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Abstract 
Ride comfort, suspension working space and road holding are three important 
indices to evaluate the dynamic performance of vehicles. The object of this paper is 
to develop the analytical model and numerical solution procedure of dynamic 
performance indices of vehicles with uncertainty in system parameters and road 
conditions. A quarter car model is used to describe the dynamic behavior of 
vehicles running on randomly profiled roads. The sprung mass, unsprung mass, 
suspension damping, suspension and tire stiffness are considered as random 
variables. The road irregularity is considered as a Gaussian random process and 
modeled by means of a simple exponential power spectral density. The mean value, 
standard deviation and variation coefficient of the vehicle’s natural frequencies and 
mode shapes are obtained by using the Monte-Carlo simulation method. The 
computational expressions for the numerical characteristics of vehicle’s dynamic 
performance indices in frequency domain are developed by means of the random 
variable’s functional moment method and algebra synthesis method. The influences 
of the vehicle’s parameters on the vehicle’s dynamic performance indices are 
investigated using a practical example, and some useful conclusions are given. 

Key words: Dynamic performance indices, Vehicles, Uncertainty, Quarter 
car model, Random variables, Random responses 

 

1. Introduction 

Analysis of dynamic performance of vehicles is essential to vehicle design. Ride 
comfort, working space and road holding are three important indices to assess the 
performance of vehicles and vehicle suspension systems. Ride comfort (discomfort) is 
dependent on the acceleration of vehicle body or sprung mass. Working space (suspension 
travel) is the relative displacement between the wheel and vehicle body. Road holding is the 
function of the distance between the wheel and the road surface, in other words, road 
holding depends on the tire deflection. Therefore, the analysis of vehicle’s dynamic 
responses is the base of vehicle performance assessment and vehicle design. Vehicle 
dynamic response analysis has been a hot research topic for many years. Numerous papers 
about the theoretical and experimental investigation on the dynamic behavior of passively 
and actively suspended road vehicles have been published [1-3]. The quarter-car model 
[2-6], half-car model [7-9] and full-vehicle model [10-12] have been developed with 
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researches related to the dynamic behavior of vehicle and its vibration control. The simplest 
representation of a ground vehicle is a quarter-car model with a spring and a damper 
connecting the body to a single wheel which is in turn connected to the ground via the tire 
spring. The mass of the body usually is described as sprung mass, the mass representing the 
wheel, tire, brakes and part of the suspension linkage mass is referred to as the unsprung 
mass.  

Actually, the spring stiffness and damping rate may vary with respect to the nominal 
value due to production tolerances and/or wear, ageing... etc. The vehicle body mass and the 
tire radial stiffness can have stochastic variations due to the variety of possible vehicle 
loading conditions and to the uncertainty of the inflating pressure of poorly maintained tires 
[13]. In cars and buses, weight and placements of passengers often exhibit significant 
variability. In addition, even same brand and type vehicles leaving the production line may 
have uncertainties in size, mass and performance and so on.  

In this paper, a two-degree-of-freedom quarter-car model is used to investigate the 
dynamic responses of cars with uncertainty. The vehicle’s parameters are considered as 
random variables. The dynamic performance indices of vehicles are investigated by using 
the Monte-Carlo simulation method (MCSM) [14], random variable’s functional moment 
method (RVFMM) [15] and algebra synthesis method (ASM) [16]. 

2. Interval seismic vibration of shear beam structures 

A two-degree-of-freedom quarter-car model is shown in Fig. 1. In this model, the 
sprung and unsprung masses corresponding to the one corner of the vehicle are denoted 
respectively by  and . The suspension system is represented by a linear spring of 
stiffness  and a linear damper with a damping rate , while the tire is modeled by a 
linear spring of stiffness . The excitation comes from the road irregularity . The 
model is generally reputed to be sufficiently accurate for capturing the essential features 
related to discomfort, road holding and working space [13]. The linear equations of motions 
of the system model are 
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Using Rayleigh’s quotient, the jth natural frequency of the vehicle jω  can be expressed as 
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where { }jφ  is the jth mode shape. 

The jth modal damping of the vehicle jζ  can be obtained from the following equation [15] 
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Fig. 1  The quarter-car model of the vehicle. 

 

   The displacement  (road irregularity) may be represented by a random variable 

defined by a stationary and ergodic stochastic process with zero mean value. The power 
spectral density of the process may be determined on the basis of experimental 
measurements and in the literature there are many different formulations for it. In this paper 
for sake of simplicity, the following spectrum [13] is considered 

rx
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where  is the road irregularity parameter. bA
   From equations (2) and (5), the power spectral density matrix [ ])(ωPS  of }{P  can be 
obtained 
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   Using the theory of structural random vibration [15,17], the power spectral density of 

the kth degree of freedom of the vehicle’s displacement )(ω
kXS  and acceleration responses 

)(ω
kXS &&  in frequency domain can be developed as 
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where kφ  is the kth line vector of the matrix [ ]φ .  

   Equation (8) can also be concisely expressed as follows 
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   Integrating power spectral density within the frequency domain, the mean square value 

of the vehicle’s displacement and acceleration responses, that is  and , can be 

obtained 
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   Furthermore, the root mean square value of vehicle’s random displacement and 
acceleration responses can be expressed as 
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3. Dynamic performance indices of vehicles 

   Based on the random displacement and acceleration analysis of vehicles, the 
expressions of dynamic performance indices in frequency domain can be obtained. Ride 
comfort index can be described by the root mean square sprung mass acceleration as 
follows 
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   Road holding index (tire deflection) can be expressed as 
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   Working space index (suspension travel) can be given by  
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3. Numerical characteristics analysis of vehicle random responses 

   The following parameters corresponding to , , ,  and  are considered 
as random variables. The randomness of vehicle’s parameters will result in randomness of 
the matrices 

sm um sk sc tk

[ ]M  and [ ]K  and [ ]C , and consequently the natural frequencies jω , mode 
matrix [ ]φ  and modal damping jζ . The random variables are each given a mean value ( μ ) 
and standard deviation (σ ). A further parameter used in this paper is the variation 
coefficient ν , defined by the ratio of the standard deviation to the mean value, that is 

μσν /= . In this paper, all uncertain vehicle’s parameters are normal random variables and 
they are independent each other. For the two-degree-freedom system, the computational 
effort is acceptable for the analysis of the power spectral density, mean value and standard 
deviation of vehicle’s dynamic characteristics. By using the MCSM, 

jωμ , 
jωσ , [ ]φμ , [ ]φσ , 

jζμ  and 
jζσ can be obtained. 

   A combination of uncertainty in the structural dynamic characteristics and stochastic 
excitation will lead to randomness in dynamic performance indices. From equation (14) and 
by means of the ASM [16], the mean value 
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By using the RVFMM [15], can be expressed as 2
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   Similarly, from equation (15) and by means of the ASM, the mean value 
uXψμ and 

standard deviation 
uXψσ and variation coefficient 

uXψν  of road holding index can be 

obtained 
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   Likely, from equation (16) and by means of the ASM, the mean value 
sXuX ψψμ − and 

standard deviation 
sXuX ψψσ −  and standard deviation 

sXuX ψψν − of working space index can be 

obtained 
 

2
1

22
2

1

22
2222 24

2
124

2
1

⎟
⎠
⎞

⎜
⎝
⎛ −−⎟

⎠
⎞

⎜
⎝
⎛ −=

−
SXSXuXuXSXuX ψψψψψψ

σμσμμ    (20) 

 

6 



 

 

APVC2009 
 

13th Asia Pacific Vibration Conference  
22-25 November 2009  
University of Canterbury, New Zealand

2
1

2222
222222 24

2
124

2
1

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ −−+⎟

⎠
⎞

⎜
⎝
⎛ −−=

−
sXsXsXuXuXuXSXuX ψψψψψψψψ

σμμσμμσ    (21) 

 

SXuX

SXuX

SXuX
ψψ

ψψ

ψψ μ

σ
ν

−

−

−
=    (22) 

 

4. Numerical examples 

   Mean values of vehicle’s parameters for this study are given in Table 1, which are 
typical for a lightly damped passenger car [6]. In the following simulations, 

 and )(54.1 meAb −= )/(50 smv = are taken into consideration.  

Table 1. The mean values of vehicle system parameters 

Parameters Mean values 

smμ =240kg 

umμ =36kg 

scμ =980Ns/m 

Sprung mass  sm
Unsprung mass  um
Suspension damping coefficient  sc
Suspension stiffness  sk

skμ =16,000N/m 
Tire stiffness  tk

   In order to investigate the effect of the uncertainty of random vehicle parameters on the 
vehicle’s performance indices, the values of variation coefficients of random vehicle’s 
parameters are respectively taken as different groups. According to the preceding method 
and expressions, the corresponding computational programs are designed. The 
computational results of ride comfort index are given in Table 2. The varying curves of the 
relationship between the variation coefficient (VC) of the road holding index (RHI) and the 
VC of vehicle’s parameters are shown in Fig. 2, as well as the relationship between the VC 
of working space index (WCI) and vehicle’s parameters are given in Fig. 3. In addition, the 
ride comfort indices obtained by the MCSM are also given in Table 2 in which 50000 
simulations are used. 
   From Table 2, it can be seen that the standard deviation and variation coefficient of 
vehicle’s ride comfort index from the method presented in this paper are bigger than the 

tkμ =160,000N/m 

Table 2. The computational results of ride comfort index (*MCSM, unit: mm/s2) 

Model 
sX&&ψμ  

sX&&ψσ  
sX&&ψν  

smν =0.05 
umν =

scν =
skν =

tkν =0 331.0523 7.4195 0.0224 

umν =0.05 
smν =

scν =
skν =

tkν =0 

scν =0.05 
smν =

umν =
skν =

tkν =0  

skν =0.05 
smν =

umν =
scν =

tkν =0 

7 

tkν =0.05 
smν =

umν =
scν =

skν =0 

smν =
umν =

scν =
skν =

tkν =0.5 

smν =
umν =

scν =
skν =

tkν =0.1 

*
smν =

umν =
scν =

skν =
tkν =0.1 

331.0158 

331.0706 

331.2349 

331.1527 

332.4216 

336.1735 

336.0366 

4.6864 

1.8388 

7.4001 

1.8800 

21.8568 

48.0215 

47.7869 

0.0142 

0.0055 

0.0223 

0.0057 

0.0657 

0.1428 

0.1422 
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results obtained from the MCSM, that is, the results obtained by the RVFMM and ASM are 
more conservative. The uncertainty of sprung mass and suspension stiffness produces 
significant effect on the ride comfort index. Comparing with the case that only one of the 
uncertainty of sprung mass, unsprung mass, suspension damping, suspension and tyre 
stiffness is taken into account, the change of the vehicle’s ride comfort index is greater 
when their uncertainty are considered simultaneously. Along with the increase of the 
variation coefficients of vehicle’s parameters, the uncertainty of vehicle’s ride comfort 
index will increase. 
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Fig. 2  Computational results of road holding index (tire deflection). 
 

   Fig. 2 shows that the uncertainties of unsprung mass and tire stiffness affect the 
vehcile’s road holding index significantly. However, the change of the RHI is almost 
independent of the sprung mass and suspension damping. Fig. 3 shows that the randomness 
of sprung mass, unsprung mass, suspension and tire stiffness produce similar effect on 
uncertainty of the working space index. Again, the change of the vehicle’s dynamic 
displacement responses is greater when the uncertainty of all vehicle’s parameters are 
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considered simultaneously. In general, the uncertainty of the RHI and WSI will increase 
gradually along with the increase of the variation coefficients of vehicle’s parameters, but 
the relationships between the variation coefficient of performance indices and parameters 
are nonlinear. 
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Fig. 3  Computational results of working space index (suspension travel). 
 

5. Conclusions 

In this paper, a random quarter-car model is used to investigate the dynamic 
performance indices of cars with uncertainty. Computational expressions of the mean value, 
standard deviation and variation coefficient of the ride comfort, road holding and working 
space indices have been developed. The random responses of stochastic vehicles are 
obtained expediently. This method will also be applied to the dynamic performance analysis 
of random vehicles by using stochastic half-car and full-car models. 
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