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Abstract—This paper proposed a nonlinear model predictive 

control (MPC) method for the control of gantry crane. One of the main 
motivations to apply MPC to control gantry crane is based on its 
ability to handle control constraints for multivariable systems. A 
pre-compensator is constructed to compensate the input nonlinearity 
(nonsymmetric dead zone with saturation) by using its inverse 
function. By well tuning the weighting function matrices, the control 
system can properly compromise the control between crane position 
and swing angle. The proposed control algorithm was implemented for 
the control of gantry crane system in System Control Lab of University 
of Technology, Sydney (UTS), and achieved desired experimental 
results. 
 

I. INTRODUCTION 
ANTRY cranes are widely used in factories to transport 
heavy loads and hazardous materials. The operation of 

cranes can be divided into five steps: gripping, lifting, moving 
the load from point to point, lowering, and ungripping. Moving 
the load from point to point is the most time-consuming task in 
the process and requires a skilful operator to accomplish it [8]. 
In most of the applications, the transfer has to be performed as 
fast as possible. Such fast motion would induce undesirable 
swing, which may cause load damage and other types of hazards, 
and hence reduces the operation efficiency. The goal of control 
of gantry crane in this study is to automatically move the crane 
to a particular position as quickly as possible, while trying to 
keep the swing of the mass to a minimum. 

For the control of gantry crane, various approaches can be 
found in literature. One of the most popular techniques in use is 
to separate the controller design into an anti-swing part and a 
tracking part. Each one is designed separately and then 
combined to ensure the performance and stability of the overall 
system [8]. For example, Yu et. al. [15] developed a nonlinear 
feedback control approach based on inner (anti-swing) outloop 
(tracking) structure. Yang et. al. [14] developed a parameter 
adaptive nonlinear controller for gantry position tracking and 
sway angle stabilization [7]. The second technique is based on 
the feedback of the position and the swing angle [8]. For 
example, Ridout [9] [10] developed controllers, which feed 

 
All authors are with Faculty of Engineering, University of Technology, Sydney 
(UTS), NSW 2007, Australia. † Email: Steven.Su@eng.uts.edu.au. 

back the trolley position and speed and the load swing angle. 
The feedback gains are calculated either by trial and error based 
on the root-locus technique or by adjusting the trolley-velocity 
gain according to the error signal. Recently, Omar and Nayfeh 
[8] developed a gain scheduling feedback control approach with 
friction compensation and obtained good control results. 

In this study, these two approaches were combined implicitly 
based on multivariable model predictive control (MPC). The 
main advantages of MPC is that it allows us to use the detailed 
knowledge of a process, in the form of a dynamic model, as an 
aid to control the process within required constraints [4]. Arnold 
et al. applied the MPC strategy in boom crane control [1]. 
However the structure of boom crane is quite different with the 
gantry crane. Nonlinear fuzzy MPC has been adopted in gantry 
crane control in [6], where the controller is based on the 
searching of the optimal solution in a discretized control space. 
In this paper, we developed a different MPC algorithm, which 
implement both tracking and anti-swing by tuning weighting 
matrices, where the control space needs not to be discretized. 
Hence this optimal solution is more accurate in the sense of 
quantization error. 

Dead zone type phenomena occurs in various components of 
control systems including sensors, amplifiers and actuators, 
especially in electric servo motors [2] encountered in this study. 
It has a number of possible effects on control systems and the 
most common effect is to decrease the control accuracy and 
possibly lead to limit cycles or system instability. Tao et. al. [13], 
Bai [2] and Selmic et. al. [12] developed the adaptive dead zone 
inverse (ADI) approaches to deal with unknown dead zones. 
The idea is to cancel completely the effect of the dead zone so 
that linear analysis and design can be applied. 

In this paper, the dead zone inverse strategy is also adopted in 
order to cancel nonlinear behaviour so that linear MPC is 
applicable. It should be emphasized that the special dead zone 
type nonlinearity (non symmetric dead zone with saturation) 
encountered in this study is theoretically non-invertible. 
However, as saturation can be treated as a constraint of the MPC 
controller, it is only required to inverse the dead zone in non 
saturation range. 

This paper is organized as follows. The modelling of the 
system is given in Section 2. Section 3 introduces the proposed 
model predictive controller with input nonlinearity 
compensation. The experimental results and its discussions are 
also provided in this section. Conclusion is given in Section 4. 
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II. MODELLING OF GANTRY CRANE SYSTEM 
The overhead gantry crane system consists of a small crane 

that is driven by a DC motor in a horizontal direction along on 
I-beam that is approximately three meters long (See Figures 1 
and 2). Attached to the bottom of the crane is a hanging mass, 
which is suspended 0.82m below the crane. Essentially, the 
hanging mass acts as a simple pendulum. As the crane moves 
along the I-beam, the acceleration of the crane affects the 
momentum of the mass, and as such, causes it to swing. The 
higher the acceleration of the moving crane, the further the mass 
will swing from its stationary position. 

 

 
Fig. 1 Gantry crane system 
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Fig. 2 Ideal gantry crane system 

 

 
Fig. 3 The computer controlled gantry crane system 

 
The overhead gantry crane system consists of a small crane 

that is driven by a DC motor in a horizontal direction along on 
I-beam that is approximately three meters long (See Figures 1 
and 2). Attached to the bottom of the crane is a hanging mass, 
which is suspended 0.82m below the crane. Essentially, the 
hanging mass acts as a simple pendulum. As the crane moves 
along the I-beam, the acceleration of the crane affects the 
momentum of the mass, and as such, causes it to swing. The 

higher the acceleration of the moving crane, the further the mass 
will swing from its stationary position. The overhead gantry 
crane system has one control input and two controlled outputs 
(see Figure 3). The input is provided by the computer, and is 
passed to the crane motor, which drives the crane to a given 
velocity. The outputs of the system are the horizontal position of 
the crane and the swing angle of the hanging mass. 

The input-output transfer function is modelled based on the 
Lagrangian approach [5]. In order to simplify the discussion, 
first we assume the friction between the track and crane is zero. 
Later, the inverse of the friction function will utilized to 
compensate it. 

In Figure 2, we select the xq =1  and θ=2q  as the 
generalized coordinates. Then, the Lagrangian of the system is  
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Then, we derive two Lagrangian equations as follows:  
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That is:  
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 If the controlled closed loop is well designed, it is reasonable 
to assume that θ  is sufficiently small. Then, we can linearize 
equation (2) and obtain the following transfer functions:  
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The motor can be approximated by a first order system:  
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 where )(sU  is the input voltage to the motor. 
Based on equations (3) and (4), we have  
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As pc mm >> , equation (5) can be approximated as:  
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Finally, the parameters of model (6) are determined based on 



 

 

physical measurements of the gantry crane and step response 
data obtained from the computer controlled gantry crane system 
(see Figure 3). 
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Fig. 4 Nonsymmetric deadzone nonlinearity 

 
Fig. 5 Estimated nonlinearity  

 
The dead zone was encountered when the voltage input is 

greater than -2.5 and less than 2.4. That is, the motor does not 
respond and hence does not move if a voltage is within this dead 
zone. 

In [12], Selmic et. al. discussed a general nonsymmetric 
deadzone nonlinearity )(uD  (see Figure 4). A mathematical 
model for this deadzone characteristic is as follows:  
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 Functions )(uh  and )(ug  are invertible. In this study, it is 

obvious 2.4=+d  and 2.5= −−d , but we need to determine 
functions )(uh  and )(ug . The nonsaturation parts of 
functions )(uh  and )(ug  in our study are approximated as 

linear functions: )(=)( ++ − dukuh  and 

)(=)( −− − dukug . Coefficients +k  and −k  are identified as 

2.1≈≈ −+ kk . The overall input nonlinearity is shown in 
Figure 5, which is a nonsymmetric deadzone with saturation. 

MPC for nonlinear system is much complicated because of 
the difficulties of nonlinear optimization. As mentioned in the 
introduction, the dead zone inverse strategy is adopted in this 
study in order to cancel nonlinear behaviour so that linear MPC 
is applicable. 

In this study, functions )(ug  and )(uh  are noninvertible 
due to saturation. However, the functions are invertible in 
non-saturation range. According to [12], a pre-compensator 
(also called pre-load) within non-saturation range is drawn as in 
Figure 6. Saturation can be treated as input constraint for MPC 
controller. 

 
 

 
Fig. 6 Inverse of the estimated nonlinearity within non-saturation 

range  
 

The experimental implementation of the inverse of the dead 
zone function is a simple logic statement. After experiments, it 
is found this pre-compensator introduces very sharp transient 
when the voltage goes through zero (similar to an ideal relay). 
The motor would jump accordingly and would pose a problem 
with the swing control due to the sudden velocities. In order to 
avoid the sharp transient, the following logic statements are 
served as pre-compensator:   

    • if ( 0.15>ageOutputVolt ) and 
( 0.2<)( rorPositionErABS )  

ageOutputVoltageOutputVolt *0.482.4= + ;  
    • if ( 0.15> −ageOutputVolt ) and 

( 0.2<)( rorPositionErABS ) 
ageOutputVoltageOutputVolt *0.482.5= +− .  



 

 

 
From the above statements, it can be seen the 

pre-compensation action is confined by position tracking error 
( 0.2|>| rorPositionEr ) and output voltage of MPC 
controller ( 0.15|>| ageOutputVolt ). Experiments proved the 
confined pre-compensation action can effectively compensate 
input nonlinearity and avoid sharp transient.  

III. MODEL PREDICTIVE CONTROL FOR GANTRY CRANE SYSTEM 
Based on the identified model, the model predictive 

controller is designed to implement both position tracking and 
anti-swing. The model predictive controller can handle 
saturation by simply imposing an input constraint. After the 
pre-compensator is employed, the gantry crane system can be 
treated as a linear dynamic system. Therefore, linear MPC can 
be applied to deal with this problem. 

 
Fig. 7 Model predictive control algorithm description 

 
Model predictive control predicts and optimize the future 

behaviour of the process based on a dynamic model of the 
process. At each control interval, the MPC algorithm calculates 
an open loop sequence of the manipulated variables in such a 
way to optimize the future behaviour of the plant [3]. The first 
value in this optimal sequence is injected into the plant. Figure 7 
shows the state of a MPC system that has been operating for 
many sampling instants. Integer k  represents the current 
instant. The latest measured output, ky , and previous 

measurements, 1−ky , 2−ky ,..., are known. 

To calculate its next move ku , the controller operates in two 
phases [3]: 

1. Estimation and prediction: In order to make an intelligent 
move, the controller needs to know the current state and any 
internal variables that influence the future trend. To accomplish 
estimation and prediction, the controller uses all past and 
current measurements and the models. 

2. Optimization: Values of setpoints, measured disturbances, 
and constraints are specified over a finite horizon of future 
sampling instants, 1+k , 2+k ,  , pk + , where p  is the 

prediction horizon. The controller computes m  moves ku , 

1+ku , ... 1−+mku , where m  is the control horizon. The moves 
are the solution of a constrained optimization problem:  
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 where,   
    • klky /ˆ +  is the predicted values of y  at time lk +  based 

on information available at time k .  
    • p  is prediction horizon which sets the number of control 

intervals over which the controller predicts its outputs when 
computing controller moves.  

    • m  is control horizon which sets the number of moves 
computed. It must not exceed the prediction horizon. If less than 
the prediction horizon, the final computed move fills the 
remainder of the prediction horizon.  

    • .= 1−−∆ kkk uuu   

    • .=2 xxx T ΓΓ||||   

    • y
lΓ  and u

lΓ  are weighting matrices for predicted errors 

and control moves ( 0>y
lΓ  and 0≥Γu

l ).  
 
For details of the formulations, see [3] or [11]. 
Before control system implementation, the following issues 

should be addressed: the definition of system constraints, the 
selection of prediction and control horizons and weighting 
matrices. 

As the inverse of the static nonlinearity has been identified 
and applied as a pre-compensator, the compensated system can 
be regarded as a linear dynamic system. Then, the optimization 
problem associated with the MPC controller design can be 
described as in (9). The constraint of this optimization problem 
is due to the saturation of the motor input voltage:  

 vuv 55 ≤≤−  (10) 
There are no specific rules for the selection of prediction 

horizon p  and control horizon m . However, increasing p  

often results in less aggressive control action. Increasing m  
makes the controller more aggressive and increases 
computational effort. After extensive simulation and 
experimental studies, the value of prediction horizon p  and 
control horizon m  were selected as is 30  and 5  respectively. 

The implementation of position tracking as well as 
anti-swing, the weighting matrices for predicted errors and 
control moves as y

lΓ  and u
lΓ  had been well tuned.  

The overall digital control system is implemented by using a 
National Instrumentation (NI) Data Acquisition Card (DAQ 
6062E). The core of model predictive control algorithm is 
Quadratic Programming (QP), which is realized by using 
Labview 8.0. Experimental results for two weighting functions  
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are shown in Figure 8. From the figure it can be seen that the 
proposed MPC based control strategy can well compromise 
between position tracking and anti-swing by properly selecting 
weighting matrices. Specifically, if select 0])([1= diagy

lΓ  
(weight for anti-swing control is zero), then good position 
tracking can be obtained, but the controller cannot reduce 
swing. On the other hand, if select a proper weight for 
anti-swing control ( 1])([2.5= diagy

lΓ ), then the swing angle 
can be suppressed to a desired low level. No surprisingly, this 
will degrade position tracking. It should be also emphasized that 
this approach can also be applied for the accommodation of 
actuator failures as these failures can be easily handled by 
simply adding extra control constraints. 

 

 
Fig. 8 Control of overhead gantry crane system with different 
weighting matrices. Top: Step response of position sensor output (One 
voltage approximately equals to 0.277 meter). Middle: Step response 
of angular sensor output (One voltage approximately equals to 15 
degree). Bottom: Control output. 

IV. CONCLUSION 
This paper investigates the control of overhead gantry crane 

by using model predictive control. Firstly, the model of the 
gantry crane system is established, which includes a static input 
nonlinearity (deadzone with saturation). The saturation 
nonlinearity is treated as an input constraint of the designed 
MPC controller. The deadzone nonlinearity is compensated by 
using deadzone inverse approach. MPC controller is then 
designed for the pre-compensated system. By adjusting 
weighting matrices, we well compromise position tracking and 
anti-swing control. Real time experimental results demonstrated 
the efficiency of the proposed method.  
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