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Abstract. The design of efficient routing algorithms is an important
issue in dense ad hoc wireless networks. Previous work has shown that
benefits can be achieved through the creation of a set of data “highways”
that carry packets across the network, from source(s) to sink(s). Cur-
rent approaches to the design of these highways however require a—priori
knowledge of the global network topology, with consequent communi-
cations burden and scalability issues, particularly with regard to recon-
figuration after node failures. In this paper we describe an approach to
generating these data highways through a distributed reaction-diffusion
model that uses localised convolution with activation-inhibition filters.
The result is the distributed emergence of data highways that can be
tuned to provide appropriate highway separation and connection to data
sinks. We present the underlying models and the algorithms for generat-
ing the highways, as well as preliminary simulation results.
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1 Introduction

A key issue in dense ad hoc wireless networks is the design of efficient routing
algorithms. This can affect the performance of the resultant system in terms of
power efficiency, communication latency and robustness. For example, an effi-
cient routing algorithm can lead to reductions in both the number of network
nodes that need to remain awake to route traffic and the total transmission
power required for the multi-hop communication along the routing path from
data source to data sink.

Previous work [10] has shown that the creation of a set of wireless “back-
bones” or data highways that carry packets across the network, from source to
sink, can provide a network capacity that follows the same pattern for randomly
located nodes as can be achieved for arbitrarily placed nodes. In effect, the high-
ways are constructed such that every source node is within range of at least one
highway (implying it can access it in a single hop). The highways then drain
packets to the sinks along a series of shorter length hops, with correspondingly
lower power requirements and hence a lower interference footprint.
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In previous work, these highways have been constructed based on approaches
such as percolation theory [10]. This has the disadvantage that it requires an
a—priori analysis of the entire network structure, with the consequence that the
approaches cannot readily accommodate randomly placed nodes unless there is
a mechanism for determining and communicating node location — a constraint
that adds a layer of complexity and a performance burden. It also typically makes
the network less robust, as any change (such as a failure or location change of a
highway node) requires a global recalculation of the routing pathways.

In this paper we discuss an approach to addressing this problem through
distributed determination of the data highways based on an activation-inhibition
diffusion that generates optimal highway separation. We argue that this approach
represents a significant contribution, insofar as it will improve robustness and
allow localised self-healing of the data highways — an important characteristic of
dense networks with randomly placed nodes.

In section 2 we discuss previous work in this area and in particular on the
application of distributed diffusion model for engineering the emergence of pat-
terns in large—scale networks. Following this, in section 3, we consider the models
that underpin the highway generation and the mechanisms that we have used
for their distributed construction. Section 4 discusses the way in which data is
then routed within this data highway system, and section 5 presents prelimi-
nary results and analysis showing the performance of the approach. Finally, we
present our conclusions in section 6.

2 Related Work

Wireless sensor networks (WSNs) [1] have become an important tool in many
real-world settings. For example, they are being increasingly used for the mon-
itoring of environmental parameters, where nodes are deployed over space, each
node sensing a given environmental parameter (temperature, light, level of pollu-
tants etc.). In most real-world settings multiple sinks are present, each sink being
connected, usually through some form of long-range wireless communications,
with a remote data center where information is processed. When fine—grained
information is needed, the net result can be — from a communications perspective
— the formation of dense WSNs.

Current state—of-the—art routing schemes for WSNs, for communicating sen-
sory data to the data sinks, are most often based on the construction of trees, a
structure that lends itself naturally to perform en route aggregation of data [7].
For dense WSNs, various authors have proposed optimal routing strategies based
on the use of a continuum model of node placement over space. In particular,
routing strategies based on analogies with physical phenomena have been pro-
posed (optics [12, 6] and electromagnetism [17]), as well as routing strategies
built using models inspired by road traffic engineering [2].

In their seminal work, Gupta and Kumar [11] proved that the communication
capacity of (dense) ad hoc networks, with n nodes withi na given area, can
scale, in terms of per source—destination throughput, as ﬁ bit/s in the case of
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located nodes. The existence of such a gap gave rise to various investigations,
aimed at finding suitable strategies for closing it. This is particularly important
given that many (indeed possibly most) sensor networks are likely to have nodes
that are randomly placed.

In a series of papers, Franceschetti et al. [10] demonstrated, using tools and
results from percolation theory, that such a gap could be closed by introducing
non—uniform transmission power schemes. The concept of data highways was
introduced in [10], where it was shown that it was always possible to build high—
throughput paths crossing a given section of the network. Such paths result
in high—throughput as they can be operated at very low transmission power,
hence limiting self-interference. The optimal routing strategy would then be: (i)
from a source reach the closest highway with a single (possibly high—power) hop;
(ii) route packets along the highway using low—power hops; (iii) drain packets
from the highway to the appropriate sink when in proximity. Such a scheme was
shown to be able to attain a throughput per source—destination pair of the order
of ﬁ, thereby effectively closing the gap in the Gupta—Kumar result. A sample

arbitrary node placement and as in the case of randomly (uniformly)

representation of a set of data highways is reported in Fig. 1 (taken from [10]).

Fig. 1. Typical data highways through a 40x40 grid, obtained using a bond percolation
model (from [10]).

The intuition behind such a result is that by using highways it is possible
to limit mutual interference among nodes in the network. To the best of the
authors’ knowledge, however, such a result has not yet found any application
to routing problems in realistic environments. The main difficulty is the con-
struction of highways. In order to have a feasible solution (in terms of scalability
and complexity), the formation of highways should be achieved by means of a
distributed process based on local information only. Rather than a global design
of the highways, the nodes should self-organize to achieve the desired spatial
structures that can in turn be used to generate the data highways. This raises
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the question of what form of self-organising process may be relevant in this
particular scenario?

The use of self-organizing processes has seen wide consideration. For exam-
ple, their use for building “spatial” computers was at the heart of the MIT’s
Amorphous Computing initiative'. One of the application scenarios envisioned
for the (programming) techniques developed within the framework of such an
initiative was to engineer the emergence of structures in sensor—actuator net-
works [4].

The use of related self-organizing spatial processes for building overlays found
applications in various networking fields. In WSNs, Bicocchi et al. proposed
to use a field-based mechanism for aggregating WSNs into logical neighbor-
hoods [5]. In peer—to—peer systems, probabilistic distributed mechanisms were
proposed by Jelasity et al. for dynamically rewiring links in overlays [14, 13].
In particular, it was shown that, by relying on local interactions only, it was
possible to build system—level structures with desired topological properties.

In [16] Saffre and Shackleton propose the use of an embryogenies—inspired
mechanism for efficiently allocating 'roles’ in an autonomic manner in a peer—
to—peer service infrastructure. In such a work, nodes communicate via gossiping
techniques, and differentiation decisions are taken at each node based on the
nodes’s current status and the status of neighbours. The mechanism is reported
to be able to build efficient structures (in terms of topology and role assign-
ments).

Possibly the most relevant form of self-organising process to our particular
problem are reaction-diffusion processes. These processes are the basis of vari-
ous natural mechanisms that result in the emergence of patterns, in particular
of cell differentiation and morphogenesis [3]. The use of reaction—diffusion pro-
cesses (and in particular of activation—inhibition mechanisms) has been proposed
in the context of ad hoc networks to deal with activation problems. In partic-
ular, it has been proposed by Durvy and Thiran for dealing with activation at
the MAC level [9] and by Neglia et al. for addressing clustering problems in
WSNs [15]. In both cases, the pattern to be created presents isolated activation
peaks (corresponding to ’active nodes’) divided by large valleys. Such patterns
are different from those needed to engineer data highways, which require the
creation of zebra-like stripes, which should furthermore converge to one of the
sinks present in the network. We will consider these processes in more detail,
and how we might adapt them, in the following section.

3 Models and Mechanisms for Data Highways Formation

3.1 Reaction diffusion modeling

As outlined above, we wish to develop self-organising processes that lead to the
natural emergence of data highways through a wireless network. These highways

! http://groups.csail.mit.edu/mac/projects/amorphous/
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need to be optimally spaced such that all nodes are within a single hop of a
highway, but the highways themselves utilise short-range hops to transport data
to any data sink. This concept was shown in Figure 1. Further, the highways
should be able to be derived only through local interactions between nodes.

In developing an approach to this problem, we have taken inspiration from
mechanisms that utilise activation-inhibition reaction-diffusion [3, 9, 15]. These
mechanisms describe how a field strength variable or substance concentration
within each cell or node can vary in space and time under a pair of competing
influences — a short range positive activation region within which the field of
neigbouring cells is strengthened, and a longer range negative inhibition region
within which the field of neighbour cells is retarded — with the resultant emer-
gence of specific patterns when the effects are diffused through the network. The
resultant models have been used widely to describe behaviours in biological and
physical processes (see [8] for a discussion). The simplest formulation of this
approach, using a single field variable, is modelled in the discrete time domain
as follows:

ulk,t+1) = g | o) + 3 uliuk+3,0+ 3 aluk +5,0) | 1)
JER; JER,

where u(k,t) is the field strength in cell k at time ¢, R; is the region over
which the inhibition function ¢; is applied, R, is the region over which the
activation function ¢, is applied, and g¢() is a limiting function. The activation
functions are time invariant, and applied uniformly across the sensor field. Note
that this is equivalent to the convolution of u(t) with the sum of ¢;, ¢, and the
self-activation value ¢z. Note also that, in general, it is assumed that ¢; takes
negative values, while ¢, and ¢, take positive values.

As discussed in the previous section, recent work has adapted reaction dif-
fusion models to the design and/or configuration of wireless networks. As an
example, Neglia and Reina [15] have used activator-inhibitor diffusion to select
active nodes within a dense wireless sensor network. The nodes have deeply over-
lapping sensing fields, and hence only a small number of nodes are required to be
active in order to adequately provide full data on the region to be sensed. The
operation of this approach can be seen in Figure 2. A random dense wireless sen-
sor network (Figure 2a) is repeatedly convolved with a symmetric 2-dimensional
diffusion filter (Figure 2b). The resultant field strength after 20 iterations of a
filter? (Figure 2d) is then analysed to determine local maxima (Figure 2e) —
which represent the nodes to be activated. All other nodes can be switched to a
low-power non-sensing state. The result is a distributed process for identifying
a subset of nodes to be activated, such the nodes are suitably distributed.

The repeated filter convolution causes the emergence of the peaks in the
activation field by activating localised regions whilst inhibiting the areas between

2 The filter used in this case was a simplified version, with a central self-activation
strength ¢, = 2, a flat activation ring of strength ¢, = 1 and radius 1, and a flat
inhibition ring of strength ¢; = —0.1 and radius 6.
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Fig. 2. Sensor activation/inhibition: (a) the sensor field; (b) symmetric filter; (c¢) rota-
tionally asymmetric filter; (d) activation field resulting from symmetric diffusion filter;
(e) detected peaks in field; (f) activation field resulting from asymmetric diffusion filter;
(g) detected ridges in field.

these regions. The width of the inhibition zone controls the separation of the
resultant peaks and the width of the activation zone controls the kurtosis of
the peaks. It is therefore possible to select filter parameters that ensure that
an optimal density of active nodes is obtained. The filter used in the activation-
inhibition diffusion can be readily implemented in a distributed fashion, provided
each node has knowledge of the diffusion filter parameters to be used. Each node
communicates with its neighbours, and acts to either strengthen or weaken their
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resultant activation field. The nodes also can then through comparison with
neighbour nodes’ current activation strengths, determine whether they are at a
local maxima and hence should be active. This means that this approach can be
fully distributed within a wireless network, leading to active node selection with
no network-wide oversight.

3.2 Highway generation

What we are seeking in the design of the data highways is analogous to this
— the localised selection of the nodes which form the highways without any
global design or control. The natural question to ask is therefore whether or not
an activation-inhibition diffusion model can be adapted such that the result is
connected nodes that together make data highways, rather than single active
nodes.

The solution is based on changing the nature of the diffusion filter. Previous
work on wireless networks has used symmetric filters, leading to the emergence
of patterns that have isolated peaks in the sensor activation field. Work in other
areas (e.g. [8]) has shown that changing the nature of the diffusion filter can lead
to changes in the patterns that emerge in the activation field. As an example,
consider the bottom row of Figure 2. In this case the random dense wireless
sensor network is repeatedly convolved with a rotationally asymmetric filter that
has a dominant horizontal activation axis, whilst inhibiting along the vertical
axis (Figure 2c¢). The resultant field strength patter after 20 iterations of a filter
that has this structure is shown in (Figure 2f). This has developed a striped
pattern of ridges and troughs, with the orientation controlled by the orientation
of the activation axis in the filter and the separation determined by the range
of the filter inhibition. The ridges in this pattern can then be used to determine
local ridge maxima (Figure 2g) — giving the potential data highways that we
are seeking. Nodes at ridge maxima become highway nodes, and all other nodes
communicate with the highways in order to deliver data to desired data sinks. By
tuning the filter parameters appropriately, we can control the separation between
the highways, and thereby ensure that all non-highway nodes are within a single
hop of a highway.

3.3 Controlling highway orientation and destination

Having demonstrated that it is possible to generate ‘striped’ patterns that can
be used to generate highways, we next consider the question of how we orient
these stripes so that the highways converge on data sinks. One possibility is to
construct artificial “bridges” between the highways and relevant sinks (taking
into account the overall topology as well as load balancing between the sinks).
These bridges can be either multi-hop paths, or could be a single high-power
connection. In either case, this solution requires the artificial construction of
additional routes®.

3 This is actually the solution originally discussed in [10]
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An alternative is to investigate whether it is possible to control the directions
of the highways such that as the ridges are generated during the diffusion process,
they naturally converge to the data sinks. Given that the orientation of the ridges
are controlled by the orientation of the activation axis in the filter, we should
therefore be able to create ridges that converge on a sink by making the direction
of the filter activation axis spatially dependent.

Consider the case of a network field with a single sink. Each node in the
network determines the direction to that sink, and rotates its local instance of
the diffusion filter so that the activation axis is aligned with the direction to
the sink. The diffusion filter contains a square inhibition zone R; of dimension
2R x 2R (with an inhibition level of ¢;, and a wedge-shaped activation zone R,
with a angular size p (with an activation level of p,. We rotate the filter by
rotating just the activation band within the overall square filter.

Applying this filter so that the activation band is always oriented towards
the single sink gives an activation field as shown in Figure 3a, with all ridges
having a dominant orientation towards the sink. Performing a ridge detection
on this then gives the ridges shown in Figure 3b*. A simple growth of any ridge
point that is at the end of a ridge can be used as a final step in connecting any
isolated data highways, to form a connected data highway network.

’

0
0 01 02 03 04 05 06 07 08 03 1

(a) (b)

Fig. 3. Sensor activation/inhibition with local filters rotated towards a single sink: (a)
activation field resulting from rotated filters; (b) detected ridges in field.

g7aN

If we add additional data sinks then the filter orientation, and hence the
activation field orientation, can be derived based on a gravitational attraction
model. For each node, the activation field direction should be a weighted sum of
the directions to each sink, with the weight inversely proportional to the square
of the distance to the sink. In other words, the direction of the diffusion filter at
node N; can be given by the vector D;:

4 Tt is worth remarking that, whereas for the detection of single points a 2-dimensional
local maxima was used, in this case the ridge detection is done by looking for local
maxima in only one dimension perpendicular to the filter orientation.
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where S is the set of sink nodes S;.

As with the previous example, this approach is still able to be implemented
in a distributed fashion. The only aspect that unavoidably requires global knowl-
edge is the relative location of the data sinks — or rather, whilst each node does
need to know it’s own location, it does need to know the direction and (network)
distance to each sink. Without this knowlegdge it would be impossible to locally
orient the filter, and hence activation bands and the resultant highways. Knowl-
edge of the sinks can however be readily achieved through a broadcast beacon
signal from each sink node when it activates. The beacon propagates through
the network, with each node recording the number of hops to each sink from
each of it’s neighbour nodes, and hence the distance and dominant direction.
In the next section, we will present a distributed procedure for gathering such
information at each node in the network.

4 Routing on Data Highways

Let us now consider the algorithms for implementing the models discussed above,
as well as how the resultant highways are then used to route data. We assume
the following:

— Nodes are assigned a unique identifier;

— Nodes can tune dynamically their transmission power level P, in the range
[Pmin; Pmam];

— The network is connected when all nodes use P, = Ppin;

— Nodes transmit at Pj,;, unless otherwise specified.

Each node maintains the following data structures:

A database of all data sink(s), called sinkDB, having entries of the type
< sinkID, distance >, where distance denotes the (minimum) distance in
terms of number of hops from a given sink;

— a database for the state of neighbouring nodes, where the size of the neigh-
bourhood is determined by the filter to be applied, as detailed in Sec. 3.
We denote by nodeDB such a database, whose entries have the form <
nodel D, distance, state, sinkDB >, where nodel D is the identifier of a node
in the neighbourhood, distance is its minimum distance (in hops) from the
given node, state is its current state (activation level) and sinkDB is a data
structure containing information on distance from the sinks present in the
network.

We first detail the algorithms necessary for initializing the network and set-
ting up the highways. The algorithms work in two steps. First, sinks need to
announce their presence, and nodes to compute their distance from them. To
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accomplish such a task, sinks broadcast a beacon message (sinkBeacon) con-
taining both their sinkI D and a distance field in the header. The field distance
is initialised to one. Nodes receiving the beacon check if an entry with the same
sinkID is present in their sinkDB. If there is no entry, or the distance field
in the received beacon is less than the distance in the stored entry, then the
sinkDB is updated, the distance field is incremented by one and the beacon is
forwarded on. In such a way, the field distance in the sinkBeacon corresponds
to the minimum distance (in hops) from the corresponding sink. At the end of
the process each node has the complete list of sinks in the network and the cor-
responding distance from any of them. Such an information is needed for setting
up the filter, as outlined in Sec. 3. A detailed description of the algorithm is
reported in the App. A (Alg. 1).

The next step is to let nodes construct their neighbourhood map, according
to the filter parameters (in particular the dimension of the activation/inhibition
neighbourhood, denoted by the filter radius R parameter®). In order to do so,
they need to collect information about the state of their k—hop neighbours (k <
R) and their distance from the sinks present in the system, as outlined in the
previous section. Such a procedure is then repeated periodically to maintain an
updated view of the system state. This process is carried out using a gossip—based
mechanism for spreading information about nodes’ state in a distributed fashion.
Each node periodically broadcasts a nodeQuery message, where it includes its
own ID, current activation state and the information contained in the sinkDB
(i.e., distance from any sink). Upon reception of a nodeQuery message, one—hop
neighbours first update the state field of the corresponding nodeDB entry. Then,
they query their own nodeDB for information about the state of nodes that are
at distance (in hops) less than or equal to (R —1). This retrieves all information
that is at most R hops from the node issuing the original query. The information
collected is then included in an acknowledgment message that is sent back to the
node originating the query. A detailed description of the algorithm is reported
in the App. A (Alg. 2) . Once each node has the relevant filter information they
are able to recalculate their activation level, and subsequently compare this to
neighbouring values to determine if they are a “ridge” node, and hence on a
highway.

Given the mechanisms for building data highways, we now need to introduce
mechanisms for routing messages containing sensed data from any node to one of
the sinks present in the system. The routing protocol envisioned can be broadly
divided in two phases. In the first phase, nodes not belonging to an highway have
to find a way to reach one. This is done by simply broadcasting a beacon message

5 The parameter R, which roughly correspond to the distance among highways, should
be chosen in such a way to ensure that, by transmitting at Pp,q., a node will be able
to join an highway.

6 With such a procedure, information on the state of nodes is received incrementally,
each round bringing information to nodes located one hop further. When bootstrap-
ping the system, it takes R rounds to acquire the knowledge necessary for building
the filter.
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with increasing transmission power (and hence communication range) until a
node on an highway is reached and sends back an acknowledgment message.
Such a node will constitute the entry point to the highway. From that moment
on, all messages generated will be forwarded to the entry point. A detailed
description of the algorithm is reported in the App. A (Alg. 3). Note that if at
any point there is a failure in a highway node, the source node can repeat the
above process to locate a new highway entry point.

The second phase is concerned with the routing of messages along an highway,
in order to reach an appropriate sink. In general, following the procedure high-
lighted in the previous section, we will achieve highways connected to one single
sink. However, the activation—inhibition mechanism presented in Sec. 3 cannot
prevent highways to be connected to two or more sinks. In order to optimize the
usage of resources, messages should be directed towards the closest sink.” Once
the highway setup phase is completed, nodes on the highway(s) will reset their
sinkDB data base. Sinks will then broadcast a beacon message (beaconSinkH),
which will be propagated only by nodes belonging to an highway. Such messages
will include a distance field that will be initially set to 1. Upon reception of
such a message, nodes on the highway(s) will check their internal sinkDB data
base; if an entry corresponding to the sink ID is already present, it is updated
if the distance contained in the beacon is smaller than that maintained in the
corresponding entry of the data base. The beacon message is then relayed, after
having increased by one the value of the distance field. A detailed description
of the algorithm is reported in the App. A (Alg. 4).

As with reconnecting of source nodes to highways, the highways themselves
are also able to self-heal. When the failure of a highway node is detected by
a neighbouring highway node being unable to route traffic to the failed node,
the neighbour can trigger a new localised diffusion process, that leads to the
emergence of new highway in the local region of the failed node. Given the local
nature of this process, this resultant highway will be operational, but may not
be optimal. Whilst the highway is being used, further diffusion can progressively
refine the highway route. The result is an inherent self-healing of the network.

5 Numerical Example

In order to illustrate the approach we have developed, we provide a simple ex-
ample. Figure 4a shows a sample 200 x 200 wireless node grid. We have then
allocated three sink nodes at (25,140), (120,180), and (175,25). We have as-
sumed a maximum communication desired range of 5 units (from a non-highway
node to a highway node). Consequently a distributed diffusion filter is imple-
mented by each node, with a radius R = 5 hops. Other parameters used were a
self-activation factor ps = 1.5, a constant mutual activation factor ¢, = 0.7, a

7 Tt is worth remarking that the ‘distance’ in this case has to be understood as distance
along the highway, and not as distance on the connectivity graph of the network as
computed at system initialisation phase.



12 Lowe and Miorandi

constant inhibition factor ¢; = —0.3, and an activation band with angular width
p = £20deg. This was then simulated in Matlab. Note that the simulation as-
sumed a simple communication model that focused on routing behaviours, and
assumed communication links that varied within a fixed range. Further work
will need to investigate the validity of these assumptions. and the consequences
when they fail.

Fig. 4. Determination of wireless network data highways in a multiple sink environ-
ment: (a) Example node field (200 x 200 grid); (b) resultant activation field; (c) derived
data highways from ridges in activation field.

The resultant activation field after 20 iterations of the simulated convolution
is shown in Figure 4b. From this it is possible to see clearly the pattern of ridges
that form, and in particular, the way in which the mechanism for calculating the
directionality of the diffusion filter has led to ridges that converge on the data
sinks. In numerous cases, as the ridges converge on the sinks, two or more ridges
merge into a single ridge, thereby keeping the spatial separation of the ridges
constant.

It is also worth noting that the resultant pattern exhibits some unusual arte-
facts. For example, there are several unusual bands that run orthogonally to the
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main ridges. We are still investigating these, though our current hypothesis is
that they arise from the interactions that are occurring when different localised
ridge patterns spread, and meet, during the diffusion process. These localised
ridge patterns emerge early due to high local node densities. These artifacts do
not appear to be problematic, though we are currently investigating this further.

From the ridge patterns we are then able to extract local ridge maxima, and
then post-process these ridge maxima to ensure full connectivity is achieved.
The result of this is shown in Figure 4c. As can be seen from this figure, we
have a connected network of localised highways that can carry data to one or
more data sinks. No non-highway node is further than 5 units from the nearest
highway node, as desired.

Note that we have not yet evaluated the performance load that this approach
places on the network. We are current implementing an OmNet simulation to
investigate this issue.

6 Conclusions and Discussion

As outlined in section 1, the design of efficient routing algorithms is a key issue
in wireless ad hoc networks. In this paper we have described an approach to
the distributed design of data highways for use in routing data within dense
wireless sensor networks. The algorithms developed allow these data highways
to emerge naturally from localised processing in the network, without requiring
network-wide knowledge or oversight, while still ensuring that design criteria are
met. In particular, the highways will converge to the data sinks and ensure a
maximum highway separation that allows all non-highway nodes to be within a
desired maximum distance of a data highway.

As discussed in Section 4 it is expected that this approach will lead naturally
to self-healing of the network — in terms of regeneration of the highways in the
event of a sink failure, localised recalculation of highway routes in the event of
the failure of a highway node, and reconnection of source nodes to the highways
when necessary. Ongoing work will explore these self-healing characteristics.

Other questions that remain open, and represent ongoing research, relate to
refining the mechanisms for determining the local diffusion mechanisms and on
considering the impacts of the sink locations.

In terms of the local filter orientation, our current implementation assumes
that each node is aware of it’s location and that of each sink, and can hence
directly calculate the orientation of the activation band in the diffusion filter.
As discussed in Section 3.3 it is possible for local nodes to obtain sufficient
information about sink distance and direction through a sink beacon process.
We are currently exploring the implementation of a simulation based on this
principle.

A further refinement that is yet to be analysed in depth involves a modifica-
tion to the convolution process that removes the need for local knowledge of the
sink directions and only requires distance information. Rather than applying the
diffusion as a direct convolution of a fixed (albeit locally rotated) filter, it may be
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possible to directly diffuse the activation-inhibition data, and the receiving node
determines itself whether to treat the diffusion from a neighbour as an activation
or an inhibition based on distance parameters. If the distance from the receiving
node to the nearest sink is similar enough to the distance from the diffusing
node to the sink, then the diffusion is treated as an inhibition (since both need
not be on a highway). Conversely, if the distances are sufficiently different, then
it is treated as an activation, since they can be on the same highway. Further
investigation will explore whether this approach is feasible.

Finally, another key avenue for further exploration is to consider the impact
of sink location on the structure of the data highways. In particular, it may be
possible to selectively position the sinks in order to allow the highways to be
tuned, and the data loads across the highways to be optimally balanced.
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A Detailed algorithms description

Procedure at the sink(s)
distance «— 1 {Set distance field to 1}
broadcast(sinkBeacon, sinkID, distance) {Sink broadcasts beacon}

Procedure at other nodes
receive(sinkBeacon, sinkI D, distance) {Node receives a beacon}
if sinkID already present as sinkDB(k) then
if sinkDB(k).distance < distance then
return {Terminate, as already have a shorter path}

else
sinkDB(k).distance < distance {Store new shorter path}
end if
else
sinkDB.create(sinkI D, distance) {Add new sinkDB entry}
end if

broadcast (sinkBeacon, sinkID,distance + 1) {Node forwards beacon}

Algorithm 1: Sink(s) announcement procedure.
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Announcement procedure at each node
nodeDist — 1
broadcast(nodeQuery, R, nodel D, state, sink D B)

Response to a query message
receive(nodeQuery, R, nodel D, state, sinkD B)
if nodeID already present as nodeDB(k) then
nodeD B(k).state < state {Update state}
else
nodeD B.create(nodel D, 1, state, sinkDB) { Add new nodeDB entry, distance field
set to 1}
end if
create empty list tmp
for all entry k£ in nodeDB do
if nodeDB(k).nodelD # nodelD & nodeDB(k).nodeDist +1 < R then
tmp.add(< nodeDB(k).nodel D, nodeDB(k).distance + 1,nodeDB(k).state
,nodeDB(k).sinkDB >) {Add entry k of nodeDB to the list}
end if
end for
send(nodeQueryACK, list) {Send response}

Update of nodeDB at each node
receive(nodeQueryACK, < nodel D1, nodeDist1, state1, sinkDB1 >, ...,
< nodel Dy, nodeDisty,stater, sinkDBj, >) {Node receives an ACK message with
information on state of neighbours}
for alli=1to h do
if nodel D; already present as nodeDB(k) then
nodeDB(k).state <« state; {Update state}
if nodeDB(k).distance > nodeDist;) then
nodeD B(k).distance < nodeDist; {Update distance}
end if
else
nodeD B.create(nodel D;, nodeDist;, state;, sinkDB;) {Add new nodeDB en-
try}
end if
end for

Algorithm 2: Initialisation and update of filter at each node.
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At nodes not on highways
nextHop «— 0
while nextHop = 0 do
send(beaconN ot Highway, nodel D)
if no reply within 7 then
increase Pi, until Pez 1s reached
else
receive(beacon N ot Highway AC K, node Highwayl D)
nextHop <« nodeHighwayl D
end if
end while

At nodes on highways
receive(beaconNot Highway, nodel D)
send(beaconNotHighwayACK, ID)

Algorithm 3: Routing along highways.

Initialisation: at the sink node(s).
distance «— 1
broadcast(sinkBeaconH, I D, distance)

Initialisation: at the highway nodes.
reset sinkDB
receive(sinkBeaconH, sinkI D, distance)
if sinkID already present as sinkDB(k) then
if sinkDB(k).distance < distance then
return {Terminate, as already have a shorter path}

else
sinkDB(k).distance «— distance {Update distance}
end if
else
sinkD B.create(sinkI D, distance) {add new sinkDB entry}
end if

broadcast(sinkBeaconH, sinkI D, distance + 1) {Node forwards beacon to other
nodes on the highway.}

Highway nodes announcing distance

myDistance < arg min distance {Computes minimum distance from a sink.}
sinkDB

broadcast(beacon Highway, nodel D, myDistance)

Highway nodes updating next hop

receive(beacon Highway, nodel D, distance)

if distance = myDistance — 1 then
nextHop «— nodel D

end if

Algorithm 4: Building routes: procedures for nodes on highways.




