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Abstract 

    Planar virtual sound barriers with secondary sources over the entire opening have 

been demonstrated an effective way to achieve global control of sound transmission 

through the opening, but loudspeakers in the middle of the opening affect ventilation, 

lighting and normal access through it. To avoid this problem, this technical note 

proposes to implement secondary sources at the edge of a cavity opening and 

investigates the active sound reduction performance of the system numerically and 

experimentally. Unlike secondary sources over the entire opening which can achieve 

sound reduction at any frequency as long as there are sufficient of them, there exists 

an upper bound of effective frequency for global control when secondary sources are 

at the edge of the opening; however, local control is always achievable. Preliminary 

active noise control experiments were conducted with an open wooden box and in a 

semi-closed open ceiling meeting room to support the conclusions. 
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1. Introduction 

Openings are often used for ventilation and lighting of buildings, but they reduce 

sound transmission loss of the building facades. Many researchers have worked on 

different approaches to attenuate sound radiation from openings. For example, 

quarter-wave resonators and transparent micro-perforated absorbers have been used to 

reduce noise radiation through openings [1-2]. Maillard and Carter studied passive 

and active control on openings and found that passive control approaches can improve 

the sound insulation in mid-high frequency range, while at low frequencies active 

control systems are more appropriate [3]. De Salis et al. reviewed various noise 

control techniques for natural ventilation openings and suggested using hybrid 

systems to achieve broadband sound reduction [4]. 

Active control strategies have been investigated in previous work. Ise 

implemented 16 independent single-channel active noise control systems over an 

entire open window in experiments and achieved a sound reduction of 10 dB for 

200-700 Hz at the error microphones [5]. Huang et al. applied active noise control in 

a staggered window system and studied its performance by numerical simulations and 

experiments [6]. Nishimura et al. installed 4 Active Acoustic Shielding cells on a 250 

mm  250 mm window and the maximum sound reduction achieved at the error 

microphones was 10 dB from 500 Hz to 2000 Hz [7]. 

Wang et al. demonstrated that sound power radiated through an opening can be 

reduced by secondary sources distributed over the entire opening [8]. It was verified 

experimentally that noise below 500 Hz can be effectively reduced with 6 secondary 

sources at a 0.432 m  0.67 m opening [9]. However, secondary sources located in the 

middle of the opening are difficult to implement in some applications. Applying 

secondary sources only at the edge of the opening is sometimes a more practical way, 

but its feasibility of achieving global control is not known. 

If global sound control is difficult to achieve or unnecessary, local control 

provides another option [11]. Guo and Pan conducted research on the quiet zones in 

free space created by multiple secondary sources and error microphones located in 

two parallel planes, and found that there existed a range of optimal spacing for the 
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control sources and error microphones [12]. David and Elliott found that the diameter 

of 10 dB quiet zone can be up to about one tenth of the acoustic wavelength [13]. 

Zou et al. proposed a 16-channel virtual sound barrier (VSB) system which 

created a cylindrical 10 dB quiet zone with 0.2 m height and 0.2 m radius [15]. Epain 

and Friot developed an active control system by using the boundary pressure control 

(BPC) technique with 30 secondary sources and 30 error microphones and created a 

quiet zone inside the sphere consisting of error microphones [16]. In practical 

applications, the virtual error sensor arrangement can be applied to avoid the 

interference problem between the occupant’s movements and error microphones 

[17-20]. The microphones do not need to be an obstacle for the users because the 

two-stage idea of Virtual Microphone Control can be applied, which only marginally 

limits the performance of the control system [21]. 

This note investigates the performance of active control with secondary sources 

only at the edge of an opening by numerical simulations first. The effective global 

control frequency is explored and compared with the case when the secondary sources 

are distributed over the entire opening. Experiments are carried out with an open 

wooden box and in the Fabpod, a semi-closed meeting room, to explore the possibility 

of achieving local control with secondary sources at the edge of the opening. 

 

2. Theory 

In global control, the cost function is defined as the sound power plus the 

weighted control power to optimize the strengths of secondary sources and improve 

the stability of the control system 

  H H H

p p s s s s

1
Re[ ] Re[ ]

2
J q p   q p q q , (1) 

where qp is the strength of the primary source; qs is the vector of the strengths of 

secondary sources; pp is the sound pressure at the position of the primary source and 

ps is the vector of the sound pressure at positions of secondary sources. β is a positive 

real number to constrain the control effort [22]. The transcript H denotes a Hermitian 

transpose and Re[ ] means the real part of the quantity in square brackets. By 
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minimizing the cost function in Eq. (1), the optimized strengths of secondary sources 

can be obtained [23] 

 1

s ss sp p( ) q    Iq R R , (2) 

where Rss = Re[Zss], Rsp = Re[Zsp]. Zss is the acoustic transfer function matrix between 

the secondary sources and Zsp is the acoustic transfer function vector between the 

primary source and secondary sources. I is an identity matrix. 

In local control, the cost function is defined as the sum of the squared sound 

pressure at L error points plus the weighted control source power 

 H H

s s=J p p q q , (3) 

where β is also a positive real number for constraining the control effort. The 

optimized vector of strengths of the secondary sources is [24] 

 H 1 H

s se se se e( ) pq    Iq Z Z Z Z , (4) 

where Zse is the acoustic transfer function matrix between the secondary sources and 

error points and Ze is the acoustic transfer function vector between the primary source 

and error points.  

 

3. Simulations and Discussions 

    A simple rectangular open cavity in Fig. 1(a) was used as the model for the 

research. The dimension of the cavity is 1.20 m (length)  1.00 m (width)  1.30 m 

(height) and all the 5 walls are rigid. It is assumed that the insertion loss of the side 

walls is sufficiently large so that sound outside the cavity is solely that transmitted 

through the opening. As it is difficult to obtain the sound field in and outside an 

unbaffled open cavity analytically [25], a rectangular cavity with its opening 

embedded at an infinite rigid baffle is investigated here with the method proposed in 

Ref [9]. 
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(a) 

     

(b)                                    (c) 

Fig. 1. (a) The model of the baffled open cavity, (b) Positions of 12 secondary sources evenly 

distributed over the entire opening, (c) Positions of 12 secondary sources at the edge of the 

opening. 

 

3.1 Global control 

The positions of 12 secondary sources evenly distributed over the entire opening 

are indicated in Fig. 1(b). The intervals in x and y direction are 0.30 m and 0.35 m, 

respectively. For the convenience of implementation, 12 secondary sources are fixed 

inside the cavity near the opening, at the height of 1.25 m. The positions of 12 

secondary sources at the edge of the opening are shown in Fig. 1(c). Figure 2 shows 

the sound power level (SWL) without (Anc off) and with (Anc on) control when 12 

secondary sources are evenly distributed over the entire opening and only at the edge. 

Eq. (2) is used to optimize the strengths of secondary sources and β = 0.1. The tonal 

primary source is located at (0.20, 0.50, 0.80) m. 
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Fig. 2. Sound power level without and with control when secondary sources are distributed over 

the entire opening and at the edge of the opening. 

 

Figure 2 shows that at frequencies below 300 Hz, both configurations are 

effective as the sound reductions are more than 30 dB. The sound reduction 

performance becomes worse as the frequency increases, but the sound reduction from 

400 Hz to 600 Hz is still more than 20 dB when the secondary sources are distributed 

over the entire opening. However, the sound reduction decreases to less than 10 dB 

from 400 Hz to 600 Hz when the secondary sources are distributed at the edge. It is 

clear that the ANC system is still effective from 400 Hz to 600 Hz when the 

secondary sources are distributed over the entire opening but the one with secondary 

sources at the edge is not. At frequencies higher than 600 Hz, both configurations are 

not effective any more. Therefore, there exist an upper effective frequency for both 

configurations, and the upper bound is lower when secondary sources are at the edge. 

If sufficient secondary sources are distributed over the entire opening, sound at 

higher frequencies can be attenuated. However, this is not the case when they are 

distributed only at the edge of the opening. Figure 3 shows the sound power level 

without and with active control when 12, 24, 36 and 48 secondary sources are 

distributed at the height of 1.25 m. 
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(a) 

 

 

(b) 

Fig. 3. The sound power level without and with control with different number of secondary 

sources, (a) secondary sources are distributed over the entire opening, (b) secondary sources are 

distributed at the edge of the opening. 

 

    Figure 3(a) shows that when 36 or 48 secondary sources are distributed over the 

entire opening, sound power reduction at 700 Hz or higher frequencies is significantly 

higher than 12 or 24 secondary sources. Therefore, more secondary sources lead to 

effective sound reduction over a wider frequency range when they are distributed over 

the entire opening. However, in Fig. 3(b), the curves corresponding to 36 and 48 

secondary sources are almost the same. This indicates that it is already the best 
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performance that can be achieved by the configuration and no extra sound reduction 

can be obtained even though more secondary sources are applied. The upper bound of 

effective frequency is about 300 Hz when secondary sources are distributed at the 

edge of the opening. The upper bound of effective frequency and the number of 

secondary sources need to achieve the best noise reduction performance are related to 

the size of the opening and the cavity, but the relationship is not clear at present and 

needs to be investigated in the future research. 

 

3.2 Local control 

In open ceiling meeting rooms, sound radiated to the space around the meeting 

room is more important (due to neighboring work stations) than that radiated to the 

upper space of the opening. The feasibility of local control of sound radiation to the 

space around the open cavity with secondary sources are distributed at the edge of the 

opening is explored. 16 error points marked by ‘o’ are set around the open cavity with 

a perpendicular distance of 1.0 m between the cavity wall and the error points, shown 

as Group 1 in Fig. 4. 

 

Fig. 4. The physical configuration of the system: positions of secondary sources and error points. 

 

    The positions of 8 secondary sources are shown in Fig. 4 marked by ‘x’. Two 

secondary sources 0.05 m from the boundary are distributed along each side of the 

opening, and the interval between them is 0.40 m. The sound reduction is defined as 
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the difference of the average sound pressure level at 16 error points without and with 

control. The average sound pressure level at 16 error points without and with control 

and the corresponding sound reduction are shown in Fig. 5(a). β in Eq. (3) is set as 0.1 

to constrain the strengths of secondary sources. 

  

(a)                                      (b) 

Fig. 5. The average sound pressure level at error points without and with control and the sound 

reduction, (a) the error points are Group 1 in Fig. 3, (b) the error points are Group 2 in Fig. 3 

 

In Fig. 5(a), the sound reduction of average sound pressure level becomes 

negligible from 400 Hz, so local active control is only effective at low frequencies 

(lower than 300 Hz). In Fig. 5(b), the sound reduction at all the frequencies below 

1000 Hz is more than 34 dB because of the relatively small target area. It might be 

practical to create a small local quiet zone when secondary sources are implemented 

at the edge of openings. 

 

4. Experiments 

4.1 Experiments with an open wooden box 

An open wooden box made of medium density fiberboard was used as a 

simplified model of the open cavity. The box has the dimensions of 1.2 m (length), 1.0 

m (width) and 1.3 m (height). An 8-channel active noise control system was 

implemented at the edge of its opening. For the convenience of implementation, 8 

secondary sources were fixed outside the wooden box on a frame at the top of the 

opening, 2 on each side with an interval of 0.4 m. Eight error microphones were 

placed 0.2 m away from the outer wall of the wooden box at the height of 1.25 m. The 
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experimental setup is shown in Fig. 6(a). Figure 6(b) is a schematic diagram of the 

physical configurations. 

 

  

(a)                                     (b) 

Fig. 6. The experimental setup, (a) the picture of the experimental setup, (b) schematic diagram of 

the physical configurations. 

 

    The primary source was a loudspeaker inside the wooden box, and a commercial 

active noise controller (Tiger ANC II) embedded with the fully coupled FxLMS 

algorithm was used in the experiments. The sampling frequency was 2 kHz and the 

lengths of the secondary path model and control filters were both 320 taps. The input 

broadband signal (below 1000 Hz) to the primary source was used as the reference 

signal. The average error signal at 8 error microphones without and with control and 

the corresponding sound reduction are shown in Fig. 7(a), where that error signal at 

most frequencies below 1000 Hz can be successfully attenuated by 5 dB. 

  

                  (a)                                      (b) 

Fig. 7. (a) Average error signal without and with control and the corresponding sound reduction, 
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(b) Average sound pressure level at 16 evaluation points without and with control and the 

corresponding sound reduction. 

 

To evaluate the sound reduction performance at other locations around the 

wooden box, the sound pressure levels without and with control at 16 evaluation 

points 1.0 m away from the wooden box (shown in Fig. 6(b)) were measured and the 

average sound pressure level and sound reduction are shown in Fig. 7(b). In Fig. 7(b), 

the average sound reduction at 16 evaluation points is 8.7 dB at 100 Hz and 6.8 dB at 

200 Hz, and there is no sound reduction at frequencies higher than 400 Hz. The upper 

bound of effective frequency is about 400 Hz.  

To assess the size of effective sound reduction area around the error points, the 

sound pressure level at 2 points about the same distance away from an error point and 

2 points about the same distance away from another error point is measured. It is 

found that the sound reduction decreases with the distance from the error points. The 

effective 10 dB sound reduction area is about 0.2 m around the error points below 400 

Hz. Within the effective sound reduction area (no more than 0.2 m from the error 

points), the sound reduction is higher at low frequencies than at relatively high 

frequencies. 

As the sum of squared sound pressure at error points is the cost function, sound 

reduction is the maximum at error points. The farther the evaluation point is away 

from the error points, the less the sound reduction will be. The reason why the sound 

pressure level in the region of the evaluation points can be reduced by minimizing the 

sound pressure at error sensors is because of the continuous properties of sound field 

and/or mapping from the sound field at error sensors to that at the evaluation points. 

The sound reduction performance at evaluation points can be improved by optimizing 

the number and positions of error microphones or using different cost function for 

minimization. It should be noted that the sound reduction performance at evaluation 

points depends on the acoustical properties of the room as well; however, the 

relationship is not simple or straightforward. 
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4.2 Experiments in the Fabpod 

Fabpod is a semi-closed meeting room located in an open plan office in the 

Design Research Institute of RMIT University. It has highly articulated surface 

composed of hyperboloid cells with different materials, as shown in Fig. 8(a). It has 2 

main openings, one is the open ceiling and the other is the entrance. An 8-channel 

active noise control system was implemented at the open ceiling to investigate the 

feasibility of achieving local control with the secondary sources at the edge of the 

opening. Figure 9(b) shows the physical configuration of the system. 8 secondary 

sources are evenly distributed at one of the edges of the Fabpod and the interval 

between each other is about 0.40 m. 8 error microphones are placed around a chair, 

which is about 3.0 m away from the Fabpod. They are at the height of 1.20 m and 

approximately evenly distributed on a circle with a radius of 0.70 m.  

The objective of this active control experiment was to reduce sound radiation 

from inside the Fabpod to the space around the chair. The sound source was a 

semi-omni directional loudspeaker installed inside the Fabpod. Figure 9(c) is a picture 

of secondary sources and Fig. 9(d) is the picture of error microphones around the 

chair on a circle with a radius of about 0.35 m. 

  

(a)                                     (b) 
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               (c)                                    (d) 

 

  

(e)                                      (f) 

Fig. 8. The experimental setup of the active noise control system in the Fabpod, (a) the Fabpod, (b) 

schematic diagram of the physical configurations, (c) 8 secondary sources, (d) 8 error 

microphones, (e) 4 evaluation points, (f) schematic diagram of the positions of 8 error 

microphones and 4 evaluation points. 

 

    During the experiment, the primary source generated broadband noise below 

1000 Hz and it was also applied as the reference signal. The average error signal 

without and with control and the corresponding sound reduction are shown in Fig. 

9(a), where the sound reduction at most frequencies is more than 5 dB. At frequencies 

around 150 Hz, 190 Hz, 250 Hz, 690 Hz, 720 Hz and 810 Hz, the sound reduction is 

more than 10 dB because of the relatively high primary sound pressure level. The 

overall sound reduction is 9.9 dB for broadband noise below 1000 Hz. 
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(a)                                      (b) 

Fig. 9. (a) The average error signal without and with control and the sound reduction, (b) The 

average sound pressure level at 4 evaluation points without and with control and the sound 

reduction. 

 

  To evaluate the sound reduction performance at other points within the local area, 

the sound pressure level at 4 evaluation points inside the circle consisting of error 

microphones was measured. The positions of these points are shown in Fig. 9(e-f). 

The measured results in Fig. 10(b) show that the system created a quiet zone with a 

radius of about 0.35 m within which sound between 100 Hz and 280 Hz is reduced by 

10 dB and the overall sound reduction for broadband noise is 8.6 dB.  

  The system does not have good performance below 100 Hz because both the 

primary and secondary sources do not have the capability to generate large sound at 

very low frequencies. The reason that the performance is poor at frequencies above 

280 Hz is because a quarter of the wavelength is less than 0.3 m, which is shorter than 

the distance between the error sensor and evaluation point, so cancelling the primary 

sound at error sensors cannot guarantee the reduction of sound pressure level at the 

evaluation points due to the continuity of sound field. 

 

5. Conclusions 

    This note proposes to implement secondary sources at the edge of a cavity 

opening to achieve active control of sound radiation from inside the cavity to outside. 

Numerical simulations based on a simplified model of a baffled open cavity 

demonstrate that there exists an upper bound frequency for effective global control 
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when secondary sources are installed at the edge of the opening, but local control to 

create a quiet zone is always feasible. Preliminary active noise control experiments 

were conducted with an open wooden box and in a semi-closed open ceiling meeting 

room to support the conclusions. 
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