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Robotic Assistance with Attitude: a

Mobility Agent for Motor Func tion

Rehabilitation and Ambulation Support

Jaime Valls Mib, Vivien Osswald, Mitesh Patel and Gamini Dissanayake

Abstract— This paper presents the design of an intelligent
walking aid for the frail and elderly as well as for patients who
are recovering from surgical procedures, in order to enhance
safer mobility for these study populations. The device augments
a conventional rolling walker aid with sensing and navigational
abilities to safely travel through an environment following
user’s perceived intentions, unless collisions or instability is
imminent. The agent, embodied as a Partially Observable
Markov Decision Process (POMDP), critically relies on minimal
user input to seamlessly recognise user’s short-term intended
behaviour, constantly updating this projection to allow for
inconspicuous user-robot integration. This, in turn, shifts users
focus from fine motor-skilled control to coarse indications
broadly intended to convey intention. Overall, the system can
afford an increase in safety for the cognitive user through
preventative care - reduced number of falls or collision with
surrounding objects, minimising health-care expenses as well
as increasing independent living for people with gait disorders.
Successful simulation and experimental results demonstrate the
validity of the proposed architecture for a practical robotic
rollator design.

I. MOTIVATION
Impaired mobility is a significant problem in the frail

and older population, largely as a result of the age-relate
decline in the musculo-skeletal and neurological systems.
Physical complications of immobility include significant
health issues such as bed sores, osteoporosis and d

high incidence of falls associated with gait instability in
the older population, and concomitant medical and social
costs, it seems only natural that walking devices shoulehfor
an important part of a successful multi-faceted prevention
program [4].

Conventional walking aids are fully dependent upon the
cognitive capability of the users. Their usability is degent
upon the mental ability of the user to learn, and to use the
aids properly as well as safely. In the nursing home, where
the prevalence of impaired mobility is the highest, cogaiti
impairment is equally high, and the need for individual
caregiver assistance is ever present. This is only set teamor
as the world’s ageing population increases and the praporti
of the elderly in need for care grows. Research indicates
that the number of elderly people will increase by 50% and
those reaching the age of 85 and up will rise by 100% [5].
Considering the projected decline over the coming years in
the number of people in active ages, those who can perform
the care-taking activities amongst them, there is sigmifica
benefit in attending to these shortcomings by incorporating
a}jssistive robotic devices into the health-care sector.

1. BACKGROUND

Over the last two decades, the aforementioned circum-
fhces have motivated researchers into developing a range

vein thrombosis. Immobility is also associated with othe[)]c intelligent assistive robotic technologies which, onayw

functional impairments, loss of independence, and dedtine

or another, aim to improve the quality of life of those

quality of life. It has been demonstrated that both shortt AN ftected. Electric wheelchairs are particularly suitabde

long-term physical activities can improve health, mobilit

and functional abilities [1]. Even the frail and the very old

a large sample of the potential population of users given
their social acceptance and ubiquity, and have seen many

can benefit from such activities. With the population ageingoboticised aid variants developed [6], [7]. Other systems

at an exponential rate, impaired mobility poses a serio

threat to both the society and the individuals [2].
Walking aids (or “walkers”

Wich as smart blind sticks (or canes) [8] have also bee been

developed with this goal in mind.

as they are commonly known) This paper focuses on walker-type support systems. Rol-

provide means whereby many frail older adults and a variefyq \aikers are best suited to ageing adults sufferingfro
of other persons with gait disorders can maintain mOb'“tyinght weakness or those who may be experiencing mild

functional independence and social interactions. WithOLHalance problems Behind the cane, they are more widely
these assistive devices, many of them would be either chajfz 4 mobility aid [9], partly due to the perception in theeye

or bed-bound [3]. Mobility assistants have a large role &ypl

not only in assisting the ageing population with maintagnin

gait stability and musculo-skeletal strength, but alsohie t

of older adult users of not carrying the stigma of “being old”
when compared with other assistive devices [10].
A reduced area of research in the development of in-

rehabilitation process for those who have had their moveme{é”igem robotic roller walkers has focused on passively-

temporarily restricted, usually through surgery. Giver th

controlled prototypes where the walker can control the
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active driving component, motion being the result of exaérn
user forces [11]. Other passive designs use servo brake
controls and adaptive braking control strategies to im@rov
manoeuvrability [12]. Passive walker are advantageous in



that they are less complex, lighter, and inherently safer ade voice reminders and navigational guidance for elderly
they need batteries of reduced size, or none, to operatesers. The cognitive assistance to decide if and when te issu
yet their performance is considerably dampened for theslee reminders is limited to reasoning between discrepancie
very same reasons. An increasing number of researchershietween supposed and observed plans, yet the same general
the field have paid more attention to incorporating activelecision theoretic model of interaction between user and
servo motors for power assistance, and a suite of sensorsctugnitive agent has recently successfully incorporatent'sis
provide functionality such as collision avoidance, natima cognitive attitudes themselves in the models. This is tlse ca

or adjustable motion control during walking. The “VA- of the POMDP models proposed to assist people with more
PAMAID” walker allows the user explicit control of the severe cognitive discapacities, such as dementia, infapeci
amount of assistance provided by selecting one of thramains such as hand-washing [18].

modes: manual, automatic and park [13]. A mobility assistan The human-driven robotic agent hereby proposed is aimed
device developed at the CMU (predecessor of the “Nursebadit naturally responding to the physical interactions betwe
project [14]) incorporates modules for obstacle avoidaliee user and active walking aids with a decision theoretic frame
calisation, mapping, path planning and people tracking. [15work whereby user’s attitudes are specifically accounted fo
Navigation decisions are based on a user motion modphying special attention to the intended behaviour or @urs
that represents a mapping of force sensor readings fromo#é action, such as standing-up, strolling around, etc. Othe
haptic device to translational and rotational commandgerAf cognitive or physical characteristics (e.g user respensiss
obtaining these short-term trajectories representing’suseor health) can also be incorporated into the same framework
directional intentions, a multi-modal shared control gpes at the expense of exactness in the solution and within the
the walker. The “PAMM” developed at the MIT concentratedimitation of the sensing technologies.

on the path planning aspect of a mobility assistant [16]. It To sum up, the proposed mechanism differs from the more
is also based on a multi-modal compromise between humaditional mixed-mode assistance provided by other activ
and robot controls: (a) the user has complete control angalkers in three critical aspects:

the PAMM provides physical support only, (b) the PAMM 1) in assisting (inherently *
leads the user along a planned pat_h at a predetermined nitive or physical impairments via a decision-making
speed,, (c) similar to (b)_ but the user is able to control the mechanism that requires minimal indicative input
PAMM's speed by pushing and pulling the handlebars, and 5y iy 4ctively addressing specific muscular strength reha-
(d) where the user has limited control over the path of the bilitation via safe guided ambulation

PAMM. The “Care-O-Bot” mobility assistant was designed 3) in combining this task with support for other higher-

as part of a large home care project for older persons at the * 0| repetitive routines such as aided gait stability
Fraunhofer Institute [17]. It also exhibits two major modes strolling or safe stand-up/sit-down actions

of operation for navigation: (a) direct user control whdre t
robot'takefs readings from a user intent sensor and detesm?ne lIl. DESIGN OF THE WALKING ROLLING AID
the direction and speed of travel, and (b) target mode which PLATEFORM
allows users to input a destination based on a map, and the
robot will guide the user to the destination in a reactive The proposed design, based on a modified commercial rol-
manner along the calculated route. lator walking frame with four wheels, is displayed in Fig. 1.
What these methods have in common is their limitedhis base design has been instrumented with additional
ability to continually recognise and adapt to the situatio@ctuators and incremental encoders to the two rear wheels
in which the user is in, and not just during the navigationaffront casters are passive), two infra-red (IRs) proximity
tasks, a fundamental challenge yet to be resolved for thesensors to detect the presence and configuration of the user
robotic assistive agents to be effective. In addition to thée.g. leaning forward or raising from a chair), four strain
usual localisation and navigation capabilities requirdd cgauges (SGs), two on each of the walker’s handle-bars, two
a mobile robot, a computer assisted walking aid shoulgontact switches in the handles, a low-level micro-cotgrol
appropriately address the fact that users are not requiredfer sensing and actuation, and a high-level control compute
be aware of the intelligent agent behind the driving whael. |as well as a laser range finder for localisation and reactive
practice, users should be able to use the system dependabByigation.
without specifically considering the functions of the intel The strain gauges employed are two Micro Measurements
ligent agent, and by the same token, the cooperative agetiOUR. The differential force measurements suministeyed b
has to have the ability to represent the uncertainty inheresach pair of these sensors along the vertical axis of each
in a person’s behaviour. Significant steps have already bebandle-bar are used in conjunction with the contact swiche
taken in this direction, such as the “Autominder” Systemio establish whether (and how strongly) a user is holding
which forms the heart of the aforementioned “Nursebotbnto the handle-bars, in readiness to start some task such as
project [14]. Here, a computerised cognitive system ingerp sitting down or ambulation.
rates Al techniques and a decision theoretic approach basedrhe IR subsystem sensor is made up of two Sharp
on a probabilistic decision making framework (a PartiallyGP2Y0A02YK, which are used to estimate whether the
Observable Markov Decision Process, or POMDP) to schedyriving user is standing behind the walker (at the handle-

noisy”) users with mild cog-
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(a) Frontal view (b) Rear view

Fig. 1. The instrumented rollator walker platform showing taser range
finder at the front, the infra-red proximity sensors on topta black PC ) . . )
controller, servo-motors and encoders. More formally, a discrete-time POMDP model is defined

by < S,A,Z T,0,R,~v >, a seven tuple which represents
the dynamics of the environment as the probabilistic out-

bars) and how far they are from it. Sensing range aft&fomes of the actions (the transition functi@i), the reward
calibration is[20, 150] cm. function R, and the probabilistic relationships between the

The motorised actuation subsystem is based around w@gent's observations and the states of the environment (the
24VDC reversible gear-head motor with optical encodepbservation functior0), where :
(detailed in Fig.?? and rotary mechanical couplings. The « S: A finite set of states that represents the state of the
motors are PWM driven using a national semiconductor System at each point in time.
LMD18200 3A, 55V H-Bridge motor driver. « A: A finite set of actions that an agent can take.

A compact Hokuyo URG-04LX laser range finder is « Z: A finite set of observations.
also incorporated in the design for localisation and rgacti « 7: A x S x S — [0,1]: The stochastic state transi-
navigation (it can be seen in Fig. 1a placed at the lower front tion model, which maps each state action pair into a
of the walker platform). The URG-04LX is able to report probability distribution over the state space. The next
ranges from 0.02 m to 4.0 m (0.001 m resolution) i48° distribution over the state space depends only on the
arc (0.36° angular resolution). Its power consumption, 500  current state-action pair and not on the previous state-
mA @ 5V, makes it a natural choice for battery operated action pairs. This requirement ensures Merkovian
vehicles. property of the decision process (MDP). We denote
T(s,a,s") = Pr(s'|s,a) i.e. the probability that an

IV. HIGHER-LEVEL DECISION PLANNING agent took actior: from states and reached stat€.

Readings from the sensorial systems in the robot are, O: Ax S x Z — [0,1]: A function that maps the action
continually being observed and fused with past information 4t timet— 1 and the state at timeto a distribution over
to resolve for the next action to take in assisting the user the observation set. We defii¥s’, a, z) = Pr(z|s’, a)
with whatever task he/she is intending on doing. A decision  as the probability of making observatiangiven that
theoretic framework to resolve for the next best action is  the agent took actioa and landed in state'.
proposed in the form of a POMDP, which allows us to take , R: § x A — R : The immediate reward function which
advantage of its natural fabric for sensor fusion and for the indicates the reward for doing an action in some state.
handling of the pervasive uncertainties associated inmgal , ~ : A discount factor used to reduce the award given to
with human users. future (and more uncertain) steps.

A. The POMDP Framework Given the POMDP model, the goal is to find the sequence

POMDPs are decision theoretic models incorporating A2 actions, or optimal policyr™(s) = {ao, ...., ar} which

tificial Intelligent techniques to calculate optimal caitr maximises the expected sum of future rewards:

actions under uncertainty. They constitute a general frame tmaz

work for discrete sequential decision making in environtasen E|> 4'R(s, at)‘| 1)
where there is no certainty about the actual state of the t=0

“world”, i.e., states are not fully observable. Insteadsaen wheret,, ., defines the time steps left in a finite horizon
in Fig. 2, a policy maps computed “belief” states representi problem,co otherwise. However, since states are not fully
memory of past actions and observations into stochastibservable, it uses actions and noisy observations as define
action policies that are expected to maximise the (dis@m)nt by O to maintain a factored probability distribution of length
sum of future rewards. |S| over all possible hidden statese S, known as the belief
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initial belief by and the given evolution of the system so far. —
Since the belief is an accurate compilation of all the rateva
history of the system, it can be shown that using this belie -
state provides just as much information as the entire actio S
observation history would [19], i.e., it is a sufficient &ttt P /‘<V>] * ]
for selecting optimal actiong*(b’). This is important, as : )
it means that given the belief state, a POMDP forms a
completely observable Markovian process (MDP) which onl¥ig. 3. Diagram of the POMDP agent dynamics with an exampleimgad
depends on the last belief, last action and current observgam the sensor array, indicating that the waist and torsbadiRe fired, one
- - .y of the switched is pressed, and the location of the robot isrelevant.
tion. Under this transformatiory/ becomes the state of an These dynamics are described by the stochastic parameterdeehin the
observable MDP. However, what in an MDP is a discreteansition and observation functioffs and O.
state space problem, becomes continuous in POMPD, and
while the action space of a “belief” MDP remain the same
as in a POMDP, the transition and reward functions neeflamework in based on monitoring beliefs and choosing the
to be transformed accordingly. Hence, the optimal policippropriate navigational actions. In contrast, our prapos
for any given initial belief,7*(b), is the one that yields the differs significantly by transferring the planning problémto
highest expected reward according to (1) for each beliéd staa decision-making required to find optimal policies thattbes
referred to as the optimal value functidff (b) as it assigns match the user’s cognitive attitude towards a set of agsisti
values to belief states. It can be formulated as a solution tasks, beyond the purely steering routines associated with
the following Bellman optimality equation: some of them. In our proposition, we do not specifically
" Nt ow 1 incorporate a model of the user's mental state, as has hgcent
V(o) :Ifeaf[R(b’@ij Z T(b,a, )] (4) been proposed in order to cue users with various levels
(b:b)eB of dementia to successfully complete a task such as hand-
which becomes a highly dimensional problem as there awashing P], [18].Instead we demonstrate how a simpler
an infinite number of belief state®,b’) € B - what is human-driven robotic agent capable of inventively exploit
known as the “dimensionality curse” of POMDPs, and so fathe physical interactions with the driving user can effesiti
exact optimisation for larger models is still computatiyra incorporate his/hers evolving activity model into the plany
intractable. There are numerous studies about finding suprocess.
optimal policies for larger POMDPs models (e.g. [20]). The .
sige of trFl)e proposed mgodel detailed below in(Sgctgon]?V-C ig' POMDP Model Dynamics
beyond the reach of an exact solution. Therefore, an off-lin Within this context, the proposed walker assistive agent
point-based approximation has been obtained based on &&nh be best modelled by a state spatevhich describes
SARSOP solver [21], which obtains policies by samplinghe tasks user Sit Down, userl|ntendSt andUp,
over the subset of belief points reachable from the initig#ser I nt endSi t Down, user| nt endAssi Nav,
state under the optimal sequence of actions that itergtive/ser | nt endRehab, userIntendStop. The agent

4
T N
Q userintendStop ) )

‘ waistiR ‘ torsolR ‘ ‘sww(ches ‘ ‘ localizer

converge to those beliefs. evolves from an unknown initial state, and moves according
o to one of the following action spacel: doNot hi ng,
B. Walker Agent Assistive POMDP doSt andUp, doSi t Down, doAssi stiveNav,

In the context of robot navigation, the finite states ofloRehab corresponding to the intended task the user is
Markovian models have traditionally represented the locdrying to perform, as perceived by the agent. A diagram of
tion of the robotic agent in a given map, either topologithe model dynamics is depicted in Fig. 3. Actions such as
cally [22] or as a discrete approximation of their geometstanding up or down are performed by actuating the motors
ric location [14]. Under these circumstances, the systeni a safe reactive way to aid in such endeavour. For instance,
atic decision-making approach of a navigational POMDIh doSt andUp the motors slightly pull forward so as to
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Fig. 4. A real and simulation example of the POMDP walker agéhée various tasks are depicted in different colours, andl soid dash lines refer to
the navigation routines in the real and simulated experiments

help the user to stand up. The navigational task represetmsplementation of a Rao-Blackwell particle filter [23].

an assistive ambulation function where the walker agent Given that the proposition is aimed at a pool of users
reacts to directional commands from the user via the straiith impaired ability to provide idealistic commands, a
gauges while the user strolls around. The rehabilitatisk ta calibration is required to effectively learn the transitiand
aims to substitute the labour-intensive task of an escoobservation functions that more closely reflect the error or
nurse when attending to the musculo-skeletal strengimcertainties that can be expected in the user's actions, as
rehabilitation exercises often undertaken by elderly peopwell as the ambiguities in subsequent observations due to
in care facilities. The rationale is that when the user or theensor uncertainties and the inherent capacity of the oser t
nurse take the walker to a specific locatioA {0 Fig. 3), properly operate the platform. In the work hereby presented
the walker starts an autonomous routine safely traversifgwever, the training data has been restricted to a pool
between two given locations in the mag, and B for a of able users, while awaiting ethical approval to carry out
predefined number of runs. The platform reacts safely texperiments on adequate subjects from an assistive living
obstacles in the environment at all times, and is constantfgcility.

monitoring new perceived indications from the user - The reward function was defined such that actions that
such as the user deciding to quit and move somewhegge proven to have been taken according to user’s intended
else, or stop to talk to a friend en-route - and reactingctivities are rewarded, whiles those direct actions teatl |
accordingly. Further assistive tasks are planned for éutuin the wrong direction are penalised.

work, particularly to exploit the wealth of information

contained in the observations from the strain gauges. V. EXPERIMENTAL RESULTS

One of the nice properties of Markov processes is their The proposed algorithm has been evaluated within the
ability to formally fuse multi-sensorial information indéir  domain of our office environment, a typical working space
observation model probabilities?r(o|s). As described in with desks, cubicles, people walking about, open meeting
Section lll, there is an array of instruments aboard the gralk areas, corridors, etc. which can be thought of being stredtu
agent to provide diverse sensorial cues about the user, thienilarly to a care facility for the elderly, possibly more
platform itself, and its surroundings. From these, a vectarhallenging given the somewhat smaller dimensions. A 2D
of abstract discrete observation variables that the robot chird’s eye view of the map can be seen in Fig 4 overlaid
make has been extracted to increase state observability amith some of the results detailed next. Experiments were
reduce the perceptual “aliasing”. For example, readingsfr first simulated by manually providing the observations over
the infra-red sensors pointing at the waist and torso dfpical runs, which demonstrated the viability of the damis
the user are fused with data from the switches to reduaeaking process itself, although they do not truly model the
ambiguity about the user trying to stand-up or sit-dowrlynamics of the physical interactions and noises present in
while leaning on the walker robot. The increased robustnesise world. We then asked one of the able user subjects to
in the combination of these independent readings meafdlow as closely as possible the same tasks in the real
a reduction in the size of the model, and consequently environment to qualitatively evaluate the effectivene$s o
better approximation to the exact solution. Our proposetthe model under real world conditions. The results from
model ended up with nine observation variables, fused twne of these runs are depicted in Fig. 4, where coloured
provide one of two discrete states (On/Off). Further, theodes indicate the different actions taken, and solid and
walker agent localisation needed during the navigationalash traces represent the (atemporal) trajectory follomed
tasks was assumed to be fully observable via the AMCthe walker agent (and user) during the real and simulated



TABLE |
SIMULATION OF POLICIES - MEAN REWARDS

(1
Policy POMDP | CE MDP
Mean Reward| 183.6 122.32 | 199.8
[2]
[3]

tests. The consonance in the results was also the norm in
additional experiments carried out in the same contextyavhe (4]
attempting the same observations in simulation and during
the real tests (naturally nosier with real users) reproduce
the same actions being taken by the proposed algorithni®!
Processing delays in evaluating the perceived intenticare w

in the order of milliseconds, hence negligible for pradtica [6]
purposes.

To further evaluate the performance of our proposed
planning architecture more quantitatively, we comparesl th [7]
quality of the optimal POMDP policy against the average
reward over time achieved in simulation trials by a fully (g
observable MDP, which represents the unachievable upper-
bound when there is (noise-free) perfect knowledge of th 9
state. We have also compared against what is referred to
as the certainty-equivalent (CE) policy in [18], a form of(10]
heuristic alternative which looks at the most likely state
given the current belief and acts according to the policyq
derived for the MDP model. The results of running 1000
policy simulation trials, each for a maximum number of 100
steps, are collected in Table I. As expected, they indicajgy;
that the POMDP policy behaves more poorly than the ideal
MDP upper bounds, yet the rewards that can be expectlﬁq)]
with the modelled uncertainties are close to that of the MDP.
This means the policies obtained by the planner responding
appropriately in the overall majority of cases within thehm]
modelled uncertainties that the system has to deal with,
effectively achieving high rates of successfully “gues$sed
intentions. The CE policy appears far less rewarding a[§5]
the belief state collapses to a single state, thereforeyalwa
having to commit with little regard for sensor and action
ambiguities in choosing the policy, which proves fatal isfm]
many instances.

VI. CONCLUSIONS AND FUTURE WORK 17

A cognitive agent capable of unobtrusively assist physi-
cally less able users with a set of mobility primitives ha?1
been presented. By making appropriate use of a range o?]
sensorial inputs, an instrumented walker rollator platfor
has been proposed to assist in daily actions via a decision-
making mechanism that requires minimal indicative inpu&lg]
from the user, and potentially without the specific aid of a
human caregiver. This is particularly relevant to providét g [20]
stability support while strolling or during repetitive rines
such as safe ambulation for physically strength rehabdita [21]
therefore increasing levels of confidence and independence
Simulation and real world experiments have shown that the,,
decision-making agent can appropriately read and react to
the user’s intended behaviour, fulfilling the assistiveunat
of its role. Work in planned to automate the learning proceégs]
and test the platform in an elderly care facility.
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