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1 Introduction

In 1908, G. H. Hardy (Hardy, 1908) and W. Weinberg (Weinberg, 1908) independently

derived mathematical equations to corroborate the theory of Mendelian inheritance, prov-

ing that in a large population of individuals subject to random mating, the proportions

of alleles and genotypes at a locus stay unchanged unless specific disturbing influences are

introduced. Today, Hardy-Weinberg equilibrium (HWE) is a common hypothesis used in

scientific domains ranging from botany (Weising, 2005) to forensic science (Council, 1996)

and genetic epidemiology (Sham, 2001; Khoury et al., 2004). Statistical tests of deviation

from Hardy-Weinberg equilibrium are fundamental for validating such assumptions. Tra-

ditionally, Pearson’s chi-square goodness-of-fit test, or an asymptotically-equivalent variant

such as the log–likelihood-ratio test, was used for this assessment. Before computers be-

came readily available, the asymptotic chi-square approximation for the statistics used in

these tests, however poor, was the only practical means for drawing inference. With the

now widespread availability of computers, exact tests can be computed effortlessly, opening

the door to more powerful goodness-of-fit tests. In their seminal paper, Guo & Thompson

(1992) campaigned for an exact test of HWE based on the likelihood function. While their

work renewed interest in conditional exact tests for Hardy-Weinberg equilibrium (Raymond

& Rousset, 1995; Diaconis & Sturmfels, 1998; Wigginton et al., 2005), likelihood-based tests

have also been subject to criticism, and there is little evidence that such tests are more

powerful than other exact tests, such as those based on likelihood-ratios (Engels, 2009) or

the root-mean-square.

In this article, we demonstrate, using the classical data sets from Guo & Thompson (1992)

and several numerical experiments, that goodness-of-fit tests based on the root-mean-square

distance can be up to an order-of-magnitude more powerful than all of the classic tests at

detecting meaningful deviations from Hardy-Weinberg equilibrium. The classic tests, tuned

to detect relative discrepancies, can be blind to overwhelmingly large discrepancies among

common genotypes that are drowned out by expected finite-sample size fluctuations in rare

genotypes. The root-mean-square statistic, on the other hand, is tuned to detect deviations

in absolute discrepancies, and easily detects large discrepancies in common genotypes.
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None of the statistics we consider produces a test that is uniformly more powerful than

any other. At the very least, the root-mean-square statistic and the classic statistics fo-

cus on complementary classes of alternatives, and their combined p-values provide a more

informative test than either p-value used on its own.

The results of our analysis are consistent with the numerous experiments conducted in

recent work (Perkins et al., 2013), which highlight the power of the root-mean-square statis-

tic over classic statistics in detecting meaningful discrepancies in nonuniform distributions.

Tygert (2012) provides several representative examples for which the root-mean-square test

is more powerful than Fisher’s exact test for homogeneity in contingency-tables.

This article is structured as follows: in Section 2 we recall the set-up and motivation for

testing Hardy-Weinberg equilibrium. We describe the relevant test statistics in Section 3, and

in Section 4 we compare the performance of these statistics on the classic data sets from Guo

and Thompson, and also compare the power and Type I error of the statistics in detecting

deviations due to inbreeding and selection. We provide an asymptotic analysis of the various

statistics in Section 5 to highlight the limited power of the classic statistics compared to

the root-mean-square statistic in distinguishing important classes of deviations from Hardy-

Weinberg equilibrium, and end with concluding remarks in Section 6. Supplementary

Material includes pseudocode for algorithms and proofs of technical results.

2 Hardy-Weinberg equilibrium: set-up and motivation

Recall that a gene refers to a segment of DNA at a particular location (locus) on a chro-

mosome. The gene may assume one of several discrete variations, and these variants are

referred to as alleles. An individual carries two alleles for each autosomal gene — one allele

selected at random from the pair of alleles carried by the mother, and one allele selected at

random from the pair of alleles carried by the father. These two alleles, considered as an un-

ordered pair, constitute the individual’s genotype. A gene having r alleles A1,A2, . . . ,Ar has

r(r+1)/2 possible genotypes. These genotypes are naturally indexed over a lower-triangular

array as in Figure 1.

A population is said to be in Hardy-Weinberg Equilibrium (HWE) if the following holds.
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Figure 1: Enumeration of genotypes for a gene having r alleles A1,A2, . . . ,Ar.

If pj,k is the relative proportion of genotype {Aj,Ak} in the population, and if θk is the

proportion of allele Ak in the population, then the system is in HWE if

pj,k = pj,k(θj, θk) =

 2θjθk, j > k

θ2k, j = k.
(1)

3 Testing Hardy-Weinberg equilibrium

A random sample of n genotypes X1, X2, . . . Xn from this population can be regarded as a

sequence of independent and identical draws from the multinomial distribution specified by

probabilities

pr(Xi = {Aj,Ak}) = pj,k, 1 ≤ k ≤ j ≤ r. (2)

If nj,k realizations of genotype {Aj,Ak} are observed in the sample of n genotypes, then the

number of instances of allele Aj in the observed sample of 2n alleles is

nj =
r∑

k=j

nk,j +

j∑
k=1

nj,k, j = 1, . . . , r. (3)

In order to gauge the consistency of the sample counts (nj,k) with Hardy-Weinberg equilib-

rium, we must first specify the r − 1 free parameters θ1, θ2, . . . , θr−1 corresponding to the

underlying allele proportions in the HWE model (1). The observed proportions of alleles,

n1/(2n), n2/(2n), . . . , nr−1/(2n), are the maximum likelihood estimates of θ1, θ2, . . . , θr−1 in

the family of HWE equilibrium equations (1); these parameter specifications give rise to the

model counts of genotypes under Hardy-Weinberg equilibrium,

mjk = (2− δjk)(nj nk)/(4n), (4)
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(a) Example 1: n = 45.
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(b) Example 2: n = 8297.
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(c) Example 3: n = 30.

Figure 2: The three data sets from Guo & Thompson (1992). Observed counts are in bold
and expected counts under HWE are below.
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where δjk is the Kronecker delta function with δjk = 1 if j = k and = 0 otherwise. A

goodness-of-fit test serves as an omnibus litmus test to gauge consistency of the data with

HWE. Ideally, the goodness-of-fit test should be sensitive to a wide range of possible local

alternatives; more realistically, several different goodness-of-fit tests can be used jointly, each

sensitive to its own class of alternatives. If a nonparametric test as such indicates deviation

from equilibrium, different parametric tests can then be used to elucidate particular effects

of the deviation such as directions of disequilibrium or level of inbreeding. Several para-

metric Bayesian methods have been proposed as well (Chen & Thomson, 1999; Shoemaker

et al., 1998; Ayres & Balding, 1998; Lauretto et al., 2009; Li & Graubard, 2009; Consonni

et al., 2011). In this paper we will focus only on nonparametric (or nearly nonparametric)

tests of fit, but we emphasize that goodness-of-fit tests should be combined with Bayesian

approaches and other types of evidence for and against the HWE hypothesis before drawing

final inference.

3.1 Goodness-of-fit testing

A goodness-of-fit test compares the model and empirical distributions using one of many

possible measures. Three classic measures of discrepancy, all special cases of Cressie-Read

power divergences, are Pearson’s χ2-divergence

X2 =
∑

1≤k≤j≤r

(nj,k −mj,k)2/mj,k, (5)

the log–likelihood-ratio or g2 divergence,

G2 = 2
∑

1≤k≤j≤r

nj,k log(nj,k/mj,k), (6)

and the Hellinger distance

H2 = 4
∑

1≤k≤j≤r

(√
nj,k −

√
mj,k

)2
. (7)
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Another classic measure of discrepancy is the negative log–likelihood function, which is based

directly on the likelihood function for the multinomial distribution,

L = − log(L),where (8)

L(nj,k; n, mj,k) = Prob
(
N1,1 = n1,1, N2,1 = n2,1, . . . , Nr,r = nr,r

)
=

n!

n1,1!n1,2! . . . nr,r!nn
m

n1,1

1,1 m
n1,2

1,2 . . .mnr,r
r,r . (9)

The negative log-likelihood statistic (8) looks similar to the log–likelihood-ratio statistic G2,

but there is an important distinction to be made: the log–likelihood-ratio, which sums the

logarithms of ratios between observed and expected counts, is a proper divergence. The

negative log–likelihood function is not a divergence, and this results in several undesirable

properties that have led many to criticize its use (Gibbons & Pratt, 1975; Radlow & Alf,

1975; Engels, 2009).

The negative log–likelihood function does have something in common with the power-

divergence discrepancies: under the null-hypothesis, the negative log–likelihood statistic L

and the power divergence statistics X2, G2, and H2 all become a chi-square random variable

with r(r−1)/2−1 degrees of freedom as the number of draws n goes to infinity and number

of alleles remains fixed (Brownlee, 1965). Before computers became widely available, using

a statistic with known asymptotic approximation was necessary for obtaining any sort of

approximate p-value. The exact (non-asymptotic) p-values for these statistics or any other

measure of discrepancy can now be computed effortlessly using Monte-Carlo simulation.

In this paper, we distinguish two types of commonly-used p-values, which we refer to as

the plain p-value and fully conditional p-value. One could also consider Bayesian p-values

(Gelman, 2003), among other formulations.

To compute the plain p-value, one repeatedly simulates n independent and identically

distributed draws from the model multinomial distribution (mj,k/n). For each simulation i,

the genotype counts N
(i)
j,k , allelic counts N

(i)
j =

(∑r
k=j N

(i)
k,j +

∑j
k=1N

(i)
j,k

)
, allelic proportions

Θ
(i)
j = N

(i)
j /(2n), and equilibrium model counts associated to this sample, M

(i)
j,k = (2 −

δj,k)N
(i)
j N

(i)
k /(4n), are computed. The plain p-value is the fraction of times the discrepancy

between the simulated counts (N
(i)
j,k) and their model counts (M

(i)
j,k) is at least as large as the

measured discrepancy between the observed counts nj,k and their model counts mj,k. Henze
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(1996) shows that this procedure has an asymptotically correct Type I error for fixed r as

n → ∞. This procedure for producing p-values can be viewed as a parametric bootstrap

approximation, as discussed for example, by Efron & Tibshirani (1993), Henze (1996), and

Bickel et al. (2006).

The fully conditional p-value corresponds to imposing additional restrictions on the prob-

ability space associated to the null hypothesis. To compute the fully conditional p-value, the

observed counts of alleles, n1, . . . , nr, are treated as known quantities in the model, to remain

fixed upon hypothetical repetition of the experiment. This would hold, for example, if the

sample population used in the experiment were the entire population of individuals. More

specifically, one repeatedly simulates n i.i.d. draws from the hypergeometric distribution

that results from conditioning the multinomial model distribution (mj,k/n) on the observed

allele counts, N1 = n1, N2 = n2, . . . , Nr = nr. Guo & Thompson (1992) provided an efficient

means for performing such a simulation: apply a random permutation to the sequence

A =
{ n1︷ ︸︸ ︷

A1,A1, . . . ,A1,

n2︷ ︸︸ ︷
A2, . . . ,A2, . . . ,

nr︷ ︸︸ ︷
Ar . . .Ar︸ ︷︷ ︸

2n

}
, (10)

and identify the pairs {A2j,A2j+1}. The fully conditional p-value is the fraction of times the

discrepancy between the simulated counts (N
(i)
j,k) and the model counts (mj,k) is at least as

large as the measured discrepancy.

Pseudocode for calculating plain and fully conditional p-values is provided in Algorithms

1 and 2 of Appendix S.1 in the Supplementary Material.

3.2 The root-mean-square statistic

A natural measure of discrepancy for goodness-of-fit testing which has not received as much

attention in the literature is the root-mean-square distance,

f =

{
2

n2r(r + 1)

∑
1≤k≤j≤r

(nj,k −mj,k)2

}1/2

. (11)

In contrast to the classic statistics, the asymptotic distribution for the root-mean-square

statistic F in the limit of infinitely many draws and fixed alleles, while completely well-

defined and efficient to compute, depends on the model distribution, as described by Perkins
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et al. (2011a,b). Using the pseudocode provided in Algorithms 1 and 2 of Appendix S.1 in

the Supplementary Material, we can compute p-values for the root-mean-square statistic.

4 Numerical results

4.1 Benchmark data sets

We next compare the performances of the root-mean-square statistic and the classic statistics

in detecting deviations from Hardy-Weinberg equilibrium. We first evaluate the performance

of the various statistics on three benchmark data sets from Guo & Thompson (1992). The

three data sets, which we refer to as Examples 1, 2, and 3, are represented in Figure 2 as

lower-triangular arrays of counts. The bold entry in each cell corresponds to the number

nj,k of observed counts of genotype {Aj,Ak} in the sample, and the second entry in each cell

corresponds to the expected number mj,k of counts under HWE.

For each example, and for each of the five test statistics X2, G2, H2, L, and F , we calculate

both the plain and fully conditional p-values using 16, 000, 000 Monte-Carlo simulations for

each calculation. The results of the analyses of Examples 1-3 are displayed in Table 1. We

next discuss the results for each example.

4.1.1 Graphical views of the data

Figures 3, 4, and 5 contain boxplots displaying the median, upper and lower quartiles, and

whiskers reaching from the 1st to 99th percentiles for relative root-mean-square discrepancies

and relative chi-square discrepancies simulated under the plain Hardy-Weinberg equilibrium

null hypothesis for the data sets from Examples 1, 2, and 3. The boxplots are for simulated

data, whereas the large open circles indicate the observed data. For a detailed description

of these plots, we refer the reader to Appendix A.1. In the chi-square boxplots, we see the

division by expected proportion in the summands of the chi-square discrepancy (5) reflected

in the larger contribution of relative discrepancies to the reported p-values; in contrast, we

see the equal-weighting of the summands of the root-mean-square distance (11) reflected in

the larger contribution of absolute discrepancies to the reported root-mean-square p-values.
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In Section 5, we will see that all of the classic statistics, not just the chi-square statistic, are

sensitive to relative rather than absolute discrepancies.

4.1.2 Interpretation of the results for Example 1

Comparing the boxplots in Figure 3, we see that both chi-square and root-mean-square tests

report a significant deviation in the largest index, among others. The largest index corre-

sponds to the 18 observed counts versus 10 expected counts of genotype {A3,A2} in Example

1. However, the p-value reported by the root-mean-square test is an order of magnitude

smaller than the p-value reported by chi-square test, as this discrepancy is larger compared

to expected root-mean-square fluctuations than it is compared to expected chi-square fluc-

tuations. In the chi-square summation, the statistical significance of this deviation (as well

as the deviations in indices 6 and 7) is washed out by large expected relative deviations in

the rare genotypes.

Table 1: Plain and fully-conditional (FC) p-values for Pearson’s statistic X2, the log–
likelihood-ratio statistic G2, the Hellinger distance H2, the negative log–likelihood statistic
L, and the root-mean-square statistic F , for the observed genotypic counts in Examples 1-3
to be consistent with the Hardy-Weinberg equilibrium model (1). With 99% confidence,
p-values are correct to ±.001.

Example 1 Example 2 Example 3

Statistic Plain p-val FC p-val Plain p-val FC p-val Plain p-val FC p-val

X2 .693 .709 .020 .020 .015 .026
G2 .600 .630 .013 .013 .181 .276
H2 .562 .602 .027 .025 .307 .449
L .648 .714 .016 .018 .155 .207
F .039 .039 .002 .002 .885 .917

4.1.3 Interpretation of the results for Example 2

The distribution of discrepancies in Figure 4 can be interpreted similarly to the boxplots from

Figure 3: both the chi-square and root-mean-square tests report a statistically significant

deviation in the 5th-largest index, corresponding to the 982 observed counts versus 1057.6

expected counts of genotype {A4,A1} in Example 2. However, the p-value reported by the
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root-mean-square test is an order of magnitude smaller than the p-value reported by chi-

square test, as this discrepancy is larger compared to expected root-mean-square fluctuations

than it is compared to expected chi-square fluctuations. In the chi-square summation, the

statistical significance of this deviation is washed out by large expected relative deviations in

the rare genotypes. In contrast to the n = 45 draws from Example 1, this data set contains

n = 8297 draws; we infer that the qualitative differences between the root-mean-square and

chi-square statistic are not unique to small sample-size data.

4.1.4 Interpretation of the results for Example 3

Comparing the expected and observed chi-square discrepancies in Figure 5(b), we might

posit that the small p-value of .015 that the chi-square test gives to the data in Example 3

depends strongly on the discrepancy at the 4th index on the plot, corresponding to a single

draw of genotype {A6,A6}. By removing this draw from the data set and re-running the

chi-square goodness-of-fit test on the remaining n = 29 draws, the chi-square statistic X2

returns a p-value of .207, well over an order of magnitude larger than the previous p-value,

confirming that the small p-value given by the chi-square statistic for the data set in Figure

2(c) is the result of observing a single rare genotype. The root-mean-square statistic is not

as sensitive to this discrepancy.

4.2 Power analyses

We now compare the power and Type I error for Pearson’s statistic X2, the log–likelihood-

ratio statistic G2, the Hellinger distance H2, the negative log–likelihood statistic L, and the

root-mean-square statistic F , in detecting practical deviations of genotype frequencies from

those expected under HWE, namely populations with increased homozygosity (as due to

inbreeding), populations with increased heterozygosity, and populations of genotypes under-

going selection (Chen & Thomson, 1999; Ayres & Balding, 1998; Lauretto et al., 2009). The

results in Table 2 support the assertion that the root-mean-square statistic and the classic

statistics focus their power on complementary classes of alternatives. In this section we will

consider four parameter specifications:
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1. Alternative: r = 10, n = 100, and θ1 = θ2 = 1/3, and θj = 1/24 for 3 ≤ j ≤ 10

2. Alternative: r = 10, n = 100, and θj ∼ 1/j for 1 ≤ j ≤ 10

3. Alternative: r = 10, n = 200, and θ1 = θ2 = 1/3, and θj = 1/24 for 3 ≤ j ≤ 10

4. Alternative: r = 20, n = 200, and θj ∼ 1/j for 1 ≤ j ≤ 20

4.2.1 Deviations due to selection

When there is selection for or against a particular allele or genotype in the population, the

result is an excess or deficiency of genotypes carrying a particular allele or pair of alleles

compared to what would be expected under HWE. To account for selection, one introduces

fitness parameters wj,k > 0 into the HWE equations,

pj,k =

 2(wj,k/w̄)θjθk, 1 ≤ k < j ≤ r

(wk,k/w̄)θ2k, j = k.
(12)

where w̄ is a normalization constant.

We consider the scenario where the common allele A1 is undergoing selection, so that

genotypes carrying allele A1 have higher fitness in the population:

wj,k =

 1.5, k = 1,

1, else.
(13)

The power and Type I errors of the various statistical tests in detecting deviations from

HWE due to selection for common alleles are listed in Table 2. The root-mean-square

statistic appears to be uniformly more powerful than the classic statistics while maintaining

the correct asymptotic Type I error rate. We will provide theoretical justification for these

observations through an asymptotic analysis in Section 5.

4.2.2 Deviations due to inbreeding

We now consider genotypic distributions parameterized by an inbreeding coefficient, f , which

describes the extent to which members of the population with similar genetic make-up are

more or less likely to mate with each other:

pj,k =

 2θjθk(1− f), j > k

θ2k + fθk(1− θk), j = k.
1 ≤ k ≤ j ≤ r (14)
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Table 2: Statistical power and Type I error of the various tests of HWE against deviations due
to selection, i.e., deviations of the form (12) with parameters as specified in Alternatives 1-4
and fitness parameters (13) and deviations due to inbreeding, i.e. deviations of the form (14)
with parameters as specified in Alternatives 1-4 and inbreeding parameter f = 1/10. Power
and Type I errors are at the 5% significance level, and computed using 5000 simulations
from the alternative distribution and 5000 Monte Carlo trials per each simulation.

Deviations due to selection for common allele

Alternative 1 Alternative 2 Alternative 3 Alternative 4

Statistic Power Type I Power Type I Power Type I Power Type I

X2 .04 .05 .01 .05 .04 .05 < .01 .05
G2 .07 .06 .02 .07 .07 .06 .01 .08
H2 .08 .06 .05 .07 .08 .05 .01 .07
L .03 .04 .01 .04 .04 .04 < .01 .04
F .13 .05 .12 .05 .19 .05 .23 .05

Deviations due to inbreeding

Alternative 1 Alternative 2 Alternative 3 Alternative 4

Statistic Power Type I Power Type I Power Type I Power Type I

X2 .34 .05 .34 .05 .60 .04 .64 .06
G2 .29 .06 .33 .06 .48 .06 .64 .08
H2 .18 .07 .22 .06 .28 .05 .42 .07
L .39 .05 .36 .04 .63 .04 .70 .03
F .16 .05 .16 .05 .26 .05 .29 .05

Hardy Weinberg Equilibrium corresponds to f = 0. A negative value f < 0 corresponds

to a deficiency of homozygotes, while a positive value of f corresponds to an excess of

homozygotes. Table 2 displays the power of the various tests against alternatives of the

form (14) with positive inbreeding parameter. The root-mean-square statistic appears to be

less powerful than the classic statistics in detecting deviations due to inbreeding, but does

appear to reach the correct asymptotic Type I error rate more quickly.

5 An asymptotic power analysis

In this section we give theoretical justification to our assertion that the root-mean-square

statistic can be more powerful than the classic statistics in detecting deviations from Hardy-
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Weinberg equilibrium. To model the setting where the number of draws and number of

genotypes are of the same magnitude, we consider the limit in which the number of alleles

and number of draws go to infinity together, so that the asymptotic chi-square approximation

to the classic statistics is not valid in this limit. Our method is to create data sets such that

the root-mean-square statistic has asymptotic power one while the chi-square statistics have

asymptotic power zero.

We consider a gene having r + 1 alleles, one common allele and r rare alleles. The

Common Allele data set we consider involves n = 3r observed genotypes, distributed as

indicated below.

Table 3: Common Allele data set

n = 3r observed genotypes

n1,1 = r of type {A1,A1}, n1,1/n = 1/3

n1,k = 2 of type {A1,Ak}, n1,k/n = 2/(3r), 2 ≤ k ≤ r + 1

nj,k = 0 of type {Aj,Ak}, nj,k/n = 0, 2 ≤ j ≤ k ≤ r + 1

n1 = 4r alleles of type A1, n1/(2n) = 2/3

nk = 2 alleles of type Ak, nk/(2n) = 1/(3r), 2 ≤ k ≤ r + 1.

The maximum-likelihood model counts for the Common Allele data set are

m1,1 = 4r/3,

m1,k = 4/3, 2 ≤ k ≤ r + 1,

mk,k = 1/(3r), 2 ≤ k ≤ r + 1,

mj,k = 2/(3r), 2 ≤ j < k ≤ r + 1, j < k.

(15)

To see that the Common Allele data set becomes increasingly inconsistent with the Hardy-

Weinberg model as r increases, observe that, under the null hypothesis, we would expect in

a sample of n = 3r genotypes to see r/3 =
∑r+1

j=2

∑r+1
k=2mj,k genotypes containing only rare

alleles. The Common Allele data set however contains no genotypes containing only rare

alleles. In spite of this inconsistency, we will prove that the plain p-values for each of the

four classic statistics X2, G2 and H2, converge to 1 as r → ∞, indicating zero asymptotic

power. In contrast, the p-value for the root-mean-square statistic converges to zero.

13



Theorem 1 In the limit as r →∞, the plain p-values (as computed via Algorithm 1 of Ap-

pendix S.1 in the Supplementary Material) given by X2, the log–likelihood-ratio statistic

G2 and the Hellinger distance H2for the Common Allele data set to be consistent with the

Hardy-Weinberg equilibrium model all converge to 1, while the plain p-value for the root-

mean-square statistic converges to 0.

The proof is given in Appendix S.2. of the Supplementary Material.

Figure 6 shows that the convergence of the classic p-values to 1, and of the root-mean-

square p-value to 0, occurs very quickly. This convergence is demonstrated for both the

plain and fully conditional p-values, even though Theorem 1 applies directly only to the

plain p-values.

Finally, the particular distribution of the draws in the Common Allele data set was

somewhat arbitrary. However, a similar asymptotic analysis holds for many other data

sets. For example, we could have considered instead a data set involving two, three, or four

common alleles, or one common allele and three fairly-common alleles, and so on.

6 Concluding Remarks

We have proposed the use of a simple root-mean-square statistic for testing deviations from

Hardy-Weinberg equilibrium. The classic tests, tuned to detect relative discrepancies, can be

blind to overwhelmingly large discrepancies among common genotypes that are drowned out

by expected finite-sample size fluctuations in rare genotypes. The root-mean-square statistic,

on the other hand, is tuned to detect deviations in absolute discrepancies, and easily detects

large discrepancies in common genotypes. We demonstrated this in the analysis of three

benchmark data sets of Guo & Thompson (1992), in one of which only the root-mean-square

statistic gave overwhelming evidence of a departure from Hardy-Weinberg equilibrium, and

another of which it gave an order of magnitude smaller p-value. We also found that the

root-mean-square test can be significantly more powerful at detecting deviations from Hardy-

Weinberg equilibrium arising from selection. These numerical results were complemented by

the asymptotic power analysis of Section 5. At the very least, the root-mean-square statistic

14



and the classic statistics focus on complementary classes of deviations from Hardy-Weinberg

equilibrium (see Figure 4), and their combined P -values provide a more fortified test than

either P -value used on its own.
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Appendix

A.1 Description of Figures 3, 4, and 5

Consider for a sample of genotype counts the linear ordering given by the nondecreasing

rearrangement of the Hardy-Weinberg equilibrium model counts: if m[j] denotes the jth

smallest expected frequency among all the model genotype frequencies, 1 ≤ j ≤ r(r + 1)/2,

then we denote the corresponding number of draws by n[j], and the corresponding number

of observed and expected simulated draws under the (plain) HWE null hypothesis by N[j]

and M[j].

The observed root-mean-square discrepancies are

drms
j =

(
m[j] − n[j]

)2
,

while the observed chi-square discrepancies are

dchij =

(
m[j] − n[j]

)2
m[j]

.

The random vectors of expected root-mean-square discrepancies in n i.i.d. draws from the

model distribution are

Drms
j =

(
M[j] −N[j]

)2
,
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and

Dchi
j =

(
M[j] −N[j]

)2
M[j]

.

To generate the boxplots for the relative root-mean-square discrepancies, we simulated K =

1000 realizations of n i.i.d. draws from the HWE model in the respective examples. For each

simulation, we computed the vector of root-mean-square discrepancies (A.1) and normalized

the vector to sum to 1. We displayed the distribution of discrepancies using a boxplot: for

each term j, the median of the distribution D
(·)
j = (D

(i)
j )1000i=1 is indicated by the bulls-eye

mark �. The rectangular box around the median extends to the 25th and 75th percentiles of

the data, and the whiskers extending from each side of the box reach out to the 1 and 99th

percentiles of the data. On top of the boxplot, the observed discrepancies, drms
j , normalized

to sum to 1, are indicated by large open circles.

The chi-square plot for each figure was created by repeating the same set-up as above

using the relative chi-square discrepancies.
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Figure 3: Example 1. Expected vs. observed relative root-mean-square discrepancies (top
plot) and Expected vs. observed relative χ2 discrepancies (bottom plot).
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Figure 4: Example 2. Expected vs. observed relative root-mean-square discrepancies (top
plot) and Expected vs. observed relative χ2 discrepancies (bottom plot).
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Figure 5: Example 3. Expected vs. observed relative root-mean-square discrepancies (top
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Figure 6: The p-values (accurate to three digits with 99% confidence) for Pearson’s statistic
X2, the log–likelihood-ratio statistic G2, the Hellinger statistic H2 and the root-mean-square
statistic F in the Common Allele data set to be consistent with the Hardy-Weinberg equi-
librium model (1), as a function of the number of alleles r. The top plot if for the plain
p-values, while the bottom plot is for the conditional p-values.
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S.1 Pseudocode for calculating exact p-values

Algorithm 1: Computing the plain p-value

Input: Observed genotype counts nj,k, number of Monte Carlo simulations `, and test

statistic S (e.g. S = X2, G2, H2, . . . )

Output: plain p-value associated to test statistic S(nj,k,mj,k)

Compute maximum-likelihood model counts mj,k = (2− δjk)(nj nk)/(4n)

Measure the discrepancy s = S(nj,k,mj,k).

i← 0

repeat

- i← i+ 1

- Draw n genotypes X
(i)
1 , . . . , X

(i)
q , . . . , X

(i)
n i.i.d. from the multinomial model distribution

(mj,k/n)

- Aggregate simulated genotype counts N
(i)
j,k = #

{
q : X

(i)
q = {Aj, Ak}

}
- Aggregate simulated allele counts N

(i)
j =

(∑r
k=j N

(i)
k,j +

∑j
k=1N

(i)
j,k

)
and proportions

Θ
(i)
j = N

(i)
j /(2n).

- Compute maximum-likelihood counts M
(i)
j,k = (2− δjk)N

(i)
j N

(i)
k /(4n)

- Evaluate simulated discrepancy Si = S(N
(i)
j,k ,M

(i)
j,k)

until i = `

return plain p-value, P = #{i : Si ≥ s}/`

S.2 Proof of Theorem 1

The crux of the proof is that, as r increases, relative fluctuations in the rare genotypes sim-

ulated under HWE become sufficiently large that the sum of relative discrepancies expected

under the null hypothesis exceeds the sum of the observed relative discrepancies. However,

the sum of absolute fluctuations expected under the HWE model remains bounded below

the sum of the observed absolute discrepancies.
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Algorithm 2: Computing the fully conditional p-value

Input: Observed genotype counts nj,k and allele counts nj, number of Monte Carlo simu-

lations `, and test statistic S (e.g. S = X2, G2, H2, . . . )

Output: fully conditional p-value associated to test statistic S(nj,k,mj,k)

Compute maximum-likelihood model counts mj,k = (2− δjk)njnk/(4n).

Measure the discrepancy s = S(nj,k,mj,k).

i← 0

repeat

- i← i+ 1

- Apply a random permutation to the sequence of alleles as in (10) to obtain n simulated

genotypes X
(i)
1 , . . . , X

(i)
q , . . . , X

(i)
n with fixed allele counts nj.

- Aggregate simulated genotype counts N
(i)
j,k = #

{
q : X

(i)
q = {Aj, Ak}

}
- Evaluate simulated discrepancy Si = S(N

(i)
j,k ,mj,k)

until i = `

return fully conditional p-value, P = #{i : Si ≥ s}/`

In the proof of Theorem 1, we will use the notation un & vn to indicate that there exists

some absolute constant C > 0 such that un ≥ Cvn for all n = {1, 2, . . . }. We use the

notation u . v accordingly. We will use C > 0 to denote a positive universal constant that

might be different in each occurrence. We write X(r) → y to mean that the distribution

X(r) converges to the value y as r →∞.

Proof of Theorem 1 Recall the relevant notation for computing plain p-values in Algorithm

1, along with the Common Allele data set in Table 4 and its maximum-likelihood HWE

model counts (15). Here and throughout, we will refer to A1 as the common allele and

to {A1, A1} as the common genotype; we will refer to the remaining r alleles as rare, to

genotypes of the form {A1, Aj}, 2 ≤ j ≤ r+ 1, as rare observed genotypes, and to genotypes

of the form {Aj, Ak}, 2 ≤ j ≤ k ≤ r + 1 as unobserved genotypes.

1. Because the model proportion θ1 = 2/3 remains constant as r increases but the number

of draws n = 3r tends to infinity, the law of large numbers implies that Θ1 → θ1 = 2/3.

Accordingly, M1,1/n → m1,1/n = 4/9 and
∑r+1

j=2 Θj = 1 − Θ1 → 1/3. In words,
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eventually 2/3 of the simulated alleles and 4/9 of the simulated genotypes from the

model will be common.

2. Similarly, ∑r+1
k=2Mk,1/n →

∑r+1
k=2m1,k/n = 4/9;∑r+1

k=2

∑r+1
j=2Mk,j/n →

∑r+1
k=2

∑r+1
j=2mk,j/n = 1/9.

In words, roughly 4/9 of the draws simulated from the model will be rare observed

genotypes, while 1/9 of the simulated draws will unobserved genotypes.

3. With probability approaching 1 as r → ∞, each of the roughly n/9 = r/3 simulated

draws from the pool of (r2− r)/2 unobserved genotypes will have a different genotype

from the others. At this point, roughly r/3 of the unobserved simulated proportions

Nj,k/n, 2 ≤ k ≤ j ≤ r + 1, will equal 1/(3r), while the others will equal 0.

4. The coupon collector’s problem (see, for example, Motwani & Raghavan (1995)) implies

that with probability approaching 1 as r →∞, among the roughly 2r simulated draws

from the pool of r rare alleles, no rare allele will be drawn more than log(r) times

(fixing the base of the logarithm at any real number greater than 1 that does not

depend on r), and at least 3r/4 among the r rare alleles will be drawn at least twice.

In particular, the last point above implies that, with probability approaching 1 as r → ∞,

all of the simulated rare proportions Θj = Θj(r), 2 ≤ j ≤ r + 1, will satisfy

Θj(r) ≤ log(r)/r (S.1)

and, for at least 3r/4 among the r simulated rare proportions,

1/(3r) ≤ Θj(r) ≤ log(r)/r. (S.2)

1. The p-value for the root-mean-square goes to 0 when r → ∞. The measured

sum-square discrepancy f̃ 2 = r(r + 1)f 2/2 between the observed proportions nj,k/n

and the model proportions mj,k/n is

f̃ 2 =
(n1,1

n
− m1,1

n

)2
+

r+1∑
k=2

(nk,1

n
− mk,1

n

)2
+

∑
2≤k≤j≤r+1

(mj,k

n

)2
=

(1

9

)2
+

4

81r
+

1

81r3
+

2(r − 1)

81r3
.

As r →∞,

f̃ → 1/9. (S.3)



NOT FOR PUBLICATION SUPPLEMENTARY MATERIAL S.5

If we instead consider the sum-square statistic F̃ 2 = (r+1)(r+2)
2

F 2 resulting from drawing

n = 3r genotypes i.i.d. from the model distribution (15), points 1, 3, and 4 above give

F̃ 2 .
(N1,1 − 4r/3)2

9r2
+

r+1∑
k=2

((log r)2

r

)2
+

∑
2≤k≤j≤r+1:Nj,k=1

( 1

3r

)2
+

∑
2≤k≤j≤r+1:Nj,k=0

( log r

r

)4
∼ Z2

27r/4
+

(log r)4

r
+
r

3

1

9r2
+
(r(r + 1)

2
− r

3

)( log r

r

)4
, (S.4)

where Z = (N1,1 − 4r/3)/
√

4r/3 converges in distribution to a standard normal dis-

tribution as r → ∞. Therefore, as r → ∞, F̃ → 0. Combining (S.3) and (S.4) shows

that the p-value for the root-mean-square statistic, P = pr{F ≥ f} = pr{F̃ ≥ f̃},
goes to 0 as r →∞.

2. The p-value for X2 goes to 1 as r → ∞. Similar to the measured sum-square

discrepancy f̃ , the measured χ2 discrepancy χ̃2 = χ2/n converges to some finite positive

real number as r →∞. Alternatively, if we simulate n = 3r genotypes from the model

distribution and (following point 3 above) consider only those roughly r/3 summands

in the normalized χ2 statistic X̃2 = X2/n corresponding to the unobserved genotypes

with one simulated draw,

X̃2 &
r

3
min

2≤k≤j≤r+1:Nj,k=1

(Nj,k

n
− Mj,k

n

)2
/
(Mj,k

n

)
&

r

3

( 1

3r
−
( log r

r

)2)2
/
( log r

r

)2
. (S.5)

It follows from (S.5) that X̃2 & r/{log(r)}2 → ∞, and so the p-value for the χ2

statistic, P = pr(X2 ≥ χ2) = pr(X̃2 ≥ χ̃2
2
), goes to 1 as r →∞.

3. The p-value for the Hellinger statistic H2 goes to 1 when r → ∞. We have

to be a bit more careful with the analysis of the Hellinger discrepancy h̃2 = h2/(4n).

The observed discrepancy is

h̃2 =
(
√

3− 2)2

9
+

r+1∑
j=2

(√ 2

3r
−
√

4

9r

)2
+

∑
2≤k<j≤r+1

2

9r2
+

r+1∑
j=2

1

9r2

=
(
√

3− 2)2

9
+

10− 4
√

6

9
+

1

9
= .14.... (S.6)

Alternatively, suppose we simulate n = 3r genotypes from the model distribution and

consider r sufficiently large. Each estimated rare allele proportion will be bounded:
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Θj ≤ log(r)/r, as stated in (S.1) . Furthermore, by (S.2), at least 3/4 of these propor-

tions will satisfy Θj ≥ 1/(3r), ensuring that at least (3/4)2r2

2
− r among the r(r + 1)/2

simulated proportions for the unobserved genotypes satisfy Mj,k/n ≥ 2/(9r2). Then,

for sufficiently large r,

H̃2 ≥
∑

2≤j≤k≤r+1

(√
Nj,k/n−

√
Mj,k/n

)2
≥ #{j, k : Nj,k = 1}

( 1√
3r
− log (r)

r

)2
+

((3

4

)2 r2
2
− r −#{j, k : Nj,k = 1}

)( 2

9r2

)
∼ r

3

( 1√
3r
− log r

r

)2
+
((3

4

)2 r2
2
− r − r

3

)( 2

9r2

)
→ .17.... (S.7)

Combining (S.6) and (S.7), we conclude that the p-value for the Hellinger distance,

P = pr(H2 ≥ h2) = pr(H̃2 ≥ h̃2), goes to 1 as r →∞.
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