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Abstract 22 

Introduction: Independent heat and hypoxic exposure can enhance temperate endurance 23 

performance in trained athletes, although their combined effects remain unknown.  This study 24 

examined whether the addition of heat interval training during ‘Live High, Train Low’ 25 

(LHTL) hypoxic exposure would result in enhanced performance and physiological 26 

adaptations as compared to heat or temperate training. 27 

Methods: Twenty-six well-trained runners completed three weeks of interval training 28 

assigned to one of three conditions: 1) LHTL hypoxic exposure plus heat training (H+H; 29 

3000 m for 13 h·day-1, train at 33oC, 60% RH), 2) heat training with no hypoxic exposure 30 

(HOT, live at <600m and train at 33oC, 60% RH), or 3) temperate training with no hypoxic 31 

exposure (CONT; live at <600m and train at 14oC, 55% RH).  Performance 3-km time-trials 32 

(3-km TT), running economy (RE), haemoglobin mass (Hbmass) and plasma volume (PV) 33 

were assessed utilising magnitude based inferences statistical approach before (Baseline), 34 

after (Post), and three weeks (3wkP) following exposure.  35 

Results: Compared to Baseline, 3-km TT performance was likely increased in HOT at 3wkP 36 

(-3.3%; ±1.3% (mean; ±90% CL)), with no performance improvement in either H+H or 37 

CONT.  Hbmass increased by 3.8%; ±1.8% at Post in H+H only.  PV in HOT was possibly 38 

elevated above H+H and CONT at Post but not at 3wkP. Correlations between changes in 3-39 

km TT performance and physiological adaptations were unclear. 40 

Conclusion:  Incorporating heat-based training into a three week training block can improve 41 

temperate performance at three weeks following exposure, with athlete psychology, 42 

physiology and environmental dose all important considerations.  Despite haematological 43 

adaptations, the addition of LHTL to heat interval training has no greater 3-km TT 44 

performance benefit than temperate training alone.   45 

Key words: Heat acclimation · Hypoxia · Plasma volume · Endurance · Haemoglobin mass  46 
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INTRODUCTION 47 

Paragraph 1: Substantial training loads are undertaken by endurance athletes to maximise 48 

physiological adaptations and physical performance. However, both high and/or 49 

unaccustomed loads can increase risks of overreaching and injury, which are 50 

counterproductive to maximizing performance (9, 14).  Therefore, interventions that enhance 51 

the physiological and performance outcomes in the absence of increased training volume are 52 

attractive to coaches and athletes.  Accordingly, considerable interest exists on the effects of 53 

living and training in altered environments (i.e. heat and hypoxia). This approach can be used 54 

to increase the physiological stress without the need for large increases in external training 55 

load (23).  Whilst studies have examined the performance benefits of independent heat (21, 56 

33) and hypoxic exposure (4, 20), the combined effects of heat and hypoxia are not yet well 57 

understood (5, 8).  58 

Paragraph 2: Repeated exposure to hypoxia can have both ergogenic effects on endurance 59 

performance and amplify systemic physiological adaptations (23).  The Live High, Train Low 60 

(LHTL) model traditionally incorporates 12-14 h·day-1 of altitude exposure (i.e. >2000 m), 61 

with training conducted at low-moderate altitude (i.e. <1250 m) to allow the maintenance of 62 

training intensity (23).  This model has been shown to improve sea-level endurance 63 

performance (4, 28), haemoglobin mass (Hbmass) and maximal aerobic capacity (VO2max) in 64 

well-trained endurance athletes (20).  Several studies have demonstrated small but significant 65 

improvements in run time-trial performance over 3-km (28, 37) and 5-km (20) following 2-4 66 

weeks of LHTL.  However, not all studies have shown improvements over similar distances 67 

(13, 27).  This lack of consistent improvement is suggested to be related to a number factors, 68 

not limited to the extent of physiological adaptation incurred, the hypoxic dose and training 69 

status of the athletes (4). 70 
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Paragraph 3: In addition to hypoxia, repeated heat exposure has been shown to have a 71 

positive ergogenic benefit in hot (19, 21) and temperate environments INSERT SCOON (3) 72 

(21, 26).  However, a recent debate in the literature highlights the uncertainty surrounding the 73 

capacity of heat to improve temperate performance (CROSS TALK DEBATE). The proposed 74 

mechanisms for heat exposure improving temperate performance are not clearly understood, 75 

but are suggested to be related to elevated plasma volume (PV), reduced cardiovascular and 76 

thermoregulatory strain, enhanced lactate threshold and VO2max (21, 32). In addition, lower 77 

perceptions of heat stress are also evident after heat exposure, which may also be related to 78 

performance improvements (35). 79 

Paragraph 4: In a previous study investigating concurrent heat and intermittent hypoxic 80 

exposure in untrained individuals, it was apparent that the combined stimuli elevated PV but 81 

had no impact on VO2peak (Takeno, 2001). However, the combination of LHTL hypoxia and 82 

heat training has suggested possible positive physiological and temperate performance 83 

adaptations. Buchheit et al. (5), conducted a two week pre-season training camp 84 

incorporating LHTL plus heat training in team sport athletes.  Compared to training in a hot 85 

environment alone, the LHTL plus heat group had a greater Hbmass increase, with no 86 

difference between groups in PV or Yo-Yo Intermittent Recovery Test 2 performance.  87 

Interestingly, four weeks later there was a better maintenance of performance, PV and Hbmass 88 

in the combined LHTL plus heat training group (5).  The possibility of greater and longer 89 

lasting adaptations following concurrent heat and hypoxic exposure makes it an attractive 90 

training method.  However, this study was limited by the lack of a control group and the early 91 

pre-season training status of the athletes. Given these limitations, the impact of combined 92 

heat and hypoxic training remains equivocal, and is yet to be examined on well-trained 93 

endurance athletes. 94 



5 
 

Paragraph 5: Accordingly, the aim of this study was to examine performance and 95 

physiological adaptations to three weeks of LHTL combined with heat interval training in 96 

well-trained runners.  In addition, we aimed to assess the time course of these adaptations in 97 

the three weeks following exposure.  It was hypothesised that LHTL combined with heat 98 

interval training would elicit greater and longer lasting physiological adaptations and 3-km 99 

time-trial performance improvements than training in the heat alone or temperate conditions. 100 

METHODS 101 

Participants 102 

Paragraph 6: Twenty-eight well-trained male and female middle distance runners were 103 

recruited for the study, with twenty-six included for final analyses.  Of the excluded 104 

participants, one did not complete all testing requirements and one participant reported illness 105 

during the study. Participants were matched based on prior training load, peak oxygen uptake 106 

(VO2peak) and associated velocity (vVO2peak) obtained during preliminary testing. After taking 107 

into account the participants geographic proximity to the testing centres, they were randomly 108 

assigned (coin toss/number) by an independent associate to one of three groups; 1) LHTL 109 

hypoxic exposure plus training in a hot environment (H+H; FiO2 =14.8% (3000 m) for 13 110 

h·day-1; train at <600 m, 33oC, 60% RH); 2) heat training with no hypoxic exposure (HOT; 111 

live and train at <600 m, 33oC, 60% RH); or 3) temperate training with no hypoxic exposure 112 

(CONT; live and train at <600 m, 14oC, 55% RH). Participants had ≥2 y running experience 113 

and regularly completed 10–20 h of training each week.  All groups contained a mix of male 114 

and female athletes, and no participants had heat or hypoxic exposure in the four weeks prior.  115 

All differences in baseline characteristics between training groups were unclear (Table 1).  116 

Prior to the study, all participants were informed of all procedures and potential risks 117 

involved in the study and a written informed consent was obtained. The study was approved 118 
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by the Human Research Ethics Committee of the University of Technology Sydney (Trial no. 119 

UTS HREC 2014000203). 120 

 121 

INSERT TABLE 1 122 

 123 

 124 

Experimental Overview 125 

Paragraph 7: This study was a multicentre, parallel, matched group design, with all training 126 

and testing conducted during winter and early spring months in Sydney or Canberra, 127 

Australia (June – November, 2014).  The study included a three week period (exposure), 128 

whereby participants lived and trained in their assigned environmental conditions.  This was 129 

followed by a three week period (non-exposure), in which all individuals lived and trained in 130 

temperate, normoxic conditions.  During the exposure period, individuals in the H+H group 131 

spent 21 days, (13 h·day-1, FiO2 = 14.8%,) in a normobaric hypoxic facility at the Australian 132 

Institute of Sport (AIS, Canberra).  All participants completed 3 x 90 min treadmill sessions 133 

per week, including two interval sessions and one moderate continuous run (9 total sessions).  134 

H+H and HOT participants completed heat sessions in a climate-controlled chamber 135 

(Altitude Training Systems, Lidcombe, Australia).  Canberra-based participants trained at the 136 

University of Canberra (32.5 ±0.7°C; 59 ±7% RH), while Sydney-based participants trained 137 

at the New South Wales Institute of Sport (NSWIS, 32.9 ±0.5°C, 56 ±3% RH).  Sydney-138 

based participants assigned to the CONT group completed treadmill sessions in an air-139 

conditioned room (14.4 ±1.9°C, 51 ±13% RH), while Canberra-based participants trained in a 140 

covered, outdoor covered area (12.6 ±4°C, 56 ±13% RH). In addition to the treadmill 141 
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sessions, all participants maintained aerobic training in a temperate, normoxic environment 142 

during the study in order to maintain aerobic conditioning.  As part of additional testing not 143 

described in the current study, each participant undertook a heat tolerance test with 75 min 144 

exposure to 33°C at the start and end of each three week period (2 in exposure, 2 in non-145 

exposure, data not reported here). Core temperature was assessed via a temperature probe 146 

(Mon-a-therm, Mansfield, USA) inserted 10 cm beyond the anal sphincter, with temperature 147 

elevated to an average of 38.3 ±0.4°C across all groups (average peak 39.1 ±0.5°C), 148 

suggesting that the heat dose was sufficient to elicit an adaptive response (Racinais consensus 149 

statement).  Performance tests were completed a minimum of 4 days after any heat exposure, 150 

and the control group received no more than one 75 min heat exposure within a 7 day period.  151 

Thus, this testing was not expected to induce any heat acclimation adaptations (2).  152 

Paragraph 8:  Within two weeks prior to the exposure period, participants undertook an 153 

incremental treadmill test for assessment of running economy (RE) and VO2peak.  A double 154 

baseline measure of Hbmass was assessed during the same period, along with a resting venous 155 

blood sample for measurement of ferritin concentration.  Approximately five days prior to the 156 

exposure period, performance was assessed via a 3-km run time-trial (3-km TT) (Baseline).  157 

Running economy, Hbmass and the 3-km TT were repeated immediately (Post) and three 158 

weeks following (3wkP) the exposure period.  An additional Hbmass test was conducted one 159 

week (1wkP) following the exposure period in order to further quantify the decay timeline of 160 

adaptations (as shown in Figure 1).  All equipment was matched between locations, with 161 

participants completing testing and treadmill sessions at the same location and at a similar 162 

time of day.  163 

 164 

INSERT FIGURE 1 HERE 165 
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 166 

Incremental treadmill test  167 

Paragraph 9: Participants completed a progressive 4 x 4 min incremental run (0% gradient, 1 168 

min recovery between stages) on a motorised treadmill (Canberra; custom-built motorised 169 

treadmill, AIS.  Sydney: Payne Treadmill, Stanton Engineering, Girraween, Australia).  170 

Starting speed was determined based on participant’s ability (between 1117 km·h-1) with 171 

each stage increased by 1 km·h-1.   Heart rate (HR; Suunto T6, Vantaa, Finland) and oxygen 172 

consumption (VO2) were measured continuously throughout the test (Canberra: in-house 173 

automated metabolic system as described previously (29); Sydney: Moxus Modular 174 

Metabolic System, AEI Technologies, Pittsburgh, USA).  Running economy was determined 175 

as the mean VO2 during the last minute of the first two submaximal stages (17).  Following 176 

Baseline testing only, participants completed an incremental run to maximal volitional fatigue 177 

for determination of VO2peak, corresponding velocity at VO2peak (vVO2peak) and maximal heart 178 

rate (HRmax) (38). 179 

 180 

Performance Time Trial 181 

Paragraph 10: In both training locations, 3-km TT’s were conducted on a 400-m outdoor 182 

athletics track (MONDO synthetic track, Mondo S.p.A., Italy).  Participants completed a self-183 

selected warm up that was replicated at each 3-km TT.  Participants were blinded to all 184 

pacing and timing information, with verbal feedback given only to notify when one lap 185 

remained.  Time splits were recorded via hand held stopwatch (Seiko, Tokyo, Japan), with 186 

Rating of Perceived Exertion (RPE CR-10) (10) collected immediately after.  Environmental 187 

temperature, relative humidity and wind speed (Kestrel 3500 Delta T Meter, Nielsen-188 
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Kellerman, Boothwyn, USA ) were recorded during each 3-km TT (Canberra: 13.5 ±4.3°C, 189 

55.2 ±18% RH, 1.0 ±1.0 m·s-1 wind speed; Sydney: 19.5 ±3.4°C, 53.3 ±16% RH, 1.5 ±0.9 190 

m·s-1).  To minimise the effects of diet on physical performance, participants recorded their 191 

diet for the 24 hours prior to the Baseline 3-km TT, and replicated this diet for each 192 

subsequent test.  Further, prior to each 3-km TT, participants completed a series of questions 193 

pertaining to muscle soreness, general fatigue and motivation (5-point Likert scale) (36).  In 194 

addition, participants were asked the specific question of ‘how important is this upcoming 3-195 

km TT to you?’, with answers scaled on a 10-point Likert Scale (1), ranging from not 196 

important at all’ (0) through to ‘highly important’ (10).   Participants also rated  ‘What 197 

percentage (0 – 100) of your full potential do you think you can run today?”  198 

 199 

Training Monitoring 200 

Paragraph 11: Daily training load (AU) was monitored using the session rating of perceived 201 

exertion (sRPE) method, calculated as the product of training duration (min) and the mean 202 

training intensity (RPE CR-10).  Treadmill interval sessions were conducted on motorised 203 

treadmills (Canberra: Trackmaster TMX58, Newtown, USA; Sydney: Life Fitness 9500HR, 204 

Brunswick Corporation, Illinois, USA), with participants completed a standardised and 205 

individualised 20 min warm-up prior to each session. An outline of the treadmill sessions is 206 

presented in Table 2.  Interval intensities were matched across all groups based on a 207 

percentage of vVO2peak as determined from Baseline testing.  Intensities ranged from 80-208 

100% vVO2peak, with the only exceptions being sessions 1, 5 and 9, which were conducted as 209 

45 min continuous running at 65% vVO2peak.  Participants completed their own standardised 210 

warm-down and remained in the heat chamber or air-conditioned room until 90 min of 211 

exposure was completed.  HR was recorded continuously, with sRPE recorded at the 212 
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conclusion of each session.  Participants were allowed to drink water ad libitum during 213 

training sessions.  214 

 215 

INSERT TABLE 2 HERE 216 

 217 

Paragraph 12: Participants recorded all training throughout the study, commencing two 218 

weeks prior to the exposure period to capture participants’ habitual training programs.  219 

Participants were instructed to continue with their normal aerobic training during the study in 220 

temperate normoxic conditions, in addition to the prescribed three weekly treadmill sessions, 221 

and were instructed to replace regular high intensity sessions with the treadmill sessions.  As 222 

part of this additional aerobic temperate training during the exposure period, all participants 223 

reported completing one long duration, and one aerobic interval session per week. During the 224 

non-exposure period, participants were prescribed an individualised training program based 225 

on their prior TL.  226 

 227 

Haemoglobin Mass 228 

Paragraph 13: Hbmass was measured via the optimized carbon monoxide (CO) rebreathing 229 

method (34).  Briefly, a CO dose of 1.2 ml·kg-1 body mass was rebreathed for 2 min through 230 

a glass spirometer.  Capillary fingertip blood samples (200 µL) were obtained prior to CO 231 

administration and 7 min after CO inhalation.  An average of five blood samples were used 232 

for measurement of percent carboxyhemoglobin (%HbCO) via a CO-oximeter (OSM3, 233 

Radiometer, Copenhagen, Denmark), with Hbmass determined as the mean change in %HbCO 234 

(11).  Duplicate measures were obtained at Baseline on twenty-three out of twenty-six 235 
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participants, with the typical error of measurement (TE) for Hbmass calculated at 1.8% (1.4‒236 

2.4%, 90% confidence limits). The duplicate measures were obtained with a minimum of 48 237 

hours between tests (maximum 2 weeks), with these values averaged into a single time point 238 

for analysis.  PV and BV were indirectly calculated by the optimized CO rebreathing 239 

procedure as described above.  All measures were performed by three experienced 240 

researchers, with the same tester completing tests on the same participants where possible. 241 

 242 

Blood Biochemistry 243 

 Paragraph 14: Venous blood was collected from the antecubital vein 2-3 weeks prior to 244 

commencement of the study for determination of blood ferritin levels.  Blood was collected 245 

into serum separation tubes (SST; Vacuette®, Greiner Bio-One, Frickenhausen, Germany), 246 

centrifuged at 3000 rpm and 4°C for 10 min (2-16K, Sigma Laborzentrifugen GmbH, 247 

Osterode am Harz, Germany) and sent to the laboratory for same day analysis (Sydney: 248 

Douglass Hanly Moir Pathology, Macquarie Park, Australia; Canberra: AIS Biochemisty 249 

Lab).  Sydney samples were assessed on an Abbott i2000 (Abbott Diagnostics, Lake Forest, 250 

Illinois, USA) and Canberra on a Cobas Integra 400 plus analyser (Roche Diagnostics Ltd., 251 

Forrenstrasse, Switzerland).  Any participants with ferritin levels <100 ug·L-1 were provided 252 

a daily oral iron supplement to take throughout the duration of the study in order to maintain 253 

adequate iron levels required for accelerated erythropoiesis (Ferrograd C, 325 mg dried 254 

ferrous sulphate + 562.4 mg sodium ascorbate; Abbott, Botany, Australia).   255 

 256 

Statistical Analyses 257 

Paragraph 15: Data are presented as means and standard deviation (±SD) unless otherwise 258 

stated.  Data were log-transformed to reduce bias from any non-uniformity of error, and 259 
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assessed for practicality according to magnitude based-inferences (3).  Effects were deemed 260 

unclear if the confidence limits overlapped the thresholds for both the smallest positive and 261 

negative effects (>5%), with clear effects assessed as the following: <1%, almost certainly 262 

note; 15%, very unlikely; >525%, unlikely; >2575%, possibly; >7595%, likely; 263 

>9599%, very likely; >99%, almost certainly (15). The smallest worthwhile change in 264 

performance was half the typical within-athlete coefficient of variation (CV), or 1.0% in elite 265 

runners (16).  For measures not directly related to performance, the smallest worthwhile 266 

change was calculated as a standardised small effect size (0.20) multiplied by the pre-test 267 

between-subject standard deviation (6).  Effect Size (ES) = 0.20, 0.50, and 0.80 were 268 

considered as small, medium, and large, respectively.  The TE for outcome measures was 269 

calculated from the SD of the change scores divided by the mean and presented as a 270 

coefficient of variation (%). Pearson product-moment correlation analyses were calculated to 271 

assess the relationship between 3-km TT and physiological parameters.  The following 272 

thresholds were used to assess the magnitude of correlation (r (90% CL)) between measures: 273 

<0.30, trivial to small; 0.30–0.49, moderate; 0.50–0.69, large; 0.70–0.89, very large and 274 

0.90–1.00, almost perfect.  If the 90% CL overlapped the positive and negative values, the 275 

magnitudes were deemed unclear.  An a priori power analysis was completed using G*Power 276 

(G*Power version 3.1.9.2, Universitӓt Kiel, Germany) based on time-trial data obtained from 277 

previous similar studies demonstrated 10 subjects per group is the minimum required to 278 

achieve a power of 0.8, and as such we recognize the potential limitation of reduced power of 279 

this study. 280 

 281 

 282 

 283 
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RESULTS 284 

Training Load 285 

Paragraph 16: During the exposure period, HOT and H+H received 13.5 h total heat 286 

exposure, with control receiving 2.5 h.  Both groups had an additional 2.5 h heat during the 287 

non-exposure period (heat response testing, data is not presented here).  Participants in H+H 288 

spent 291.0 ±13.4 h in normobaric hypoxia, averaging of 13.9 ±0.6 h·day-1. 289 

Paragraph 17: During the Baseline period, there were no clear differences between groups in 290 

weekly training load (TL) as determined from sRPE (H+H vs. HOT: ES = -0.44 (-1.22; 0.34), 291 

H+H vs. CONT: ES = -0.17 (-1.04; 0.70), HOT v. CONT: ES = -0.21 (-1.05; 0.63) (Figure 292 

2). Across the entire 6 weeks of the study, no clear TL differences existed between groups 293 

(HOT vs. H+H: ES = 0.02 (-0.76; 0.80), CONT vs. H+H: ES = 0.20 (-0.63; 1.02), HOT vs. 294 

CONT: ES = -0.11 (-0.93; 0.71)).  However, when comparing the exposure to non-exposure 295 

period, HOT and H+H had a within-group reduction in TL during the non-exposure period 296 

(HOT: ES = -0.31 (-0.53; -0.08) likely, H+H: ES = -1.75 (-2.12; 1.37) most likely, CONT: 297 

ES = -0.08 (-0.5; 0.33) unclear).  During the same period, H+H had a very likely TL 298 

reduction in H+H compared to both CONT and HOT (H+H vs. CONT: ES = -1.26 (-2.00; -299 

0.53), H+H vs. HOT: ES = -0.8 (-1.19; -0.40)), with unclear differences between HOT and 300 

CONT (ES = -0.26 (-0.80; 0.28)).    301 

 302 

INSERT FIGURE 2 HERE 303 

 304 

Time-trial Performance 305 
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Paragraph 18: Improvement in 3-km TT performance occurred only in HOT, with a likely 306 

faster completion time by -3.3%; ±1.3% (mean; ±90% CL) from Baseline to 3wkP (652 ±76 307 

vs. 629 ±67 s; ES = -0.26 (-0.36; -0.16), Figure 3).  This improvement was possibly greater 308 

when compared to both H+H (643 ± 72 vs. 639 ± 74 s; ES = -0.24 (-0.40; -0.08)) and CONT 309 

(651 ± 118 vs. 649 ± 127 s; ES = -0.19 (-0.32; -0.07), Figure 3).  There were no substantial 310 

changes from Baseline in performance in any group at POST, and also in H+H and CONT at 311 

3wkP.  There were no clear between or within group differences in RPE following each 312 

respective 3-km TT.   313 

 314 

INSERT FIGURE 3 315 

 316 

Pre Time-trial Questionnaires 317 

Paragraph 19: The perceived capacity of H+H to fulfil their 3-km TT performance potential 318 

was likely reduced from Baseline to Post (ES = -0.48 (-1.02; 0.06)), resulting in a likely 319 

greater reduction compared to HOT at Post (ES = -0.85 (-1.70; 0.00)), and CONT at 3wkP 320 

(ES = -1.53 (-3.04; 0.01)).  Motivation likely increased in HOT from Baseline to Post (ES = 321 

0.43 (-0.06; 0.92)) and in CONT from Post to 3wkP (ES = 0.20 (-0.19; 0.60)), however was 322 

likely reduced in H+H during the same period (ES = -1.12 (-2.12; -0.12)).  This resulted in 323 

very likely reduction in motivation from Post to 3wkP in CONT compared to H+H (ES = 324 

1.12 (0.24; 1.99)).   325 

Paragraph 20: Perceived importance of the 3-km TT likely increased both in HOT (ES = 326 

0.45 (-0.17; 1.08)) and H+H ((ES = 0.46 (-0.09; 1.01)) from Baseline to Post, but was unclear 327 

in CONT.  While perceived importance remained likely elevated in HOT until 3wkP (ES = 328 
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0.49 (0.16; 0.82) vs. Baseline), it decreased from Post to 3wkP in H+H (ES = -0.38 (-0.72; 329 

0.05)).  General fatigue was likely reduced from Post to 3wkP in HOT (ES = -0.43 (-0.98; 330 

0.11) and possibly reduced in CONT (ES = -0.16 (-0.46; 0.15)).  However, H+H had likely 331 

greater increase in general fatigue both from Post to 3wkP (ES = 0.54 (0.09; 0.99)), as well as 332 

Baseline to 3wkP (ES = 0.60 (0.02; 1.18)).  As a result, 3wkP fatigue was likely lower in both 333 

HOT and CONT when compared to H+H at both Baseline and Post (CONT vs. H+H: ES = -334 

0.76 (-1.32; -0.20) vs. Post; ES = -0.83 (-1.50; -0.16) vs. Baseline; HOT v H+H: ES = -1.06 (-335 

1.76; -0.35) vs. Post; ES = -0.69 (-1.43; 0.05) vs. Baseline).  All other between and within 336 

group differences were unclear.  337 

 338 

Running Economy  339 

Paragraph 21: All RE between and within group differences were trivial, unlikely or unclear.  340 

,HR was likely reduced in all groups when comparing Baseline to Post (expressed as a 341 

percentage of maximum HR), with no clear between group differences (HOT: 79.4 ±4.7% vs. 342 

76.8 ±4.6% ES = -0.49 (-0.90; -0.07); H+H: 86.0 ±3.6% vs. 82.6 ±5.2% ES = -0.57 (-1.07; -343 

0.07); CONT: 84.8 ±3.1% vs. 82.8 ±3.8% ES = -0.49 (-1.01; 0.03)).  HR was possibly further 344 

reduced at 3wkP in H+H and CONT, and maintained in HOT. As a result,  all groups had a 345 

reduced submaximal HR from Baseline to 3wkP (HOT: 79.4 ±4.7% vs. 76.6 ±5.2%, ES = -346 

0.52 (-1.04; 0.00), likely; H+H: 86.0 ±3.6% vs. 81.0 ±6.2% ES = -0.85 (-1.46; -0.24), very 347 

likely; CONT: 84.8 ±3.1% vs. 81.8 ±3.8%, ES = -0.72 (-1.21; -0.24), very likely).   348 

 349 

Haematology  350 
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Paragraph 22: PV increased by 3.8 ±6.0% in HOT during the exposure period (ES = 0.13 (-351 

0.07; 0.34)), with this change possibly greater when compared to both H+H (ES = 0.20 (-352 

0.12; 0.52) and CONT (ES = 0.17 (-0.13; 0.47), Figure 4). At 1wkP, PV remained likely 353 

elevated in HOT compared to H+H (ES = 0.68 (-0.09; 1.46)).  All differences in HOT and 354 

H+H were deemed unclear by 3wkP, and all CONT time course differences throughout the 355 

study duration were unlikely or trivial.  BV increased in HOT by 3.3 ±3.9% (ES = 0.11 (-356 

0.02; 0.24)) during the exposure period, which was possibly  greater when compared to H+H 357 

during the same period (ES = 0.15 (-0.05; 0.35)).  However, all other within and between 358 

group differences were unclear or trivial. 359 

Paragraph 23: Hbmass was increased by 3.8 ±1.8% in H+H during the exposure period (784 360 

±197 vs. 813 ±203 g; ES = 0.14 (0.08; 0.21)), and remained elevated from Baseline by 3.3 361 

±1.9% at 3wkP (ES = 0.12 (0.05; 0.19)).  This change was greater than the TE from Baseline.  362 

However, all within and between group differences were trivial, unlikely or unclear.  There 363 

were no clear correlations in any group between 3-km TT performance and PV, BV, Hbmass, 364 

HR, or RE. 365 

 366 

INSERT FIGURE 4 HERE 367 

 368 

 369 

DISCUSSION 370 

Paragraph 24: This study investigated the effects of three weeks of independent heat interval 371 

training or LHTL hypoxic exposure combined with heat interval training in well-trained 372 

middle distance runners.  The main finding was that 3-km TT performance was only 373 
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improved three weeks following HOT training, despite small but positive physiological 374 

adaptations (ie. PV)  lasting up to one week post exposure.  Despite H+H demonstrating 375 

positive haemotological adaptations (i.e.Hbmass) above that of temperate training alone, there 376 

were no performance improvements. Accordingly, the initial hypothesis that LHTL combined 377 

with heat training would be of greatest performance benefit was not supported.  378 

Paragraph 25: Three-km time-trial performance was improved in temperate conditions 379 

following heat interval training in all HOT participants at 3wkP.  This adds further support to 380 

previous research indicating enhanced temperate performance following heat exposure 381 

INSERT SCOON (21, 26).  A novel finding was that the performance peak in all participants 382 

occurred three weeks following heat exposure, but combining LHTL and heat training did not 383 

further enhance 3-km TT performance.  Direct comparison to previous studies investigating 384 

combined LHTL and heat (5), or studies that did not find enhanced temperate performance 385 

following heat training (18, 19, 24) should be done so tentatively.  This is due to a lack of 386 

control group (5, 26), the absence of training load data prior or during the study (21), the 387 

assessment of performance within two weeks of exposure (18, 19, 24) and/or the high number 388 

of fatiguing maximal tests in a short time frame, which could have reduced the athletes 389 

motivation to perform (18). The current protocol of intermittent heat exposure over a three 390 

week period, with several weeks of temperate training prior to competition is a practical 391 

protocol that can be used to enhance performance in well-trained endurance athletes.  392 

Paragraph 26: It is apparent that heat interval training provides greater 3-km TT 393 

performance improvements than combining with LHTL, although physiological explanations 394 

for these observations remain elusive.  Indeed, there was no clear relationship between any of 395 

the physiological measures and 3-km TT performance.  As further exploration, heat 396 

acclimation can induce a number of cardiovascular periard – fix CITE (1) and 397 

thermoregulatory INSERT SAWKA 2011 (2) adaptations to tolerate heat stress, including 398 



18 
 

increased PV (21, 22), VO2max, running economy and power at lactate threshold (21, 24).  399 

These adaptations have been suggested to be ergogenic in both hot (21, 26) and temperate 400 

conditions (7).  We suggest the 270 min/week heat exposure (i.e. 3 x 90 min sessions per 401 

week) was sufficient to increase in PV in HOT (by 3.8 ±6.0%), though only until 1wkP, and 402 

not at 3wkP when 3-km TT performance improved.  In contrast, PV in both H+H and CONT 403 

were not increased by more than 1.2% above baseline values at any time during the study, 404 

despite H+H receiving the same heat dose as HOT.  Such absence of PV expansion in H+H 405 

contrasts with previous combined heat and hypoxic findings (5), and warrants further 406 

exploration. 407 

Paragraph 27: As athletes with lower training status have a greater adaptive potential than 408 

highly trained athletes (39), it is possible the early season training status of athletes in 409 

previous combined heat and LHTL research (5) contributed to the greater PV increases 410 

compared more established training status of the current participants. The suggestion of an 411 

optimal PV volume to enhance performance (CITE coyle) may provide background as to why 412 

performance in HOT did not occur until PV values returned to normal at 3wkP.  In addition 413 

to training status, the PV response in the present study may also relate to the nature and dose 414 

of the environmental stimuli.  Hypoxia has been shown to induce hemoconcentration and 415 

reduce PV (31).  The heat dose in the present study was sufficient to prevent PV reduction in 416 

H+H; however, it was unable to match the PV increase in HOT.  Thus, heat stimuli appears 417 

to prevent hypoxic induced hemoconcentration, however it may be that a greater dose of heat 418 

stimuli is required to compensate PV beyond the losses from hypoxia.  Further research is 419 

required to assess if any other heat training benefits could be negated due to hypoxic 420 

exposure.   However based of the current data, we recommend that when combining heat and 421 

hypoxia, a greater heat dose may elicit PV responses equivalent to heat exposure alone. 422 
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Paragraph 28: Running economy has been shown to be improved with endurance 423 

performance and has been reported to improve following simulated LHTL exposure in elite 424 

middle distance runners (30).  In the present study there were only trivial improvements in 425 

RE in all training conditions.  Moreover, similar to previous research (5), submaximal HR 426 

remained unchanged between groups.  While RE has been reported to be increased 427 

immediately following LHTL alone (17), there does not appear to be any benefit of 428 

concurrent heat and altitude or heat alone on RE.  Accordingly, the improvements observed 429 

in 3-km TT performance observed in the heat group cannot be explained by changes in RE. 430 

Paragraph 29: A recent meta-analysis has shown that Hbmass increases by ~1.1% per 100 h of 431 

altitude exposure, and remains elevated by 3.3% for up to 20 days following exposure (12).  432 

Similarly, the present study revealed H+H had a 3.8 ±1.8% increase in Hbmass with ~290 h of 433 

hypoxic exposure, while no increases occurred in HOT and CONT.  Despite H+H having an 434 

increase in Hbmass, the lack of performance changes in H+H supports previous research 435 

showing that the changes in Hbmass from the hypoxic exposure has minimal impact on 3km-436 

TT performance (27).  437 

Paragraph 30: Considering no associations were observed between the measured 438 

physiological adaptations and 3-km TT performance, other unmeasured physiological 439 

adaptations, not limited to enhanced thermoregulatory regulation, increased cardiac and 440 

skeletal muscle metabolic efficiency (CITE cross talk Minson/Cotter), or non-physiological 441 

factors may provide explanations for the observed performance responses. The uncoupling of 442 

performance and physiology changes is not uncommon in trained individuals (27), and 443 

factors such as perception of effort, motivation and fatigue can contribute to overall 444 

endurance performance outcomes (25).  At the 3-km TT at 3wkP, fatigue was increased in 445 

H+H, despite TL being reduced during the non-exposure period.  At the same time point, 446 

motivation and perceived time-trial importance was reduced in H+H, but increased in HOT 447 
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and CONT.  It is likely that the combined psycho-physiological changes in the HOT underlie 448 

the observed performance changes.  Whilst speculative, the combined perceptions of 449 

increased motivation and importance of the 3-km TT garnered HOT contributed positively to 450 

improved 3-km TT performance.  Physiological adaptations to training were mostly trivial in 451 

CONT, while any beneficial effect of the physiological adaptations associated with the H+H 452 

may have been minimised by a negative psychological response.  Potentially, the combined 453 

stress of heat and hypoxia prevented appropriate recovery from the hard training sessions in 454 

the heat, thus lingering to supress performance outcomes.  While it could be argued the 455 

combined stress of heat and hypoxia may have been reduced if the treadmill sessions were 456 

matched for cardiovascular strain rather than absolute workload (%vVO2), the absolute 457 

training load provides a more practical application of training prescription in trained 458 

individuals, particularly due to the intermittent nature of the sessions.  Future investigations 459 

incorporating a staggered or reduced combination of heat and hypoxia are required (i.e. 460 

reduction in number of heat sessions or an incremental hypoxic dose). These findings 461 

illustrate the importance of considering both physiology and psychological aspects when 462 

aiming to elicit performance enhancements in well-trained athletes.   463 

 464 

LIMITATIONS 465 

Paragraph 31: Despite the above findings, some limitations should be acknowledged.  466 

Although participants were blinded to the specific temperature and oxygen concentrations 467 

during the study, they were unable to be blinded to their assigned environmental conditions.  468 

Furthermore, the heat and hypoxic environmental stimuli in the study were simulated and 469 

therefore may not be replicated in natural heat or hypoxic environments. Specifically, 470 

physiological adaptations resulting from hypobaric hypoxia or simulated normobaric hypoxia 471 
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are suggested to differ (CITE Millet 2012, saugy 2014), however recent evidence suggests no 472 

difference in VO2max or 3-km run time-trial (CITE Saugy 2016).  However, we recommend 473 

future research to investigate if similar results would occur in athletes living and training a 474 

natural environment. Another limitation is that we only investigated 3-km TT running 475 

performance benefits in a temperate environment.  The physiological adaptations resulting 476 

from heat and LHTL exposure often enhance athlete’s aerobic capacity.  To assess this, future 477 

research could assess endurance performance over a longer duration in which there is a 478 

greater reliance on energy provision from aerobic sources.   479 

 480 

 481 

CONCLUSIONS 482 

Paragraph 32: In summary, three weeks of interval training in a hot environment may 483 

enhances 3-km TT performance in a temperate environment in the weeks following exposure.  484 

The present results showed that whilst adding LHTL to heat interval training can elicit a 485 

haematological response; these physiological changes do not result in improved 3-km TT 486 

performance.  Collectively, these findings indicate that combining LHTL with heat exposure 487 

does not provide additional benefit over heat training alone and the incorporation of heat into 488 

a training camp maybe a simple approach to improving athletic performance.  However, 489 

factors such as psychology of the athlete, dose of stimuli, environment and training status 490 

should be considered when including heat or hypoxia as part of an athlete’s training program.   491 

 492 
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 624 

Figure 1: Outline of study design, illustrating the exposure and non-exposure training 625 

periods. Along with the incremental treadmill testing, haemoglobin mass (CO-626 

rebreathing) and a performance 3-km time-trial (3-km TT) were conducted. 627 

Testing protocols were conducted following exposure (post), one week (1wkP) 628 

and three weeks following exposure (3wkP). 629 

  630 



28 
 

Figure 2: Mean (± SD) weekly internal training load (TL), expressed as session rating of 631 

perceived exertion (sRPE) (RPE x duration in minutes).  Data is divided into the 632 

two weeks prior (baseline), three weeks of environmental stimuli (exposure), and 633 

the three weeks following exposure where all training was conducted in temperate, 634 

sea-level conditions (non-exposure).  No difference between groups in TL across 635 

the study period.  **Likely within-group reduction in TL in HOT and H+H from 636 

Exposure to Non-Exposure.  ^Likely between-group reduction from Exposure to 637 

Non-Exposure in H+H compared to both HOT and CONT. AU- arbitrary units. 638 
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Figure 3.  Change in 3-km running time-trial performance expressed as a percent change (%) 651 

from Baseline ±90% CL for H+H (A), HOT (B), and CONT (C).  *Likely within 652 

group difference from Baseline. 653 
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Figure 4. Percent change (%) from Baseline in A) Hbmass, B) PV and C) BV.  Groups are 676 

indicated by the symbols HOT (), H+H () and CONT (). 677 
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