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" Abstract

Vibration-based damage identification methods utilise the abnormality in dynamic
fingerprints of a structure to detect damage. Dynamic fingerprints can be extracted from time
histories, frequency response functions, natural fréquencies or modal strain energies. Damage
occurring in a structure alters these dynamic fingerprints, and therefore they can be used as
reliable tools to identify damage.

This paper presents an overview of a project that aims to identify structural damage by
examining a variety of dynamic fingerprints. Artificial neural networks (ANNSs) are developed
to identify pattern changes associated with damage. Neural network ensemble techniques are

. adopted to fuse outcomes of individual network estimations and to provide a more accurate
and reliable damage prediction. .

In detail, a procedure is presented that utilises the damage index method, which is based on
modal strain energy changes, to determine -the location and the severity of single damage.
Numerical models of timber beams inflicted with several types of damage are generated. A
laboratory-timber beam damaged at mid-span is experimentally tested and analysed. Damage
is identified by neural network ensembles that use damage index values as input patterns. The
networks are first trained with indices of numerical timber beams and then tested with data
obtained from the laboratory timber beam.

Keywords
: Damage Identification, Artificial Neural Network, Neural Network Ensemble, Structural
i Health Monitoring, Damage Index Method
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1. INTRODUCTION

Timber structures are often exposed to harsh environmental and loading conditions, which,
in the course of time, can result in rot, decay, insect attack, weathering and mechanical
damage. These deteriorations may lead to a loss of structural integrity. To ensure the
reliability of these structures and the safety of the public, health monitoring, condition
assessment and safety evaluation is necessary. Various non-destructive testing (NDT)
methods have been developed over the past two decades to provide accurate information on
the condition of timber structures. Most of these techniques, however, are local methods, such
as visual inspection, drill resistance, stress wave, ultrasonic, microwave or radiography. These
methods require the damaged area to be known a priori in order to be economical, efficient
and reliable:

Vibration-based damage identification techniques are global methods and are able to assess
the condition of the entire structure. By examining changes in the dynamic characteristics of a
structure, they are able to identify the damage. These techniques eventually reduce to some
form of pattern recognition problem. Among various vibration-based techniques, the damage
index method, which is based on changes in modal strain energy, is particularly promising
and has successfully been used in many applications. This method, however, faces critical
problems when applied in the field where many issues, such as incomplete data due to limited
sensor arrays, measured noise and mode shape estimation errors, lead to unreliable and
inaccurate damage identification [1 2 3 and 4].

ANNG are artificial intelligence that simulate the operation of the human brain. They are
capable of leamning, i.e. pattern recognition, and are robust in the presence of noise. When
used in combination with vibrational damage identification techniques, the original methods
can be greatly improved.

In this paper, authors present a robust and reliable procedure that identifies damage in a
laboratory timber beam. The damage index method in combination with ANNs is used to
identify the defects. First, networks are trained with indices of numerical timber beams and
then the networks are tested with data obtained from the laboratory timber bear.

2. PROJECT OVERVIEW

The objective of this project is to develop a damage detection procedure which is suitable
for field application. It will incorporate conditions, which are encountered in real field-testing,
such -as. limit number of sensor arrays, measurement noise or incomplete-data sets. The
developed procedure will be non-destructive, global, robust and reliable.

A variety of measured data, in which structural dynamic characteristics are inherent, will
be -used to determine the existence, location and severity of damage. Such data are, for
instance, time histories obtained from vibrations, frequency response functions, natural
frequencies, mode shapes, damping ratios or modal strain emergies. The vibrational
parameters will individually be processed to identify damage utilising conventional damage
detection methods in combination with ANNs. The fusion with neural network techniques
will improve the conventional methods and overcome problems like noise interferences or
incomplete data sets. The individual damage predictions will eventually be combined with a
peural ensemble and a final, overall damage identification is produced. Thereby, the benefits
of each individual type of vibrational parameters are used to its best and an artificial
intelligence will give a final damage prediction.
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3. DAMAGE INDEX METHOD

The damage index method was developed in 1992 by Stubbs, Kim & Topole [5]. It utilises
the relative differences in modal strain energy before and after damage to identify defects.
The strain energy in a Bernoulli-Euler beam associated with a particular mode shape ¢; is
calculated from

m

U, = 2 [EIH ) x
[1]

By subdividing the Euler-Bernoulli beam and associating the modal strain energy to an
element j and relating the damaged” to the undamaged state, the so-called damage index By is
obtained from
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To establish a comparative basis for different modes, the damage index B is transformed into
the standard normal space and the normalised damage index Z;; is calculated from

- Bij‘u;;ij ©)
’ i
with pgy being the mean and opy ~the standard deviation of the B;; values for all j elements.
Positive Z;; values indicate the possibility of damage and can therefore be utilized to locate'the
defects. The estimation of the damage severity for an element j can be formulated by equation

1 @

oy = j

i

with @ being the severity estimator.

4. ARTIFICIAL NEURAL NETWORKS

Artificial neural networks (ANNs) are artificial intelligence, which were originally
developed as a methodology for emulating the biology of the human brain. They consist of
weighted interconnected neurons, which are arranged in sets of input, hidden and output layer.
The neurons are weighted by an adjustable variable (weight) and offset by a constant (bias).
The layers are linked by transfer functions. A key property of ANNs is the capability of
learning, i.e. pattern recognition and classification. ANNs can be regarded as nonlinear
mathematical functions that map a set of input variables pi (i=1, 2 ... d) to a set of output
variables ak (k=1,2 ... 1) [6]. The weights and biases in the hidden layers are iteratively
varied in order to move the network outputs closer to the targets. The circled illustration of
Figure 1 shows the schematic model of a multi-layer feed-forward neural network, which is
the most commonly used network in damage detection.
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Figure 1: Feed-forward multi-layer neural network ensemble

The neural network ensemble was developed by Hansen & Salamon in 1990 [7]. It is a
learning paradigm where a collection of neural networks is trained simultaneously for the
same task [8]. First, each network in the ensemble is trained individually and then the outputs
of each of the networks a. (¢ = I, 2 ... n) are combined to produce the ensemble output a. With
the neural network ensemble approach the generalization ability of a neural network system
can significantly be improved [9]. A neural network ensemble model is also shown in
Figure 1.

5. METHODOLOGY

This paper presents a modal-based method that utilises the damage index values as input
patterns for artificial neural networks to identify defects. The neural network ensemble
approach is utilised in order to respect different characteristics of the damage index values
and to consider the varying importance of individual modes. To consider real applications
where no information on the structure is available, the networks are exclusively trained with
patterns generated from numerical models: Damage of the experimental timber beam is
identified by simulating the numerically trained networks ensemble. - :

Firstly, mode shapes are extracted by solving the eigenvalue problem of the numerical
- model or by direct measurements of the accelerometers from experimental testing. Real life
issues regarding limited sensor armrays are incorporated by using a minimal number of
measurement points. The cubic spline interpolation technique is adopted to reconstruct fine
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mode shapes and to thereby improve the damage detection results. Secondly, from the
identified mode shapes the damage index values Z; and «; are derived. Thirdly, sets of
individual neural networks are trained to map the mode separated damage index values to the
location and the severity of damage. Finally, a neural network ensemble is used to combine
the outcomes of the individual networks and an overall damage prediction is obtained.

6. DAMAGE IDENTIFICATION PROCEDURE

6.1 Numerical model

A numerical model of a pin-pin supported timber beam with the dimensions of 45 mm by
90 mm by 4,500 mm is created using the finite element analysis package ANSYS (2005a).
The cross-section is modelled with 20 elements across the height and 4 elements along the
width. A division into 201 nodes in the longitudinal direction of the model is chosen in
accordance with previous sensitivity studies undertaken by Choi [10]. The modulus of
elasticity is set t012,196 N/mm?, which is obtained from four-point bending tests of the actual
timber that is used for the laboratory beam. Figure 2 depicts a model of the timber beam.
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. Figure 2: Finite element modelling of a pin-pin supported timber beam

Seven different damage locations with spacings of 562.5 mm (1/8th of the span length) are
considered. The locations are denoted as'1, 2, 3, 4, 5, 6 and 7 as shown in Figure 2. For each
of these locations five different damage severities, termed as extra light (XL), light (L),
medium (M), severe (S) and extra severe (XS) are introduced, generating a total of 35
different damage cases. All inflicted damage are 45 mm in length (1 % of the total span
length) and 9 mm, 18 mm, 27 mm, 36 mm and 45 mm in beight. This corresponds to 27.1 %,
48.8 %, 65.7 %, 78.4 % and 87.5 % of loss of the second moment of area (I). Damage is
modelled by rectangular openings from the soffit of the beam along the span length. A
medium size damage is depicted in Figure 3.
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Figure 3: Finite elément modelling of medium size damage (27 mm x 45 mm)
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" Using the modal analysis' module in ANSYS, the first five ‘flexural modes, with their
corresponding natural frequencies, damping ratios and mass normalised mode shapes are
extracted. To incorporate real life problems with limited sensor arrays, coordinates of the
mode shape vectors are reduced from 201 data points to 9 data points, representing 9
measurement sensors. Subsequently, the mode shape vectors are reconstructed from 9 to 41
data points, utilising cubic spline interpolation techniques, in order to improve the damage
identification results. By correlating the mode shape curvature vectors of the undamaged
beam to those of the different damaged beams, the damage index values Z; and oy are
determined following the procedure outlined in section 3.

6.2.  Experimental model

Laboratory testing of a pin-pin supported timber beam is undertaken in the Structures
Laboratory of the University of Technology, Sydney (UTS). The dimensions of the beam
comply with the specifications of the numerical model. The experimental set up is displayed

in Figure 4.

N
TR

Figure 4: Experimental test set up

The timber beam is inflicted with three different severities (XL, M, XS) of single damage
situated in the mid-span of the beam (damage location 4). The damage is introduced by saw
cuts from the soffit of the beam, 45 mm in length and 9 mm, 27 mm and 45 mm, respectively,
in height. The mid-span location is chosen as this is a node point of mode 2 and mode 4 and
therefore most problematic for the damage index method. The medium size damage is
displayed in Figure 5.

Figure 5: Experimental medium size damage (27 mm x 45 mm)

To obtain the modal parameters of the beam, experimental modal testing and analysis is
performed. In modal testing, the beam is excited by an impact hammer and the acceleration
responses are measured by nine equally spaced piezoelectric accelerometers. The signals of
the hammer and the acceleration responses are first amplified by signal conditioners and then
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recorded by a data acquisition system. The sampling rate is set to 10,000 Hz for a frequency
range of 5,000 Hz and 8,192 data points, thus giving a frequency resolution of 0.061 Hz per
data point. The acquired time history data is transformed into the frequency domain and by
performing modal analysis the modal parameters are determined. The identified first five
flexural mode shapes are again reconstructed from 9 to 41 data points and the damage index
values are derived as presented in section 3. The undamaged beam is tested 5 times and the
different damage cases 3 times each. Thereby a total of 45 Z; and o; damage, indices are
generated (3 damage severities x 5 undamaged data sets x 3 damaged data sets).

6.3  Artificial neural network model

An ensemble of supervised feed-forward multi-layer neural networks is designed to
identify the damage. The neural network ensemble is trained with numerical and tested with
experimental data. The derived damage indices Z;; and oy are utilised, respectively, as input
patterns to the networks to estimate the location and severity of damage. First, the individual
neural networks are trained with damage indices specific to individual modes. Then, the
outcomes of the individual neural networks are combined in a neural network ensemble and
an overall damage prediction is obtained. The individual neural networks comprise of an input
layer with 41 nodes, representing the 41 data points of the damage indices; three hidden layers
with 30, 20 and 10 nodes and one single node output layer estimating the location or the
severity of the damage. The network ensemble is designed with 5 input nodes, which are the
outputs of the 5 individual networks; three hidden layer of 7, 5, and 3 nodes and one output
node estimating the damage location or severity. The transfer functions used are hyperbolic
tangent sigmoid functions. Training is performed utilising the back-propagation conjugate
gradient descent algorithm. The input data is divided into three sets; a training, a validation
and a testing set. While the network adjusts its weight from the training samples, its
performance is, supervised utilising the validation set to avoid overfitting. The network
training stops when the error of the validation set increases while the error of the training set
still decreases, which is the point when the generalisation ability of the network is lost and
overfitting occurs. The complete data set of 35 numerical samples is allocated for training.
The experimental samples are divided into sets of 18 for validation and 27 for testing. The
design and operation of all neural networks is performed with the software Alyuda
Neurolntelligence version 2.2 from Alyuda Research Inc.

7. RESULTS AND DISCUSSION

For each mode shape, individual neural networks are trained and simulated with damage
index values to identify damage. The damage index Z; is utilised to determine the location of
the damage and the damage index oy to estimate the damage severity. The networks are first
trained with data obtained from the numerical timber beams and then tested with data from
the. laboratory beam. The outcomes of the individual networks that estimate the damage
location of the laboratory timber beam are shown in Figure 6a to Ge. Note: Very similar
outcomes are obtained from the networks trained to predict the damage severity.
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(e) Neural network outcomes to locate damage trained with Z;; derived from mode 5

Figure 6: Individual neural network outcomes trained with Z;; damage indices derived from
(a) mode 1 to (€) mode 5 to estimate the damage location of the laboratory timber beam
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In the figures, the x-axis displays the 45 damage cases sorted by their severities (Sxv, Sm
and Sxs). The y-axis represents the normalised error in prediction of damage location/severity,
which is defined as Engma(d) = (T4-Og)/Lmax, Where d is the damage case, Ty the target value of
d, Oq the network output value of d and L the total length of the beam (here 4.5 m). The
marked bandwidth around the 0 % error axis symbolises the area in which the network
estimations must fall in order to correctly indicate the damage. Here the bandwidth ranges
from -6.25 % to +6.25 % normalised error, representing the mid points in-between two
damage locations. :

It can be seen that the outcomes of the individual networks differ a lot. Many damage cases
are incorrectly localised from the networks of mode 2 and mode 4. The reason for these
misidentifications is that for mode 2 and mode 4 the mid-span of the beam is node point of

, flexural vibration and therefore, the damage cannot be identified correctly. For the networks

of mode 1, mode-3 and mode 5, all medium and extra severe damage cases are situated in
between the bandwidth. It can also be observed that many of the damage cases of extra light
severity are wrongly located.

A final damage prediction based only on the outcomes of the individual networks is
problematic as their damage estimations differ a lot. Likewise the importance of the
individual modes varies. Therefore, a conclusive, intelligent fusion of the network outcomes
is necessary to achieve reliable predictions. This is achieved by combining the outcomes of
the individual neural networks in a neural network ensemble. Illustrated in Figure 7 are the
final prediction outcomes of the neural network ensembles. It can be observed that all damage
cases are eventually and correctly located and quantified. These outcomes show that the
developed damage identification procedure is precise, robust and reliable and is capable of
dealing with issues associated with node points, measurement noise and limited sensor
availability.
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Figure 7: Neural network ensemble outcomes trained with (a) Z; damage indices to locate
damage and (b) o;; damage indices to quantify damage
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8. CONCLUSIONS

This paper presents a project that aims to develop a vibration-based method for damage
identification in-timber structures. The damage detection method is intended to be applicable
in the field. Therefore, issues of real life testing, like limits on the number of sensor arrays or
measurement noise, are incorporated. Defects can be detected by using a variety of dynamic
characteristics in combination with neural network techniques.

In detail, a procedure is presented that utilises the damage index method, which is based on
changes in modal strain energies, to detect defects. Neural network ensembles are trained to
map damage index values, obtained from finite element models of timber beams, to the
location and the severity of damage. A laboratory timber beam; inflicted with several types of
damage, is dynamically tested and analysed. Damage in the experimental beam is identified
by simulating the pre-trained neural network ensembles. The final predictions of the neural
network ensembles correctly identify all damage locations and severities. These outcomes
show that the developed damage detection procedure is reliable, robust and precise and that it
is capable of dealing with issues of real life structures.
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Drilling profile describing decreased wood resistance caused by decay attack.

From 'Evaluation of wood density by means of distinct NDT"
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