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Shiga toxigenic Escherichia coli O157 is the leading cause of hemolytic uremic syndrome (HUS) worldwide. The frequencies of
stx genotypes and the incidences of O157-related illness and HUS vary significantly between Argentina and Australia. Locus-
specific polymorphism analysis revealed that lineage I/II (LI/II) E. coli O157 isolates were most prevalent in Argentina (90%) and
Australia (88%). Argentinean LI/II isolates were shown to belong to clades 4 (28%) and 8 (72%), while Australian LI/II isolates
were identified as clades 6 (15%), 7 (83%), and 8 (2%). Clade 8 was significantly associated with Shiga toxin bacteriophage inser-
tion (SBI) type stx2 (locus of insertion, argW) in Argentinean isolates (P < 0.0001). In Argentinean LI/II strains, stx2 is carried by
a prophage inserted at argW, whereas in Australian LI/II strains the argW locus is occupied by the novel stx1 prophage. In both
Argentinean and Australian LI/II strains, stx2c is almost exclusively carried by a prophage inserted at sbcB. However, alternative
q933- or q21-related alleles were identified in the Australian stx2c prophage. Argentinean LI/II isolates were also distinguished
from Australian isolates by the presence of the putative virulence determinant ECSP_3286 and the predominance of motile
O157:H7 strains. Characteristics common to both Argentinean and Australian LI/II O157 strains included the presence of puta-
tive virulence determinants (ECSP_3620, ECSP_0242, ECSP_2687, ECSP_2870, and ECSP_2872) and the predominance of the
tir255T allele. These data support further understanding of O157 phylogeny and may foster greater insight into the differential
virulence of O157 lineages.

Escherichia coli O157 is a food-borne pathogen of global signif-
icance. Human infection can result in progressive sequelae ex-

tending from bloody diarrhea to hemolytic uremic syndrome
(HUS), giving rise to the designation of this pathogen as entero-
hemorrhagic E. coli (EHEC) (5, 33). The predominant source of
O157 is cattle (12) and undercooked beef products (2); however,
secondary sources, including leafy green vegetables, apple cider,
and dairy products which have been contaminated with manure,
are also vehicles for food-borne infection (6).

Molecular typing and microbial genomics have facilitated the
characterization and comparison of O157 strains isolated from
human and animal sources. These studies have been directed to
the identification of O157 factors influencing successful human
infection. Such analyses have included characterization of Shiga
toxin genotypes (32), locus-specific polymorphism assays (LSPA)
(40, 44), clade typing (24, 34), allelic variation of virulence genes
(4), and Shiga toxin bacteriophage insertion (SBI) site analysis (3,
36, 38).

For some time, it has been known that O157 strains carrying
stx2 predominate in human infection, causing more severe disease
symptoms than stx2c strains (10, 28). Evidence for a hypervirulent
clade of O157 was first demonstrated by Manning et al. (24) in
their analysis of O157 outbreak isolates associated with raw spin-
ach consumption in the United States in 2006. This evidence was
further supported by genotype comparisons demonstrating that
hypervirulent clade 8 isolates can also be designated LSPA-6 lin-
eage I/II (LI/II) with unique SBI genotypes (19). LI/II clade 8
strains are characterized by insertion of the stx2 prophage in argW
(18), frequently also possess the stx2c prophage inserted in sbcB,
and do not possess stx1 prophage (24).

While the studies described above have been informative, they

have focused largely on isolates from geographic regions in the
Northern Hemisphere. In those studies, which assessed the geno-
types of isolates from diverse geographic regions, some limited
indications of strain divergence have been observed. For example,
O157:H� strains carrying stx2c (either alone or in association with
stx1) dominate from both clinical and cattle sources in Australia
(8). Human O157 isolates in Australia also possess SBI genotypes
that are different from O157 isolates of human origin in the
United States (39), suggesting the possibility of different stx pro-
phage configurations in human isolates in these separate coun-
tries. More recent striking data indicate that O157 strains with the
stx2 stx2c genotype are predominant in both Argentinean cattle
(56%) and clinical cases, where such strains are implicated in
�90% of postenteric HUS (22). However, O157 strains with the
stx2 stx2c genotype are very rare in Australia (8). Notable differ-
ences in Argentinean and Australian O157 epidemiologies are also
reflected in the incidence of human cases. A total of 0.24 cases per
100,000 population in Australia (27) and 13.9 cases per 100,000
children younger than 5 years in Argentina (35) are caused mainly
by E. coli O157.

To further examine the relatedness of Southern Hemisphere E.
coli O157 isolates, we have now compared human and bovine
O157 isolates from Argentina and Australia. Strain motility, stx
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genotyping, q allele genotyping, LSPA-6 genotyping, single nucle-
otide polymorphism (SNP) clade typing, stx prophage analysis,
and putative virulence factor genotyping have been applied to
characterize properties of O157 isolates from both countries.

MATERIALS AND METHODS
Bacterial strains. E. coli O157 strains from Argentina (human, n � 30;
cattle, n � 30) and Australia (human, n � 30; cattle, n � 30) comprising
isolates that vary in source, pulsed-field gel electrophoresis (PFGE) type,
stx genotype, and geographical and temporal isolation were included in
this study. Bacterial strains were recovered from �80°C protect preservers
(Oxoid, Basingstoke, United Kingdom) in Luria-Bertani (LB) broth at
37°C overnight and stored on tryptone soya agar (TSA; Oxoid) for the
duration of the study. Serotype O157 and motility were determined as
described by Fegan and Desmarchelier (8). Escherichia coli K-12 Q358 Smr

(15) lysogens were created from Argentinean and Australian isolates car-
rying stx1-, stx2-, and stx2c-encoding prophages. E. coli O157 strains Sakai,
EDL933, EC623 (16), EC1812 (16); K-12 strains MG1655 and Q358 Smr;
and Salmonella Braenderup H9812 (ATCC BAA-664) were used as con-
trols when appropriate.

Analysis of stx genes. Isolates were investigated for the presence of stx1

and stx2 using previously published multiplex primers and PCR condi-
tions (30). Restriction fragment length polymorphism was performed on
isolates that tested positive for stx2 to discriminate between stx2 and stx2c

as previously described (24). Isolates that tested positive for the presence
of stx2 and/or stx2c were subsequently tested for stx2-specific q933 and
stx2c-specific q21 alleles using primer pairs Q-stx2-F (5=-AAAGCGGAGG
GGATTGTTGAAGGC-3=)/stx2_rev (5=-CCGGGAATAGGATACCGAA
G-3=) and Qc-stx2-F (5=-GAACAGCATGAGTGGCTGAA-3=)/stx2_rev,
respectively, with the following cycling conditions; 96°C for 10 s; 60°C for
30 s; 72°C for 45 s. A representative set of stx2 (987-bp) and stx2c (1,177-
bp) amplicons were gel purified and used as templates in capillary se-
quence reactions (Australian Genome Research Facility, St. Lucia, Austra-
lia) to confirm the sequence of q933 and q21 regions upstream of the stx2

and stx2c genes, respectively.
Determination of Shiga toxin bacteriophage insertion (SBI) loci and

stx lysogen formation. Primer sets targeting SBI site boundary sequences
were used to determine the stx prophage occupancy of E. coli O157 loci
yehV (mlrA) and wrbA using the method of Shaikh and Tarr (36). Addi-
tional primers were designed to determine the occupancy of argW, sbcB,
prfC, and yecE (Table 1). The SBI sites of E. coli K-12 stx lysogens were
determined in the same manner. Mitomycin C (0.5 �g ml�1) was used to
induce stx prophage from wild-type O157 strains (1). E. coli K-12 stx

lysogen candidates were selected as survivors following stx phage infection
(1). Survivors were selected as colonies growing within zones of stx phage
lysis in semisolid layered agar plates or as colonies streaked from stx phage
infection broth cultures. stx lysogen candidates were confirmed using
primer pairs specific for stx1, stx2, or stx2c as appropriate (24, 30); the
absence of O157 eae and ehxA genes in lysogens was also confirmed by
PCR (30).

LSPA-6 typing. Isolates were further characterized using the LSPA-6
method as previously described (40). Briefly, fluorescent-labeled ampli-
cons were diluted 1/20 and separated by capillary electrophoresis using an
Applied Biosystems 3130 Genetic Analyzer (Applied Biosystems, Foster
City, CA), DS-33 matrix, and GeneScan600 LIZ size standard. Amplicon
size was determined using Peakscanner software (version 1.0; Applied
Biosystems). Three isolates (EC623, EC1812, and MG1655) with known
LSPA-6 patterns were included in each run as positive controls.

O157 clade and tir255T/A allele genotyping. O157 virulence clades
were identified by targeted SNP typing using SYBR green-based real-time
PCR with hairpin primers. Clades 1 to 3 and 8 were identified using the
SNPs described by Riordan et al. (34). The remaining O157 clades (4 to 7
and 9) were identified using SNPs or combinations of SNPs previously
shown to be specific for individual clades (24). Polymorphisms of tir were
detected using a probe-based real-time PCR method (38).

PCR genotyping of O157 virulence factors. The gene encoding the
H7 flagellum antigen, fliCH7, was detected using the method of Gannon et
al. (11). Isolates were screened for the locus tags corresponding to putative
virulence determinants ECSP_0242, ECSP_1773, ECSP_2687, ECSP_
2870, ECSP_2872, ECSP_3286, and ECSP_3620 as previously described
(18).

Statistical analysis. Statistical analyses were performed using a 2-by-2
contingency table and Fisher’s exact test (Minitab15; Minitab Inc., Min-
neapolis, MN). P values were two-tailed, and groups were considered
significantly different if P values were �0.05. When multiple comparisons
were performed, Bonferroni P value correction was incorporated.

Nucleotide sequence accession numbers. The sequences reported in
this paper have been deposited in the GenBank database (accession num-
bers HQ993494 to HQ993501).

RESULTS
Motility. All Argentinean strains (60/60) were E. coli O157:H7
(motile), while 14/60 Australian strains were E. coli O157:H7 and
the remainder were E. coli O157:H� (nonmotile). Argentinean
O157 strains were significantly more often motile than Australian
O157 strains (P � 0.0001).

TABLE 1 Bacteriophage insertion site primers

Target Primer Sequence Cycle conditions

argW left junction int4045F 5=-ACCATCGAGTAGGCGGTATG-3= 96°C for 10 s, 60°C for 30 s, 72°C for 40 s
int1810R 5=-ATTTCAGCAGGGCCAGAGTA-3=

argW right junction yfdCF 5=-ACTGGAGCGATTTCATCTGG-3= 96°C for 10 s, 60°C for 30 s, 72°C for 40 s
phi1810stx2F 5=-GGTTGAGCGGGATATGAAAA-3=

sbcB left junction sbcBF 5=-ATTGTCGCGCTAAAGCTGAT-3= 96°C for 10 s, 60°C for 30 s, 72°C for 45 s
stx2cphiB 5=-CAACGATGCTCGTTATGGTG-3=

sbcB right junction stx2cphiA 5=-GGACAACAGCGCACAGTAAA-3= 96°C for 10 s, 60°C for 30 s, 72°C for 45 s
sbcBR1 5=-CGGGCTTGCAGTAAAAGACT-3=

prfC prfCF 5=-CGATGCCGCTTACTCAAGA-3= 96°C for 10 s, 60°C for 30 s, 72°C for 45 s
prfCR 5=-GAACAGCAGCACCTTCTCG-3=

yecE yecEF 5=-ATTGCCGAAGATGCCTGTAG-3= 96°C for 10 s, 60°C for 30 s, 72°C for 45 s
yecER 5=-CATACAGCGCGCTTACCATA-3=
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stx genotyping. Argentinean and Australian O157 isolates in this
study comprised seven and five different stx genotypes, respectively
(Table 2). Among Argentinean isolates, stx2 stx2c represented the larg-
est group (26/60) followed by stx2 alone (9/60) and stx2c alone (8/60).
The predominant stx genotypes of Australian isolates were identified
as stx1 stx2c (37/60) and stx2c alone (17/60). A significant difference
was observed between the predominant genotypes from Argentina
(stx2 stx2c) and Australia (stx1 stx2c) (P � 0.0001).

LSPA-6 typing. LSPA-6 lineage I/II dominated in isolates from
both Argentina (90%) and Australia (88%) (Fig. 1). There was no
significant difference in the prevalence of LI/II isolates from both
countries. LI isolates were present in both countries, accounting for
4% of the 120 isolates tested. All stx2-positive LI isolates from both
Argentina and Australia carried the stx2 (wrbA) prophage. In con-
trast, LII isolates were present only in Australia, with 7% (4/60) of
isolates shown to possess this genotype. No lineage designation could

be assigned to three Argentinean and one Australian isolate due to the
absence of Z5935 allele amplicons from these isolates.

Virulence clade determination. Argentinean LI/II isolates
(n � 54) were shown to belong to clades 4 (28%) and 8 (72%).
Australian LI/II isolates (n � 53) were identified as clades 6 (15%),
7 (83%), and 8 (2%). No clade 4 isolates were characterized
among Australian O157 and, conversely, no clade 6 or 7 isolates
were observed among Argentinean O157. Clinical isolates from
Argentina and Australia were predominately clade 8 (80%) and
clade 7 (90%), respectively (Fig. 2). However, among cattle iso-
lates, clade 4 (43%) and clade 8 (50%) were prevalent in Argen-
tina, while clade 6 (23%) and clade 7 (70%) predominated in
Australia. In Argentina, clade 8 isolates dominated in both cattle
(50%) and humans (80%) but were present in significantly more
human isolates than cattle isolates (P � 0.0292). A similar pattern
of clade dominance was observed for Australian isolates, where
clade 7 dominated in both cattle (70%) and humans (90%). How-
ever, the different distribution of clade 7 in human and cattle
isolates was not statistically significant.

Shiga toxin bacteriophage insertion site characterization.
The insertion of Shiga toxin prophage in previously described
O157 chromosomal loci yehV, wrbA, sbcB, argW, yecE, and prfC
was investigated (Table 3). In Argentinean O157, stx2- and stx2c-
associated prophages were inserted in the argW (37/43 isolates)
and sbcB (46/46 isolates) loci, respectively. The stx2 prophage of
four Argentinean O157 strains was not inserted in any of the loci
studied. Australian O157 strains also showed association of stx2c

with prophage insertion in the sbcB locus (54/55 isolates). In a
single stx2c-positive Australian strain, the presumptive stx2c pro-
phage was not inserted in any of the loci studied. A separate single
Australian isolate showed stx2-associated prophage insertion in
the argW locus. In stx1-positive LI/II Argentinean strains (n � 14),

TABLE 2 Distribution of stx genotypes in Argentinean and Australian E.
coli O157

stx
genotypea

No. of isolates

Argentina Australia

Human
(n � 30)

Cattle
(n � 30)

Total
(n � 60)

Human
(n � 30)

Cattle
(n � 30)

Total
(n � 60)

stx1 1 2 3 3 3
stx1 stx2 2 2 1 1 2
stx1 stx2 stx2c 3 3 6
stx1 stx2c 2 4 6 17 20 37
stx2 6 3 9
stx2 stx2c 16 10 26 1 1
stx2c 2 6 8 9 8 17
a stx genotype refers to the Shiga toxin genotype.

FIG 1 Distribution of LSPA-6 genotypes among E. coli O157 isolates from Argentina and Australia. No lineage designation could be assigned to three
Argentinean isolates and one Australian isolate due to the absence of the Z5935 allele amplicons. These isolates have been referred to as untypeable.
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the stx1 prophage was not inserted in any of the loci examined.
However, in these strains (and in all other Argentinean LI/II and
lineage untypeable strains [n � 43]), the yehV locus showed evi-
dence that it was occupied by a non-stx prophage. LI Argentinean
(n � 2) and Australian (n � 2) E. coli O157 isolates carrying stx1

stx2 showed association with prophage insertion in the yehV and
wrbA loci, respectively. In contrast, all other Australian O157
strains carrying stx1 (n � 40) showed stx1 association with pro-
phage insertion in the argW locus, suggesting the presence of a
novel O157 stx1 bacteriophage in these strains.

The occurrence of SBI type stx2 (argW)/stx2c (sbcB) in Argen-
tinean isolates was significantly different from the occurrence in
Australian isolates (P � 0.0001) (Table 3). Similarly, the occur-
rence of SBI type stx1 (argW)/stx2c (sbcB) in Australian isolates was
significantly different to the occurrence in Argentinean isolates
(P � 0.0001). In addition, clade 8 was significantly associated with
SBI type stx2 (argW) in Argentinean isolates (P � 0.0001).

Induced stx1, stx2, and stx2c phages insert at phage-specific
loci to form E. coli K-12 lysogens. The stx prophage of Argentin-
ean and Australian O157 strains was further investigated by pro-
phage induction and lysogeny of an E. coli K-12 host strain in
order to demonstrate unambiguous linkage of stx genotypes with
particular phages (Table 4). Representative O157 strains were in-
duced with mitomycin C followed by harvest of resultant phage
lysates and infection of E. coli strain Q358 Smr. Putative stx1, stx2,
and stx2c lysogens were selected as Q358 Smr survivors following
phage infection and demonstration of lysogen resistance to strep-
tomycin. All lysogen strains were confirmed by stx-specific PCR to
carry only the predicted stx genes introduced by the specific in-
fecting stx phage. The absence of PCR amplification of O157 vir-
ulence genes eae and ehxA was confirmed for all stx lysogens. De-
spite repeated efforts, K-12 lysogens from Argentinean O157 stx1

or stx2c prophage were not obtained. SBI analysis then demon-
strated that the stx2 (argW) phage induced from Argentinean
O157 strains inserted in the argW locus of E. coli Q358 Smr. SBI
analysis also demonstrated that stx2 (wrbA) phage induced from

FIG 2 Distribution of E. coli O157 virulence clades in isolates from Argentina and Australia. Isolates are grouped according to country and source, and the
distribution of clades within each group is displayed as a percentage of total isolates within the group.

TABLE 3 Characterization of E. coli O157 isolates by O157 clade type
and stx bacteriophage insertion site

Country Clade No. of isolates

SBIa

stx1 stx2 stx2c

Argentina 3 1 yehV
2 yehV wrbA

4 2 Unk
3 Unk
6 Unk sbcB
5 sbcB
1 Unk sbcB
1 argW sbcB

8 3 sbcB
6 Unk argW sbcB
6 argW
24 argW sbcB

Australia 2 1 yehV wrbA
3 1 yehV wrbA
6 1 sbcB

8 argW sbcB
7 3 argW

1 argW Unk
28 argW sbcB
16 sbcB

8 1 argW sbcB
a SBI, Shiga toxin bacteriophage insertion locus; Unk, unknown. The SBI for some stx
prophages of O157 isolates remain unknown. In such cases, stx lysogens were not
isolated and SBI mapping did not correlate with stx genotype data for any of the five
Shiga toxin prophage loci examined.
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Argentinean O157 strains inserted in the wrbA locus of E. coli
Q358 Smr. Similarly, stx2c phage induced from Australian O157
demonstrated insertion specificity for the sbcB gene in E. coli Q358
Smr lysogens. Lysogenic insertion of stx1 phage from Australian
O157 LI/II isolates, into the E. coli K-12 argW locus, was also
demonstrated. Mitomycin C induction of all stx1, stx2, and stx2c

lysogens demonstrated that de novo stx1, stx2, and stx2c phages,
able to form infectious plaques on E. coli Q358 Smr indicator
lawns, were produced from the newly created lysogens. Confirma-
tion of stx1 linkage to prophage specifically integrating at the argW
SBI locus of their lysogen host demonstrated the novelty of the stx1

(argW) phage from Australian O157 strains.
q gene allelic variation upstream of stx2c in Argentinean and

Australian O157. The prevalences of q933 and q21 alleles in Aus-
tralian and Argentinean O157 isolates were determined with q
allele-specific PCR. Argentinean strains carrying stx2 (n � 43)
tested positive for q933, while those carrying stx2c (n � 46) tested
positive for q21. Unexpectedly, Australian strains carrying stx2c

(n � 55) showed evidence for q933 and q21 gene allelic variation
upstream of stx2c. Eighteen Australian O157 strains carrying stx2c

possessed q933 (33%) and 36 possessed q21 (65%). A single stx2c-
carrying Australian isolate showed evidence for deletion disrup-
tion of the q-stx2cA region which prevented q allele designation in
this isolate. To confirm the unusual presence of the q933 allele
upstream of stx2c in 18 Australian isolates and verify that desig-
nated q933 and q21 amplicons matched the appropriate gene se-
quences, the DNA sequences of 7 representative q allele amplicons
were compared. The sequences of q933 and q21 gene regions from
representative Argentinean stx2 and Australian stx2c (including
both q933 and q21 allelic forms) O157 strains showed greater than
99% identity to stx2 q933 and stx2c q21 nucleotide regions from
strain TW14359, respectively. Additional confirmation of stx2c

q933 and stx2c q21 gene allelic variation was shown in stx2c lysogen
strains. Representative E. coli K-12 lysogens transduced with Aus-
tralian stx2c prophage were shown to possess the q21- or q933-re-
lated allelic forms (Table 4). Using these approaches, the presence
of novel stx2c q933 in some strains of Australian O157 was verified.

Identification of putative virulence determinant genes and
allelic variants. Following our designation of the most prevalent
O157 strains from both Argentina and Australia as LI/II, we inves-
tigated if putative TW14359 virulence factor genes were also pres-
ent (Table 5). The presence of the putative heme binding protein
gene (ECSP_3286) carried by the TW14359 stx2 (argW) prophage
in 97% (36/37) of Argentinean O157 isolates was significantly dif-
ferent (P � 0.0001) from the presence in a single Australian O157
strain also carrying stx2 (argW) prophage. ospB (ECSP_2687), car-
ried by the TW14359 stx2c (sbcB) prophage, was present in 43/46
Argentinean and 54/55 Australian O157 strains also carrying the
stx2c (sbcB) prophage. Three Argentinean isolates shown to carry
stx2 but not stx2c tested positive for ECSP_2687. These isolates also
contained an occupied sbcB locus, suggesting that they may carry
stx2c-negative sbcB prophage. Of the additional potential virulence
determinants associated with the TW14359 genome, ECSP_1773
was present in 16/60 Argentinean strains and 14/60 Australian
strains. ECSP_2870 and ECSP_2872 were present together in a
higher proportion of Argentinean strains (38/60) than Australian
strains (24/60); however, this was not statistically significant (P �
0.007). In the Australian strains, ECSP_2870 and ECSP_2872 were
present together in significantly more human isolates (17/30) than
animal isolates (7/30) (P � 0.05). Ankyrin repeat elements
(ECSP_0242) were present in 56/60 Argentinean and the majority
of Australian strains (55/60). Similarly, the nitric oxide reductase
gene norV (ECSP_3620) was present in 57/60 Argentinean and the
majority of Australian strains (58/60). All isolates carrying norV
were non-LI and also belonged to either clade 4, 6, 7, or 8. All
Argentinean (n � 3) and Australian (n � 2) O157 isolates that
carried a �norV allele (204-bp deletion homologous to EDL933
and Sakai strains) were shown to belong to LI. Therefore, signifi-
cant associations of ankyrin repeat presence with LI/II (P � 0.05)
and norV presence with LI/II (P � 0.05) were evident. Additional
analysis of the translocated intimin receptor gene tir alleles, pre-
viously used to discriminate clinical O157 strains, revealed that
with the exception of four Australian isolates possessing tir255A,
all other Argentinean (60/60) and Australian O157 isolates (56/
60) possessed the tir255T allele.

DISCUSSION

The prevalences of particular stx genotypes in E. coli O157 isolates
from different geographic origins have previously been reported
(8, 22, 25). Fegan and Desmarchelier (8) tested 102 Australian E.
coli O157 isolates from human and animal sources for the pres-

TABLE 4 Genotypes of E. coli K12 Q358 Smr lysogen strains carrying
Argentinean and Australian O157 stx1, stx2, or stx2c prophages

O157 donor
strain

Lysogen genotypea

Integration
site q allelestx1 stx2 stx2c eae ehxA Smr

I-004 � � � � � � wrbA q933

I-003 � � � � � � wrbA q933

313/99 � � � � � � argW q933

129/01 � � � � � � argW q933

210/03 � � � � � � argW q933

326/03 � � � � � � argW q933

755/05 � � � � � � argW q933

112/07 � � � � � � argW q933

145/98 � � � � � � argW q933

FP-196 � � � � � � argW q933

353/00 � � � � � � argW q933

EC3185 � � � � � � argW NAb

EC3206 � � � � � � argW NA
EC2441 � � � � � � sbcB q21

EC3197 � � � � � � sbcB q21

EC3204 � � � � � � sbcB q933

a �, present; �, absent.
b NA, not applicable for stx1 prophage.

TABLE 5 Escherichia coli O157 isolates positive for putative virulence
determinants

Determinanta

No. (%) of isolates

Argentina (n � 60) Australia (n � 60)

tir255T 60 (100) 56 (93)
ECSP_0242 56 (93) 55 (92)
ECSP_1773 16 (27) 14 (23)
ECSP_2687 46 (77) 54 (90)
ECSP_2870/2872 38 (63) 24 (40)
ECSP_3286 36 (60)b 1 (2)b

ECSP_3620 57 (95) 58 (97)
a ECSP locus tags indicate putative virulence determinants identified in the E. coli O157
TW14359 genome (18).
b Considered to be significantly different (P � 0.0007).
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ence of stx1, stx2, and stx2c. Their findings demonstrated the fol-
lowing stx genotypes: stx1 stx2c (74%), stx2c (16%), stx1 stx2 (5%),
stx2 stx2c (3%), and stx1 (3%). Studies from Argentina have also
demonstrated predominance of the particular genotype stx2 stx2c

(22, 25). Isolates in the current study represented multiple geno-
types in proportions similar to the diversity previously demon-
strated in Argentina and Australia. Consistent with this, we ob-
served a significant difference between the dominant stx2 stx2c

(Argentina) and stx1 stx2c (Australia) genotypes in this study.
The high prevalence of dominant but contrasting stx genotypes

in Argentina and Australia provoked our investigation of Shiga-
toxin bacteriophage insertion (SBI) sites in diverse sets of epide-
miologically representative O157 isolates from each country.
Through this we have demonstrated that stx1-positive Australian
isolates dominantly carry novel stx1 prophage in the argW locus,
which had previously been described only as a locus for stx2 pro-
phage insertion (18, 29). Additionally, we have demonstrated that,
in common with the U.S. spinach-associated outbreak strain
TW14359 (18), Argentinean stx2 isolates most commonly carry
stx2 prophage in argW. These data suggest that stx1-positive Aus-
tralian isolates can be distinguished from Argentinean isolates on
the basis of unique SBI profiles. Importantly, the novel combina-
tion of stx1 linkage with argW prophage insertion was verified by
transduction of representative stx1 (argW) prophage to form E.
coli K-12 lysogens. While both stx1 (argW) and stx2 (argW) pro-
phages and their argW integration site were identified with the
same primer pairs (specific to the 5= and 3= prophage/chromo-
some junctions, implying phage genome sequence similarity), the
absence of the gene for putative heme binding protein
(ECSP_3286) in Australian stx1 (argW) prophage genomes (K. S.
Gobius, unpublished data), in addition to the alternative stx al-
leles, suggests further prophage sequence divergence.

In the context of our discovery of the novel stx1 (argW) pro-
phage in Australian O157, we also prioritized attempts to charac-
terize the stx1 prophage in 14 non-LI Argentinean O157 strains.
Since none of the loci, yehV, wrbA, sbcB, argW, yecE, or prfC,
which have been previously noted as SBI sites in enterohemor-
rhagic E. coli (29), appeared to be occupied with stx1 prophage, we
attempted prophage induction, followed by lysogen formation in
E. coli K-12 to identify the integration site(s). Despite numerous
attempts at lysogeny, this approach to SBI characterization was
also unsuccessful. As each of the 14 strains showed evidence con-
sistent with prophage insertion in the yehV locus, it is tempting to
speculate that the stx1 regulon may be carried by a prophage at this
site. However, since all other Argentinean LI/II and lineage un-
typeable strains also appear to possess non-stx prophages inserted
at yehV, it is unlikely that stx1 prophage inserts at this locus. As a
consequence of this, the stx1 prophage integration site for Argen-
tinean isolates carrying stx1 phage remains undetermined.

Consistent with previous studies (8, 25), we also observed a
significant difference in the motility of O157 from Argentina (pre-
dominantly motile strains) and Australia (predominantly non-
motile strains), further supporting potential differentiation of the
O157 populations in each country.

LSPA-6 genotyping data revealed that the predominant O157
isolates of both Argentinean and Australian origins share a similar
genetic backbone and are designated LI/II genotype 211111. Over-
all, the current data contrast with previous studies that have de-
termined lineage heterogeneity of O157 strains based on host
and/or pathogenicity. In North America, LI and LI/II strains are

dominant in humans infected with O157, and LII strains domi-
nate in the cattle reservoir (38, 43, 44). In addition, Yokoyama et
al. (42) recently established that in Chiba Prefecture, Japan, LI
strains (52.5%), LI/II strains (31.5%), and LII strains (16%) are
associated with human patients and asymptomatic carriers. Franz
et al. (9) have also demonstrated in the Netherlands that LII iso-
lates are most dominant in cattle, while LI/II strains, followed by
LI strains, predominate among human isolates. Therefore, it is a
notable contrast that in both Argentina and Australia, the single
LSPA-6 phylogenetic lineage LI/II shows dominance in both cattle
reservoirs and clinical disease manifestation. While we have
shown that O157 strains with LSPA-6 LI and LII genotypes are
also present in cattle and clinical isolates from Argentina and Aus-
tralia, it appears that these alternative strains comprise a minor
proportion of the O157 populations in both countries.

Following LSPA-6 genotyping, we examined the virulence
clade types (24, 34) of Argentinean and Australian O157 isolates.
Clade typing revealed additional phylogenetic insights, with clade
4, 6, 7, and 8 isolates observed to contribute to the composition of
the LI/II genotype. Clade 8 isolates were first described by Man-
ning et al. (24) in the United States and have subsequently been
characterized in other countries, including Japan (41), Sweden
(7), and Norway (13). The presence of clade 8 O157 strains in
Argentina and Australia indicates that clade 8 strains are geo-
graphically widespread across several continents. Clade 6 and 7
isolates have been previously noted among U.S. O157 isolates
which were designated LI/II (23); however, to the best of our
knowledge, our study provides the first confirmation of virulence
clade 4 association with LI/II. Furthermore, alternative country-
specific and host-specific clade bias was observed between the two
countries. In Argentina, clade 8 isolates dominated in both cattle
and humans but were most prevalent in human cases. A similar
pattern of clade dominance was observed for Australian isolates,
where clade 7 dominated in both cattle and humans but was most
prevalent in human cases.

Due to the severity of the U.S. spinach-associated O157 out-
break in 2006, a representative LI/II clade 8 outbreak strain,
TW14359, has been characterized by SNP and genome analysis
(18, 24). Seven putative virulence factors, not present in previ-
ously characterized LI and LII strains, were identified and consid-
ered with respect to their association with the alternative LSPA-6
lineages. Only one (ECSP_3286) of the seven putative virulence
factors tested was shown to be more frequent in Argentinean iso-
lates. The increased frequency of ECSP_3286, carried by the
TW14359 stx2 (argW), prophage, in Argentinean strains can be
attributed to the different rate of stx2 (argW) carriage in Argentin-
ean and Australian isolates. On the basis of observed stx1 prophage
presence and �norV correlation, Kulasekara et al. (18) suggested
that the presence of stx1 prophage is selective for the �norV allele.
In contrast, our data from Australian strains suggest that the
�norV allele is not predisposed by the presence of stx1. Alterna-
tively, our data indicate that since Australian O157 isolates carry-
ing stx1 generally also carry an undeleted norV allele, rather than
stx1 selecting for the �norV allele, it is likely the prophage type (i.e.,
stx1 [yehV] prophage) is associated with genomes possessing the
�norV allele. Extending this reasoning, it is also possible that com-
plete norV genes are a feature of LI/II genomes, whereas �norV
alleles may be a feature of at least LI genomes. Previously, it has
also been suggested that the tir255T¡A polymorphism may act as
a marker for virulence in E. coli O157 (4); however, a more specific
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association of tir255T with LI/II strains was recently observed by
Laing et al. (19). With the exception of four Australian isolates, all
other O157 isolates (93%) examined in this study carried tir255T.
Our data confirm the association of tir255T with LI/II but dem-
onstrate its association with multiple clades (4, 6, 7, and 8) within
this lineage, suggesting, in contrast to previous studies (4, 9), that
this SNP may not be a specific predictor for strains likely to cause
human disease.

We have shown that stx2c prophage is common in LI/II O157
isolates (including Argentinean clade 4 and 8 and Australian clade
6 and 7 isolates). The presence of stx2c prophage in such isolates is
consistent with the nonrandom concentration of stx2c in clades 4,
6, 7, and 8 in U.S. clinical O157 isolates observed by Manning et al.
(24); however, we have noted q gene region heterogeneity in the
Australian stx2c prophage. Allelic variation in the q gene region
upstream of stx2 and stx2c was first reported by LeJeune et al. (20),
who demonstrated that the q21 allele is characteristic for the stx2c

prophage. For Australian O157 strains in this study, we have de-
scribed the presence of the stx2c prophage carrying heterogenic
q933 or q21 alleles immediately 5= of the stx2c genes. The variable
q933- and q21-related alleles were associated with stx2c genes in
both LI/II stx1 stx2c or LI/II stx2c Australian O157 strains. To date,
all previously described O157 stx2c genes have possessed q21 alleles
encoding an apparent variant Q antiterminator protein (17, 20,
26, 37, 43); however, to our knowledge, the functionality of the
Q21 protein has not been demonstrated. Thus, it could be antici-
pated that the variable q933- and q21-related alleles might regulate
different levels of Stx2c, though further work is required to dem-
onstrate such a relationship.

The presence of E. coli O157 isolates with related LI/II phylog-
eny, and which show evidence as the most prevalent strains in
both Argentina and Australia, raises the possibility that these
strains possess an ancient relationship. Leopold et al. (21) recently
used high-throughput pyrosequencing to determine the nucleo-
tide sequence of several O157 strains and developed a set of SNPs
to examine probable ancestral phylogenetic linkages of O157
strains. Their data indicate that strain TW14359 is a representative
of EHEC 1 clade, subgroup 3, cluster 1 strains (alternatively de-
fined as LI/II clade 8 [19, 24]) which evolved at an earlier time than
the more recent EHEC 1 clade, subgroup 3, cluster 3 strains
EDL933 (31) and Sakai (14). Leopold et al. also suggest the likeli-
hood that radiating evolution, with subsequent genetic bottle-
necking, followed the emergence of the cluster 1/LI/II founder
organism, to result in the extinction of particular radiating
branches and the current limited pool of cluster 1 (LSPA-6 LI/II)
strains. Since the current study supports the cluster 1 (LSPA-6
LI/II) designation of the dominant O157 strains from both Argen-
tina and Australia, further phylogenomic investigation may deter-
mine the precise radial branch location of these strains.

In conclusion, we have demonstrated that diverse sets of E. coli
O157 isolated in Argentina and Australia are differentiated by
separate dominant phylogenetic clades. In Argentina, LI/II clade 8
strains with stx2 prophage integrated in the argW chromosomal
insertion site were most prevalent, whereas in Australia, LI/II
clade 7 strains with stx1 prophage integrated in the argW chromo-
somal insertion site were most prevalent. This O157 genotype
differentiation was present in isolates causing human illness, as
well as isolates from the animal reservoirs of each respective coun-
try. It is enticing to speculate that the correlation of separate coun-
try-specific genotypes in clinical and animal O157 isolates may

provide the basis for observed differences in both the prevalence
and severity of human disease caused by O157 in Australia (low)
and Argentina (high). These data now provide evidence for the
geographical segregation of E. coli O157 strains in which distinc-
tive clade and Shiga toxin prophage combinations may provide
genetic markers for E. coli O157 strains with various pathogenic
potential. Examination of more extensive collections from each
country, coupled with animal model comparisons of the virulence
of different Argentinean and Australian O157 clades, is now rec-
ommended to provide further confirmation of these data.
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