuy ≡ P(zi∗t = cit/p
i,m
t ) =

pi∗t − pi,mt

pi,Mt − pi,mt
,

Psell ≡ P(zi∗t = −sit) =
pi,Mt − pi∗t
pi,Mt − pi,mt

.

Intuitively, the further the no-trading price is away from the minimum (maximum)

price, the higher the probability to buy (sell).

6Note that this way of determining the submission price is different from Chiarella et al. (2009), where
traders randomly pick a pricepit ∈ [pi,mt , p

i,M
t ], which may not be the optimal price for the optimal

demand.
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Upon entering the market, traderi chooses to either place a market order or a limit

order which will be stored in the limit order book. A transaction occurs when a market

order hits a quote on the opposite side of the order book. As usual, limit orders are

executed using both price and time priorities. At timet, traderi submits a buy or sell

order with price levelpit and order sizezi∗t . The order leads to a market buy when

pit ≥ at or market sell whenpit ≤ bt, wherebt andat are the best bid and ask price

respectively. If there is enough depth at the best bid or bestask, then the entire order

submitted by traderi is executed atat or bt; otherwise part of the order may be executed

at prices further away from the best bid or ask or it may becomea limit order with price

pit as the new best bid or ask price.7

buy/sell Limit/Market Volume
X ≤ Pbuy buy a1t ≤ pi,mt Market order cit/p

i,m
t

X ≤ Pbuy buy a1t > pi,mt Limit order cit/p
i,m
t

X > Pbuy sell b1t ≥ pi,Mt Market order sit
X > Pbuy sell b1t < pi,Mt Limit order sit

TABLE 2.1. Summary of submission rules of traderi, 0 ≤ X ≤ 1 is
drawn from a uniform distribution.

Table 2.1 summarizes the order submission rules of traderi in which X is drawn

from a uniform distribution on[0, 1]. Note that traderi’s submission price is either

pi,mt (for buy orders) orpi,Mt (for sell orders). If the depth at the best bid (ask) is not

enough to fully satisfy the order size, the remaining volumeof the order is executed

against limit orders in the book. The trader thus takes the next best buy (sell) order and

repeats the process as many times as necessary until the order is fully executed. This

mechanism applies when quotes of these orders are above (below) pricepi,Mt (pi,mt ). If

the limit order is not matched by the timet + τ i, it is removed from the book.

7There can be multiple traders who arrive at the market at the same time with same order, in which case
we assume those traders trade in a randomized order.
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2.4. Simulation setting. In the simulations, the trading time horizonsτ i of traderi

follows a uniform distribution betweenτ(1 − ∆) andτ(1 + ∆) where the reference

investment horizonτ = 60 (equal to one hour) and the range is specified by∆ = 0.5.

Furthermore we restrict the investment horizons to be integers. Each traderi is initially

givensi0 = 10 shares of the risky asset andci0 = si0F0 amount of cash, where the initial

fundamental priceF0 = 50. At the beginning of each periodt, each traderi has a

probability 1/τ i of entering the market. Traders observe the fundamental value Ft

after entering the market before submitting an order. Upon entering the market, trader

i cancels any of her unmatched limit order and submits a new order according the order

submission rules in Table 2.1. The volatility of the log fundamental price per period

is set toσ = 4 basis points (bp) and the risk aversion is set toαi = 0.1 for every

traderi.8 Furthermore, we follow BSV98 and assumeπL = 1

3
, πH = 3

4
, λ1 = 0.1 and

λ2 = 0.3. Upon entering the market, traderi estimates the probabilitiesqi,πt andqi,θt

based on her informationI it = {Ft, Ft−τ i, · · · , Ft−N iτ i} and we chooseN i = 60 and

the initial priorsqi,π
t−N iτ i

= qi,θ
t−N iτ i

= 0.5. The minimum tick size is given by0.01.

Apart from the BSV traders, we assume there are also liquidity traders. Liquidity

traders’ trading horizons and arrival rates follow the sameuniform distribution as the

BSV traders. However they choose between buy and sell ordersand between market

and limit orders randomly with equal probability. Therefore, liquidity traders either

provide or demand liquidity with equal probability. The order size is uniformly dis-

tributed between 1 and 10. Moreover, their limit orders are always at the best bid or ask

price. We assume there are 900 BSV traders and 100 liquidity traders, which makes

the total number of traders equal to 1000.

8If each trading period is treated as one minute, then the annualized volatility is approximately10% p.a,
which is the same as Chiarella and Iori (2002). Moreover, we set the risk aversion to0.1 which is the
average risk aversion of the agents in Chiarella et al. (2009).
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Moreover, as a benchmark for comparison, we also consider a situation where the

BSV traders are replaced by traders who’s beliefs are given by

E
i
t[ln(Ft+τ i)] = ln(Ft) + θ̃it and V

i
t[ln(Ft+τ i)] = σ2τ i + (θi)2 − (θ̃it)

2,

whereθ̃it
i.i.d∼ Uniform[−θi, θi]. This means that, in this case, trader’s belief simply

deviates randomly from the objective (true) belief. We thuscall such traders asnoise

traders. By comparing with the benchmark model, we aim to distinguish between the

effect of sentiment trading and that of noise trading. In particular, we compare the

simulation results in a market populated by (900 BSV traders+100 liquidity traders)

with a market populated by (900 noise traders + 100 liquiditytraders). If certain styl-

ized facts can be replicated with BSV traders but not with noise traders in the market,

then it would provide support for behavioral sentiment being the driving force behind

those stylized facts rather than noise trading. The resultsreported are the outcome of

30 simulations of 72,000 periods with the first 60,000 steps used as a burn-in period.9

3. REPLICATION OF STYLIZED FACTS

As we have discussed in the introduction, replication of most of the stylized facts in

limit order book markets presents a serious challenge to thecurrent literature (Gould

et al. (2013)) . In this section, we examine the effect of investor sentiment in replicating

some of these stylized facts. We also compare the results to the model with noise

traders to distinguish between the effect of sentiment trading and that of noise trading.

3.1. Fail tails in the return distribution. Fat tails in the return distribution are well

documented in empirical studies(such as Cont (2001) and Chakraborti et al. (2011a)).

Table 3.1 shows that the market with BSV traders leads to muchfatter tails in return

distribution compared to the market with noise traders. Moreover, the BSV trading

9The results remain similar for different simulations.
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also leads to a negative skewness whereas skewness is close to zero with the noise

trading.

Mean Skewness Kurtosis
BSV -8.90E-07 -0.15 41.98
Noise -8.70E-07 0.03 3.15

TABLE 3.1. Mean, skewness and kurtosis of mid-price returns.

3.2. Absence of autocorrelation in returns. Empirical studies have shown that ex-

cept weakly negative autocorrelations (ACs) on very short time scales, return series do

not display any significant ACs in many markets (Chakrabortiet al. (2011a) and Gould

et al. (2013)). In particular, Gould et al. (2013) report that several empirical studies

find some negative ACs of the return of mid-price over short lags in some hybrid mar-

kets but they disappear very quickly for long lags. Figure 3.1 shows the ACs of returns

for market with the BSV traders and the market with the noise traders. Both markets

exhibit the empirically observed pattern in the ACs of mid-price returns. Apart from a

significant and negative AC in the first lag, the ACs for all other lags are insignificant,

though there are some small and positive ACs in the first few lags for the market with

the BSV traders.

3.3. Volatility clustering and long memory in volatility. Volatility clustering is a

common stylized fact in stock markets and an important justification for agent-based

models. For zero-intelligence models, such as LiCalzi and Pellizzari (2003), is able to

generate fat tails but not the volatility clustering; and Raberto and Cincotti (2005) find

that the volatility clustering only occurs when the zero-intelligence agents take into

account of the volatility of the previous period when submitting orders. For heteroge-

nous agent models, such as Chiarella and Iori (2002), point out that fundamentalist,

chartist and noise are necessary in some form to generate volatility clustering.
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FIGURE 3.1. Autocorrelation function for mid-price returns.

Figure 3.2 shows that both noise and BSV trading can lead to long memory in the

volatility of mid-price returns, which is indicated by the significant and slow decaying

ACs in the absolute returns. Also, according to Gould et al. (2013), the Hurst exponent

H is an important measure for volatility clustering and long memory.10 Table 3.2

reports that both BSV and noise trading leads toH = 0.68 andH = 0.66 respectively

for the absolute returns of mid-price, which are higher thanH ≈ 0.58 in the Shenzhen

Stock market (Gu and Zhou (2009)) and lower thanH ≈ 0.8 in the Paris Bourse

(Chakraborti et al. (2011a)). Note that the Hurst exponent for the absolute return of

the fundamental value is 0.49, which is very close to the truevalue of 0.5. The results

show that both BSV and noise trading can generate volatilityclustering.

3.4. Long memory in the bid-ask spread and trading volume.Apart from long

memory in volatility, empirical studies also find long memory in the bid-ask spread

(Groß-Klußmann and Hautsch (2013)) and trading volume (Covrig and Ng (2004),

10The series have long memory with positive long-range ACs when 0.5 < H < 1, have
long memory with negative long-range ACs when0 < H < 0.5, and follow a random
walk when H = 0.5. Following Di Matteo (2007), we use the generalized Hurst exponent
method to estimateH , the Matlab code of generalized hurst exponent can be download from
http://www.mathworks.com.au/matlabcentral/fileexchange/30076-generalized-hurst-exponent.
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FIGURE 3.2. Autocorrelation functions for absolute mid-price returns.

Case |rt| |rmt| |rvt| Volume Spread
BSV 0.64 0.68 0.49 0.74 0.86

Noise 0.64 0.66 0.49 0.51 0.61

TABLE 3.2. The Hurst exponents. Herert is the return of market
price,rmt is the return of mid-price, andrvt is the return of fundamental
value.

Fleming and Kirby (2011) and Rossi and Santucci de Magistris(2013)). In Figure

3.3, panel A shows the ACs of the bid-ask spread and panel B shows the ACs of the

trading volume. Both panels show that BSV trading leads to significant and decaying

ACs in the bid-ask spread and trading volume comparing to thenoise trading. This is

further demonstrated by the Hurst exponent in Table 3.2, which is 0.74 and 0.86 for

the trading volume and bid-ask spread, comparing to 0.51 and0.61 for nose trading,

respectively. The results show that the behavioral sentiment, instead of noise trading,

is driving force in generating long memory in the bid-ask spread and trading volume

observed in limit order markets.

3.5. Hump shape in mean depth profile of the order book. In the limit order book,

the depth of the bid-side or ask-side available at a given submission pricep corresponds
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(A) ACs of bid-ask spread (B) ACs of trading volume

FIGURE 3.3. Autocorrelation functions for the bid-ask spread in panel
(A) and trading volume in panel (B) for both BSV trading and noise
trading.

to the total number of limit orders at pricep. Themean depth profilecharacterizes the

relationship between submission pricep (relative to the best quotes) and the average

depth available at that price. Bouchaud, Mèzard and Potters (2002) and Chakraborti

et al. (2011a) report that the peak of mean depth profile is located away from the best

quotes and increases with the 5 best quote levels. Gould et al. (2013)) further show in

various markets that the mean depth profile for the bid-side and the ask-side exhibits

a humpshape, which means that the mean depth available increases over the first few

relative prices (measured by the number of tick sizes away from the best bid or best

ask price), and then decreases subsequently.

Figure 3.4 reports the mean depth profile for the bid (panel A)and ask (panel B)

side. Both panels show that both BSV and noise trading can generate hump-shaped

mean depth profiles. However, the BSV trading leads to more depth closer to the best

quotes (especially for the buy side) and less depth further away from the best quote,

which indicates that the market is more resilient (it is hardfor a market order to move

prices). With a zero-intelligence model, Ladley and Schenk-Hoppé (2009) report that

the mean depth profile of the 5 best quote is nearly equal. In comparison the results
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FIGURE 3.4. Mean depth profile for the bid-side in panel (A) and the
ask-side in panel (B).

show that BSV trading provides a better explanation for the hump shape in the mean

depth profile of limit order book.

3.6. A non-linear relationship of trade imbalance and average mid-price return.

Various studies including Kempf and Korn (1999) and Gabaix,Gopikrishnan, Plerou

and Stanley (2006) have found that the mid-price return is anincreasing and non-linear

function of the trade imbalances (see also Gould et al. (2013)), which is different from

a linear relation in the classical models of market microstructure (see Kyle (1985)).

Following Gould et al. (2013), we use thetrade imbalance size, which is the differ-

ence between the total absolute size (quantity) of all incoming buy market orders and

the total size of all incoming sell market orders that arriveduring a time interval, to

measure the trade imbalance. We plot in Figure 3.5 both the trade imbalance size

against the average mid-price return for every 240 periods in our simulation.

Figure 3.5 shows that BSV trading leads to an increasing and non-linear relation be-

tween the trade imbalance and mid-price return. Moreover, the relationship is concave

(convex) when trade imbalance is negative (positive), showing that the mid-price re-

turn is more sensitive to trade imbalance when trade imbalance is large. In comparison,
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FIGURE 3.5. Relationships between trade imbalance size and the mid-
price return.

noise trading leads to an almost linear relationship between trade imbalance and mid-

price return. This result shows that the sentiment trading,instead of the noise trading,

can lead to the increasing and nonlinear relation observed in limit order markets.

3.7. Diagonal effect in order submission types.Using data from 40 stocks on the

Paris Bourse, Biais, Hillion and Spatt (1995) examine the probability of different types

of orders and trades conditional on the last order or trade. They find that the same order

type are most likely to follow each other. When listing all the conditional probabilities

of each order type as a matrix, the diagonal elements of the matrix are the highest,

which is also larger than the corresponding unconditional probability. This phenomena

is calleddiagonal effector event clustering(see Gould et al. (2013)).

We consider eight types of the submitted orders according tobuy-sell direction and

order aggressiveness: Market Buy (MB), Limit Buy above the best bid (aggressive

Limit Buy, aLB), Limit Buy at the best bid (LB), Limit Buy below the best bid (pas-

sive Limit Buy, pLB); Market Sell (MS), Limit Sell below the best ask (aggressive

Limit Sell, aLS), Limit Sell at the best ask (LS), and Limit Sell above the best ask
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(passive Limit Sell, pLS). We calculate the unconditional probability and conditional

probability of each order type and collect them as a matrix inTables 3.3 and 3.4 for the

market with BSV traders and the market with noise traders, respectively. As in Biais

et al. (1995), we highlight the two highest conditional probabilities in each column

in bold. We also report the unconditional probability in thesecond last row and the

difference between the diagonal conditional probability and the unconditional proba-

bility in the last row. Table 3.3 clearly shows that the BSV trading generates significant

diagonal effect for all the order types, while Table 3.4 showthat such diagonal effect

cannot be generated by the noise trading.

Current
Previous MB aLB LB pLB MS aLS LS pLS

MB 13.46 3.76 6.16 25.53 4.52 0.33 3.53 42.70
aLB 12.72 2.27 8.50 31.02 2.42 0.02 2.38 40.66
LB 8.06 1.58 7.57 37.81 5.04 0.37 3.89 35.67
pLB 3.59 0.40 4.03 58.69 8.38 0.71 4.88 19.32
MS 3.37 0.26 2.92 47.08 22.04 2.36 6.84 15.13
aLS 2.28 0.02 2.43 40.9414.64 2.34 14.0723.29
LS 4.00 0.36 3.35 38.97 10.41 1.7811.58 29.56
pLS 6.44 0.84 4.22 21.46 3.15 0.25 4.1359.51

Unconditional 6.51 0.72 4.23 39.46 7.25 0.69 5.01 36.13
Difference 6.95 1.55 3.34 19.23 14.79 1.65 6.57 23.38

TABLE 3.3. Unconditional and conditional probability (in %) of the
submitted order types with the BSV trading. The two largest numbers
in each column are in bold. The difference in the last row in italic is the
difference between the diagonal number of the conditional probability
minus the corresponding unconditional probability.

Biais et al. (1995) put forward that diagonal effect and event clustering are gener-

ated by order splitting, imitation behavior and reactions to the information, Goettler,

Parlour and Rajan (2005) argue that the conditional correlation is due to corrections

of mis-pricing. However, Ladley and Schenk-Hoppé (2009) find that zero-intelligence

model can also generate diagonal effect, and they point out that the diagonal effect is
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Current
previous MB aLB LB pLB MS aLS LS pLS

MB 14.50 10.20 3.08 24.32 13.57 7.04 3.05 24.25
aLB 13.17 4.41 3.18 31.27 18.77 4.00 3.09 22.13
LB 14.87 5.98 3.34 27.37 15.54 5.80 3.20 23.89
pLB 13.91 5.69 3.17 29.6116.57 5.28 3.10 22.68
MS 13.07 7.31 3.12 30.07 14.91 6.85 3.05 21.62
aLS 18.08 4.26 3.14 25.06 13.76 4.30 3.1128.28
LS 14.82 5.96 3.26 27.19 15.36 5.72 3.30 24.39
pLS 16.22 5.48 3.12 25.33 14.34 5.56 3.1326.81

Unconditional 15.82 5.94 3.13 27.09 15.24 5.72 3.09 23.96
Difference -1.32 -1.53 0.21 2.52 -0.33 -1.42 0.21 2.85

TABLE 3.4. Unconditional and conditional probability (in %) of the
submitted order types with the noise trading. The two largest numbers
in each column are in bold. The difference in the last row in italic is the
difference between the diagonal number of the conditional probability
minus the corresponding unconditional probability.

not dependent on individual strategic behavior, but it can emerge from the interplay

of the order book and demand/supply functions. More recently, following a similar

model as the one in Chiarella et al. (2009), Kovaleva and Iori(2014) find that when

chartist uses technical rules based on the order book depth,their model can generate

significant diagonal effect for some order types, but not forall order types. Our results

compliment the existing literature and show that the sentiment trading can generate

event clustering for order submission types, namely behavioral sentiment.

4. CONCLUSION

The aim of this paper was to explore the effect of behavioral sentiment in limit order

markets, especially its role in replicating some the well-documented stylized facts of

the time series of returns and of the limit order book.

We find that both the noise and BSV trading can generate the absence of autocor-

relation in returns, long memory in the absolute returns andbid-ask spread, and the
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hump shaped mean depth profile of the order book. The difference is that compared

to noise trading, BSV trading leads to much more significant autocorrelations in the

bid-ask spread and more peaked hump shape in the mean depth profile closer to the

best quotes. More importantly, BSV trading plays a unique role in explaining the fat

tails in the return distribution, long memory in the tradingvolume, an increasing and

non-linear relationship between trade imbalance and mid-price returns, and also the

diagonal effect or event clustering in order submission types. The results demonstrate

that behavioral sentiment is not only useful in explaining under-reation/over-reaction

to news events, but also very useful in explaining some of thewell-documented styl-

ized facts in the limit order markets, which cannot be explained by noise trading.

5. RT FIGURES AND TABLES
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FIGURE 5.1. Relationships between trade imbalance size and the mid-
price return in Robustness test.

TABLE 5.1. Add caption

case Forecasting correlationpM − pm MO ALO LOA PLO
BSV 0.12 7.67 13.76 1.41 9.24 75.59
Noise 0 18.44 31.06 11.66 6.22 51.06
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FIGURE 5.2. Autocorrelation of trading volume in Robustness test.

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

120

140

Relative price level

Q
ua

nt
ity

 

 

BSV
BC0.1
BC0.5
CN

FIGURE 5.3. The sell side order book shape in Robustness test.

TABLE 5.2. Add caption

Time horizon |pl − p′t| MO ALO LOA PLO
30 5.81 15.11 1.98 7.38 75.66
90 9.05 7.1 1.03 2.84 90.41

REFERENCES

Anufriev, M. and Panchenko, V. (2009), ‘Asset prices, traders’ behavior and market design’,Journal of

Economic Dynamics and Control33, 1073–1093.



24 CHIARELLA, HE, SHI AND WEI

0 5 10 15 20 25 30 35 40
0

50

100

150

200

250

Relative price level

Q
ua

nt
ity

 

 

BSV
BC0.1
BC0.5
CN

FIGURE 5.4. The buy side order book shape in Robustness test.

TABLE 5.3. Add caption

Case Mean Skewness Kurtosis
BSV -8.90E-07 -0.15 41.98

BC0.1 -8.40E-07 0.02 8.92
Bc0.5 -8.90E-07 0 6.36
CN -9.00E-07 0.03 10.31

TABLE 5.4. Hurst expoent

Case |rt| |rmt| Volume Spread
BSV 0.64 0.68 0.74 0.86

BC0.1 0.62 0.63 0.74 0.8
Bc0.5 0.61 0.65 0.56 0.91
CN 0.65 0.66 0.62 0.75

Barberis, N., Shleifer, A. and Vishny, R. (1998), ‘A model ofinvestor sentiment’,Journal of Financial

Economics49, 307–343.

Biais, B., Hillion, P. and Spatt, C. (1995), ‘An empirical analysis of the limit order book and the order

flow in the paris bourse’,Journal of Finance50, 1655–1689.
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