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Robotic Assistance with Attitude: a Mobility Agent for Motor Func tion
Rehabilitation and Ambulation Support

Jaime Valls Miŕo, Vivien Osswald, Mitesh Patel and Gamini Dissanayake

Abstract— This paper presents the design of an intelligent
walking aid for the frail and elderly as well as for patients who
are recovering from surgical procedures, in order to enhance
safer mobility for these study populations. The device augments
a conventional rolling walker aid with sensing and navigational
abilities to safely travel through an environment following
user’s perceived intentions, unless collisions or instability is
imminent. The agent, embodied as a Partially Observable
Markov Decision Process (POMDP), critically relies on minimal
user input to seamlessly recognise user’s short-term intended
behaviour, constantly updating this projection to allow for
inconspicuous user-robot integration. This, in turn, shifts user’s
focus from fine motor-skilled control to coarse indications
broadly intended to convey intention. Overall, the system can
afford an increase in safety for the cognitive user through
preventative care - reduced number of falls or collision with
surrounding objects, minimising health-care expenses as well
as increasing independent living for people with gait disorders.
Successful simulation and experimental results demonstrate the
validity of the proposed architecture for a practical robotic
rollator design.

I. MOTIVATION

Impaired mobility is a significant problem in the frail
and older population, largely as a result of the age-related
decline in the musculo-skeletal and neurological systems.
Physical complications of immobility include significant
health issues such as bed sores, osteoporosis and deep
vein thrombosis. Immobility is also associated with other
functional impairments, loss of independence, and declinein
quality of life. It has been demonstrated that both short- and
long-term physical activities can improve health, mobility
and functional abilities [1]. Even the frail and the very old
can benefit from such activities. With the population ageing
at an exponential rate, impaired mobility poses a serious
threat to both the society and the individuals [2].

Walking aids (or “walkers” as they are commonly known)
provide means whereby many frail older adults and a variety
of other persons with gait disorders can maintain mobility,
functional independence and social interactions. Without
these assistive devices, many of them would be either chair-
or bed-bound [3]. Mobility assistants have a large role to play
not only in assisting the ageing population with maintaining
gait stability and musculo-skeletal strength, but also in the
rehabilitation process for those who have had their movement
temporarily restricted, usually through surgery. Given the
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high incidence of falls associated with gait instability in
the older population, and concomitant medical and social
costs, it seems only natural that walking devices should form
an important part of a successful multi-faceted prevention
program [4].

Conventional walking aids are fully dependent upon the
cognitive capability of the users. Their usability is dependent
upon the mental ability of the user to learn, and to use the
aids properly as well as safely. In the nursing home, where
the prevalence of impaired mobility is the highest, cognitive
impairment is equally high, and the need for individual
caregiver assistance is ever present. This is only set to worsen
as the world’s ageing population increases and the proportion
of the elderly in need for care grows. Research indicates
that the number of elderly people will increase by 50% and
those reaching the age of 85 and up will rise by 100% [5].
Considering the projected decline over the coming years in
the number of people in active ages, those who can perform
the care-taking activities amongst them, there is significant
benefit in attending to these shortcomings by incorporating
assistive robotic devices into the health-care sector.

II. BACKGROUND

Over the last two decades, the aforementioned circum-
stances have motivated researchers into developing a range
of intelligent assistive robotic technologies which, one way
or another, aim to improve the quality of life of those
affected. Electric wheelchairs are particularly suitablefor
a large sample of the potential population of users given
their social acceptance and ubiquity, and have seen many
roboticised aid variants developed [6], [7]. Other systems
such as smart blind sticks (or canes) [8] have also bee been
developed with this goal in mind.

This paper focuses on walker-type support systems. Rol-
lator walkers are best suited to ageing adults suffering from
slight weakness or those who may be experiencing mild
balance problems Behind the cane, they are more widely
used mobility aid [9], partly due to the perception in the eyes
of older adult users of not carrying the stigma of “being old”,
when compared with other assistive devices [10].

A reduced area of research in the development of in-
telligent robotic roller walkers has focused on passively-
controlled prototypes where the walker can control the
orientation of its front actuated steering-wheel but thereis no
active driving component, motion being the result of external
user forces [11]. Other passive designs use servo brake
controls and adaptive braking control strategies to improve
manoeuvrability [12]. Passive walker are advantageous in



that they are less complex, lighter, and inherently safer as
they need batteries of reduced size, or none, to operate,
yet their performance is considerably dampened for these
very same reasons. An increasing number of researchers in
the field have paid more attention to incorporating active
servo motors for power assistance, and a suite of sensors to
provide functionality such as collision avoidance, navigation
or adjustable motion control during walking. The “VA-
PAMAID” walker allows the user explicit control of the
amount of assistance provided by selecting one of three
modes: manual, automatic and park [13]. A mobility assistant
device developed at the CMU (predecessor of the “Nursebot”
project [14]) incorporates modules for obstacle avoidance, lo-
calisation, mapping, path planning and people tracking [15].
Navigation decisions are based on a user motion model
that represents a mapping of force sensor readings from a
haptic device to translational and rotational commands. After
obtaining these short-term trajectories representing user’s
directional intentions, a multi-modal shared control operates
the walker. The “PAMM” developed at the MIT concentrates
on the path planning aspect of a mobility assistant [16]. It
is also based on a multi-modal compromise between human
and robot controls: (a) the user has complete control and
the PAMM provides physical support only, (b) the PAMM
leads the user along a planned path at a predetermined
speed, (c) similar to (b) but the user is able to control the
PAMM’s speed by pushing and pulling the handlebars, and
(d) where the user has limited control over the path of the
PAMM. The “Care-O-Bot” mobility assistant was designed
as part of a large home care project for older persons at the
Fraunhofer Institute [17]. It also exhibits two major modes
of operation for navigation: (a) direct user control where the
robot takes readings from a user intent sensor and determines
the direction and speed of travel, and (b) target mode which
allows users to input a destination based on a map, and the
robot will guide the user to the destination in a reactive
manner along the calculated route.

What these methods have in common is their limited
ability to continually recognise and adapt to the situation
in which the user is in, and not just during the navigational
tasks, a fundamental challenge yet to be resolved for these
robotic assistive agents to be effective. In addition to the
usual localisation and navigation capabilities required of
a mobile robot, a computer assisted walking aid should
appropriately address the fact that users are not required to
be aware of the intelligent agent behind the driving wheel. In
practice, users should be able to use the system dependably,
without specifically considering the functions of the intel-
ligent agent, and by the same token, the cooperative agent
has to have the ability to represent the uncertainty inherent
in a person’s behaviour. Significant steps have already been
taken in this direction, such as the “Autominder” System
which forms the heart of the aforementioned “Nursebot”
project [14]. Here, a computerised cognitive system incorpo-
rates AI techniques and a decision theoretic approach based
on a probabilistic decision making framework (a Partially
Observable Markov Decision Process, or POMDP) to sched-

ule voice reminders and navigational guidance for elderly
users. The cognitive assistance to decide if and when to issue
the reminders is limited to reasoning between discrepancies
between supposed and observed plans, yet the same general
decision theoretic model of interaction between user and
cognitive agent has recently successfully incorporated user’s
cognitive attitudes themselves in the models. This is the case
of the POMDP models proposed to assist people with more
severe cognitive discapacities, such as dementia, in specific
domains such as hand-washing [18].

The human-driven robotic agent hereby proposed is aimed
at naturally responding to the physical interactions between
user and active walking aids with a decision theoretic frame-
work whereby user’s attitudes are specifically accounted for,
paying special attention to the intended behaviour or course
of action, such as standing-up, strolling around, etc. Other
cognitive or physical characteristics (e.g user responsiveness
or health) can also be incorporated into the same framework
at the expense of exactness in the solution and within the
limitation of the sensing technologies.

To sum up, the proposed mechanism differs from the more
traditional mixed-mode assistance provided by other active
walkers in three critical aspects:

1) in assisting (inherently “noisy”) users with mild cog-
nitive or physical impairments via a decision-making
mechanism that requires minimal indicative input

2) in actively addressing specific muscular strength reha-
bilitation via safe guided ambulation

3) in combining this task with support for other higher-
level repetitive routines such as aided gait stability
strolling or safe stand-up/sit-down actions

III. DESIGN OF THE WALKING ROLLING AID
PLATFORM

The proposed design, based on a modified commercial rol-
lator walking frame with four wheels, is displayed in Fig. 1.
This base design has been instrumented with additional
actuators and incremental encoders to the two rear wheels
(front casters are passive), two infra-red (IRs) proximity
sensors to detect the presence and configuration of the user
(e.g. leaning forward or raising from a chair), four strain
gauges (SGs), two on each of the walker’s handle-bars, two
contact switches in the handles, a low-level micro-controller
for sensing and actuation, and a high-level control computer,
as well as a laser range finder for localisation and reactive
navigation.

The strain gauges employed are two Micro Measurements
250UR. The differential force measurements suministered by
each pair of these sensors along the vertical axis of each
handle-bar are used in conjunction with the contact switches
to establish whether (and how strongly) a user is holding
onto the handle-bars, in readiness to start some task such as
sitting down or ambulation.

The IR subsystem sensor is made up of two Sharp
GP2Y0A02YK, which are used to estimate whether the
driving user is standing behind the walker (at the handle-



(a) Frontal view (b) Rear view

Fig. 1. The instrumented rollator walker platform showing the laser range
finder at the front, the infra-red proximity sensors on top of the black PC
controller, servo-motors and encoders.

bars) and how far they are from it. Sensing range after
calibration is[20, 150] cm.

The motorised actuation subsystem is based around two
24VDC reversible gear-head motor with optical encoder
(detailed in Fig.?? and rotary mechanical couplings. The
motors are PWM driven using a national semiconductor
LMD18200 3A, 55V H-Bridge motor driver.

A compact Hokuyo URG-04LX laser range finder is
also incorporated in the design for localisation and reactive
navigation (it can be seen in Fig. 1a placed at the lower front
of the walker platform). The URG-04LX is able to report
ranges from 0.02 m to 4.0 m (0.001 m resolution) in a240◦

arc (0.36◦ angular resolution). Its power consumption, 500
mA @ 5V, makes it a natural choice for battery operated
vehicles.

IV. HIGHER-LEVEL DECISION PLANNING

Readings from the sensorial systems in the robot are
continually being observed and fused with past information
to resolve for the next action to take in assisting the user
with whatever task he/she is intending on doing. A decision
theoretic framework to resolve for the next best action is
proposed in the form of a POMDP, which allows us to take
advantage of its natural fabric for sensor fusion and for the
handling of the pervasive uncertainties associated in dealing
with human users.

A. The POMDP Framework

POMDPs are decision theoretic models incorporating Ar-
tificial Intelligent techniques to calculate optimal control
actions under uncertainty. They constitute a general frame-
work for discrete sequential decision making in environments
where there is no certainty about the actual state of the
“world”, i.e., states are not fully observable. Instead, asseen
in Fig. 2, a policy maps computed “belief” states representing
memory of past actions and observations into stochastic
action policies that are expected to maximise the (discounted)
sum of future rewards.

Fig. 2. The POMDP agent.

More formally, a discrete-time POMDP model is defined
by < S,A,Z, T,O,R, γ >, a seven tuple which represents
the dynamics of the environment as the probabilistic out-
comes of the actions (the transition functionT ), the reward
function R, and the probabilistic relationships between the
agent’s observations and the states of the environment (the
observation functionO), where :

• S: A finite set of states that represents the state of the
system at each point in time.

• A: A finite set of actions that an agent can take.
• Z: A finite set of observations.
• T : A × S × S → [0, 1]: The stochastic state transi-

tion model, which maps each state action pair into a
probability distribution over the state space. The next
distribution over the state space depends only on the
current state-action pair and not on the previous state-
action pairs. This requirement ensures theMarkovian

property of the decision process (MDP). We denote
T (s, a, s′) = Pr(s′|s, a) i.e. the probability that an
agent took actiona from states and reached states′.

• O: A×S×Z → [0, 1]: A function that maps the action
at timet−1 and the state at timet to a distribution over
the observation set. We defineO(s′, a, z) = Pr(z|s′, a)
as the probability of making observationz given that
the agent took actiona and landed in states′.

• R: S×A → ℜ : The immediate reward function which
indicates the reward for doing an action in some state.

• γ : A discount factor used to reduce the award given to
future (and more uncertain) steps.

Given the POMDP model, the goal is to find the sequence
of actions, or optimal policyπ∗(s) = {a0, ...., at} which
maximises the expected sum of future rewards:

E

[

tmax
∑

t=0

γtR(st, at)

]

(1)

wheretmax defines the time steps left in a finite horizon
problem,∞ otherwise. However, since states are not fully
observable, it uses actions and noisy observations as defined
by O to maintain a factored probability distribution of length
|S| over all possible hidden statessi ∈ S, known as the belief



b, updated (from Bayes’ Rule) at each time step according
to:

b′(s′) = Pr(s′|b, a, o) =
O(s′, a, o)

∑

s∈S T (s, a, s′)b(s)

Pr(o|a, b)
(2)

where Pr(o|a, b) is a normalising factor that ensures
probabilities add up to one by summing the numerator over
all possibles′ ∈ S:

Pr(o|a, b) =
∑

s∈S

b(s)
∑

s′∈S

T (s, a, s′)O(s′, a, o) (3)

The elements of the vectorb(i) indicate the conditional
probability of the agent being in statesi ∈ S, given an
initial belief b0 and the given evolution of the system so far.
Since the belief is an accurate compilation of all the relevant
history of the system, it can be shown that using this belief
state provides just as much information as the entire action-
observation history would [19], i.e., it is a sufficient statistic
for selecting optimal actionsπ∗(b′). This is important, as
it means that given the belief state, a POMDP forms a
completely observable Markovian process (MDP) which only
depends on the last belief, last action and current observa-
tion. Under this transformation,b′ becomes the state of an
observable MDP. However, what in an MDP is a discrete
state space problem, becomes continuous in POMPD, and
while the action space of a “belief” MDP remain the same
as in a POMDP, the transition and reward functions need
to be transformed accordingly. Hence, the optimal policy
for any given initial belief,π∗(b), is the one that yields the
highest expected reward according to (1) for each belief state,
referred to as the optimal value functionV ∗(b) as it assigns
values to belief states. It can be formulated as a solution to
the following Bellman optimality equation:

V ∗(b) = max
a∈A

[R(b, a) + γ
∑

(b,b′)∈B

T (b, a, b′)V ∗(b′)] (4)

which becomes a highly dimensional problem as there are
an infinite number of belief states(b, b′) ∈ B - what is
known as the “dimensionality curse” of POMDPs, and so far
exact optimisation for larger models is still computationally
intractable. There are numerous studies about finding sub-
optimal policies for larger POMDPs models (e.g. [20]). The
size of the proposed model detailed below in Section IV-C is
beyond the reach of an exact solution. Therefore, an off-line
point-based approximation has been obtained based on the
SARSOP solver [21], which obtains policies by sampling
over the subset of belief points reachable from the initial
state under the optimal sequence of actions that iteratively
converge to those beliefs.

B. Walker Agent Assistive POMDP

In the context of robot navigation, the finite states of
Markovian models have traditionally represented the loca-
tion of the robotic agent in a given map, either topologi-
cally [22] or as a discrete approximation of their geomet-
ric location [14]. Under these circumstances, the system-
atic decision-making approach of a navigational POMDP

Fig. 3. Diagram of the POMDP agent dynamics with an example readings
from the sensor array, indicating that the waist and torso IRhave fired, one
of the switched is pressed, and the location of the robot is not relevant.
These dynamics are described by the stochastic parameters encoded in the
transition and observation functionsT andO.

framework in based on monitoring beliefs and choosing the
appropriate navigational actions. In contrast, our proposal
differs significantly by transferring the planning probleminto
a decision-making required to find optimal policies that best
match the user’s cognitive attitude towards a set of assistive
tasks, beyond the purely steering routines associated with
some of them. In our proposition, we do not specifically
incorporate a model of the user’s mental state, as has recently
been proposed in order to cue users with various levels
of dementia to successfully complete a task such as hand-
washing [?], [18].Instead we demonstrate how a simpler
human-driven robotic agent capable of inventively exploit
the physical interactions with the driving user can effectively
incorporate his/hers evolving activity model into the planning
process.

C. POMDP Model Dynamics

Within this context, the proposed walker assistive agent
can be best modelled by a state spaceS which describes
the tasks userSitDown, userIntendStandUp,
userIntendSitDown, userIntendAssiNav,
userIntendRehab, userIntendStop. The agent
evolves from an unknown initial state, and moves according
to one of the following action spaceA: doNothing,
doStandUp, doSitDown, doAssistiveNav,
doRehab corresponding to the intended task the user is
trying to perform, as perceived by the agent. A diagram of
the model dynamics is depicted in Fig. 3. Actions such as
standing up or down are performed by actuating the motors
in a safe reactive way to aid in such endeavour. For instance,
in doStandUp the motors slightly pull forward so as to



Fig. 4. A real and simulation example of the POMDP walker agent.The various tasks are depicted in different colours, and solid and dash lines refer to
the navigation routines in the real and simulated experiments.

help the user to stand up. The navigational task represents
an assistive ambulation function where the walker agent
reacts to directional commands from the user via the strain
gauges while the user strolls around. The rehabilitation task
aims to substitute the labour-intensive task of an escort
nurse when attending to the musculo-skeletal strength
rehabilitation exercises often undertaken by elderly people
in care facilities. The rationale is that when the user or the
nurse take the walker to a specific location (A in Fig. 3),
the walker starts an autonomous routine safely traversing
between two given locations in the map,A and B for a
predefined number of runs. The platform reacts safely to
obstacles in the environment at all times, and is constantly
monitoring new perceived indications from the user -
such as the user deciding to quit and move somewhere
else, or stop to talk to a friend en-route - and reacting
accordingly. Further assistive tasks are planned for future
work, particularly to exploit the wealth of information
contained in the observations from the strain gauges.

One of the nice properties of Markov processes is their
ability to formally fuse multi-sensorial information in their
observation model probabilities,Pr(o|s). As described in
Section III, there is an array of instruments aboard the walker
agent to provide diverse sensorial cues about the user, the
platform itself, and its surroundings. From these, a vector
of abstract discrete observation variables that the robot can
make has been extracted to increase state observability and
reduce the perceptual “aliasing”. For example, readings from
the infra-red sensors pointing at the waist and torso of
the user are fused with data from the switches to reduce
ambiguity about the user trying to stand-up or sit-down
while leaning on the walker robot. The increased robustness
in the combination of these independent readings means
a reduction in the size of the model, and consequently a
better approximation to the exact solution. Our proposed
model ended up with nine observation variables, fused to
provide one of two discrete states (On/Off). Further, the
walker agent localisation needed during the navigational
tasks was assumed to be fully observable via the AMCL

implementation of a Rao-Blackwell particle filter [23].
Given that the proposition is aimed at a pool of users

with impaired ability to provide idealistic commands, a
calibration is required to effectively learn the transition and
observation functions that more closely reflect the error or
uncertainties that can be expected in the user’s actions, as
well as the ambiguities in subsequent observations due to
sensor uncertainties and the inherent capacity of the user to
properly operate the platform. In the work hereby presented,
however, the training data has been restricted to a pool
of able users, while awaiting ethical approval to carry out
experiments on adequate subjects from an assistive living
facility.

The reward function was defined such that actions that
are proven to have been taken according to user’s intended
activities are rewarded, whiles those direct actions that lead
in the wrong direction are penalised.

V. EXPERIMENTAL RESULTS

The proposed algorithm has been evaluated within the
domain of our office environment, a typical working space
with desks, cubicles, people walking about, open meeting
areas, corridors, etc. which can be thought of being structured
similarly to a care facility for the elderly, possibly more
challenging given the somewhat smaller dimensions. A 2D
bird’s eye view of the map can be seen in Fig 4 overlaid
with some of the results detailed next. Experiments were
first simulated by manually providing the observations over
typical runs, which demonstrated the viability of the decision
making process itself, although they do not truly model the
dynamics of the physical interactions and noises present in
the world. We then asked one of the able user subjects to
follow as closely as possible the same tasks in the real
environment to qualitatively evaluate the effectiveness of
the model under real world conditions. The results from
one of these runs are depicted in Fig. 4, where coloured
codes indicate the different actions taken, and solid and
dash traces represent the (atemporal) trajectory followedby
the walker agent (and user) during the real and simulated



TABLE I

SIMULATION OF POLICIES - MEAN REWARDS

Policy POMDP CE MDP
Mean Reward 183.6 122.32 199.8

tests. The consonance in the results was also the norm in
additional experiments carried out in the same context, where
attempting the same observations in simulation and during
the real tests (naturally nosier with real users) reproduced
the same actions being taken by the proposed algorithm.
Processing delays in evaluating the perceived intentions were
in the order of milliseconds, hence negligible for practical
purposes.

To further evaluate the performance of our proposed
planning architecture more quantitatively, we compared the
quality of the optimal POMDP policy against the average
reward over time achieved in simulation trials by a fully
observable MDP, which represents the unachievable upper-
bound when there is (noise-free) perfect knowledge of the
state. We have also compared against what is referred to
as the certainty-equivalent (CE) policy in [18], a form of
heuristic alternative which looks at the most likely state
given the current belief and acts according to the policy
derived for the MDP model. The results of running 1000
policy simulation trials, each for a maximum number of 100
steps, are collected in Table I. As expected, they indicate
that the POMDP policy behaves more poorly than the ideal
MDP upper bounds, yet the rewards that can be expected
with the modelled uncertainties are close to that of the MDP.
This means the policies obtained by the planner responding
appropriately in the overall majority of cases within the
modelled uncertainties that the system has to deal with,
effectively achieving high rates of successfully “guessed”
intentions. The CE policy appears far less rewarding as
the belief state collapses to a single state, therefore always
having to commit with little regard for sensor and action
ambiguities in choosing the policy, which proves fatal is
many instances.

VI. CONCLUSIONS AND FUTURE WORK

A cognitive agent capable of unobtrusively assist physi-
cally less able users with a set of mobility primitives has
been presented. By making appropriate use of a range of
sensorial inputs, an instrumented walker rollator platform
has been proposed to assist in daily actions via a decision-
making mechanism that requires minimal indicative input
from the user, and potentially without the specific aid of a
human caregiver. This is particularly relevant to provide gait
stability support while strolling or during repetitive routines
such as safe ambulation for physically strength rehabilitation,
therefore increasing levels of confidence and independence.
Simulation and real world experiments have shown that the
decision-making agent can appropriately read and react to
the user’s intended behaviour, fulfilling the assistive nature
of its role. Work in planned to automate the learning process
and test the platform in an elderly care facility.
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