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Abstract 35 

Terrestrial ecosystem gross primary production (GPP) is the largest component in the global 36 

carbon cycle. The enhanced vegetation index (EVI) has been proven to be strongly correlated 37 

with annual GPP within several biomes. However, the annual GPP-EVI relationship and 38 

associated environmental regulations have not yet been comprehensively investigated across 39 

biomes at the global scale. Here we explored relationships between annual integrated EVI 40 

(iEVI) and annual GPP observed at 155 flux sites, where GPP was predicted with a log-log 41 

model: ln( ) ln( )GPP a iEVI b   . iEVI was computed from MODIS monthly EVI products 42 

following removal of values affected by snow or cold temperature and without calculating 43 

growing season duration. Through categorisation of flux sites into 12 land cover types, the 44 

ability of iEVI to estimate GPP was considerably improved (R2 from 0.62 to 0.74, RMSE 45 

from 454.7 to 368.2 g C m-2 yr-1). The biome-specific GPP-iEVI formulae generally showed 46 
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a consistent performance in comparison to a global benchmarking dataset (R2 = 0.79, RMSE 47 

= 387.8 g C m-2 yr-1). Specifically, iEVI performed better in cropland regions with high 48 

productivity but poorer in forests. The ability of iEVI in estimating GPP was better in 49 

deciduous biomes (except deciduous broadleaf forest) than in evergreen due to the large 50 

seasonal signal in iEVI in deciduous biomes. Likewise, GPP estimated from iEVI was in a 51 

closer agreement to global benchmarks at mid and high-latitudes, where deciduous biomes 52 

are more common and cloud cover has a smaller effect on remote sensing retrievals. Across 53 

biomes, a significant and negative correlation (R2 = 0.37, p < 0.05) was observed between the 54 

strength (R2) of GPP-iEVI relationships and mean annual maximum leaf area index (LAImax), 55 

and the relationship between the strength and mean annual precipitation followed a similar 56 

trend. LAImax also revealed a scaling effect on GPP-iEVI relationships. Our results suggest 57 

that iEVI provides a very simple but robust approach to estimate spatial patterns of global 58 

annual GPP whereas its effect is comparable to various light-use-efficiency and data-driven 59 

models. The impact of vegetation structure on accuracy and sensitivity of EVI in estimating 60 

spatial GPP provides valuable clues to improve EVI-based models. 61 
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 65 

1. Introduction 66 

Terrestrial gross primary production (GPP) is the amount of carbon captured from the 67 

atmosphere through vegetation photosynthesis (Beer et al., 2010). Vegetation GPP is a key 68 

component of the terrestrial carbon balance and is of fundamental importance to human 69 

society because plants provide food, fiber and wood supply and also contribute to the 70 
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production of environmental conditions suitable for human habitation (Melillo et al., 1993; 71 

Xiao et al., 2005; Zhao et al., 2005). Therefore, continuous monitoring and accurate 72 

estimation of GPP is required to ensure the long term security of terrestrial ecosystem 73 

services and to address issues pertaining to the global carbon cycle including determination 74 

of the size of the terrestrial carbon sink, prediction of vegetation dynamics, and management 75 

of forests and grasslands (Ciais et al., 2005; Ma et al., 2013; Sims et al., 2006b).  76 

GPP can be calculated as the sum of vegetation assimilated carbon flux, partitioned from net 77 

carbon exchange measured at eddy covariance (EC) tower sites (Baldocchi et al., 2001; 78 

Reichstein et al., 2007), but such observations are limited, both temporally and spatially. 79 

Remote sensing technique provides a promising approach to overcome these limitations. 80 

Various diagnostic models taking advantage of spatially extensive remote sensing and 81 

meteorological data have been developed to estimate GPP across stand-to-global scales for a 82 

relatively long period (e.g., Jung et al., 2008; Running et al., 2004; Sims et al., 2008; Xiao et 83 

al., 2005). These models can be generally partitioned into three categories: light-use-84 

efficiency (LUE) models, machine learning algorithms and simple empirical models (Verma 85 

et al., 2014). The LUE theory was first proposed by Monteith (1972), in which GPP is 86 

generally represented as the product of LUE, photosynthetically active radiation (PAR), the 87 

fraction of PAR absorbed by vegetation (fAPAR), and environmental scalars. fAPAR is a 88 

strong function of vegetation greenness, as measured by vegetation indices (VIs), such as the 89 

normalized difference vegetation index (NDVI; e.g., Goward and Huemmrich, 1992) and the 90 

enhanced vegetation index (EVI; e.g., Xiao et al., 2004a; Xiao et al., 2004b). However, it is 91 

difficult to estimate LUE, which varies among plant functional types, and can be down-92 

regulated by temperature, soil water content, vapour pressure deficit (VPD), and leaf 93 

phenology (Xiao et al., 2005). Another deficiency of LUE models is the coarse resolution of 94 

climate inputs, which are often only available at a large scale. This may introduce significant 95 
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errors to estimations of GPP (Heinsch et al., 2006; Zhao et al., 2005) and hinder the 96 

acquisition of fine-resolution GPP estimates at large scales. Machine learning algorithms, 97 

such as artificial neural networks (Papale and Valentini, 2003), support vector machines 98 

(Yang et al., 2007), and model tree ensembles (Jung et al., 2009), predict GPP based on the 99 

non-functional patterns extracted in training data set. Obviously, the accuracy of machine 100 

learning algorithms relies on the abundance and representativeness of input information 101 

including remote sensed vegetation properties, meteorological, and land cover data (Jung et 102 

al., 2011). Therefore, the use of machine learning algorithms is also limited by the coarse 103 

resolution of meteorological data. Moreover, in many cases machine learning algorithms 104 

show no better performance than LUE models in specific ecosystems (e.g., Yang et al., 2007). 105 

Consequently, simple empirical models utilizing remote sensing proxies of vegetation 106 

photosynthesis activity (with or without meteorological data) gain consistent interest in 107 

estimating both spatial and temporal variations of GPP (e.g., Jung et al., 2008; Rahman et al., 108 

2005; Sims et al., 2006b).  109 

The growing season NDVI and EVI show strong relationships with vegetation production 110 

over one or two week intervals (e.g., Mao et al., 2014; Rahman et al., 2005; Sims et al., 111 

2006a; Sims et al., 2006b; Wylie et al., 2003). Vegetation indices per se are transformations 112 

of two or more spectral bands to enhance the signal derived from vegetation properties 113 

(Huete et al., 2002). Both NDVI and EVI employ surface bidirectional reflectances of red and 114 

near-infrared spectral bands that are sensitive to leaf chlorophyll content (Huete et al., 2002), 115 

which converts light to energy consumed by photosynthesis. NDVI is limited due to its 116 

saturation over dense vegetation and large sensitivity to canopy background brightness 117 

(Huete et al., 2002), whereas EVI can improve performance in regions of high biomass 118 

through a decoupling of the canopy and background signals and a reduction in the influence 119 

of atmospheric conditions using a blue spectral reflectance (Huete et al., 2002). This makes 120 



 
 

6 

EVI more responsive to canopy structural variations and thus EVI is better correlated with 121 

GPP than NDVI in evergreen (Xiao et al., 2004a) and deciduous (Xiao et al., 2004b) forests 122 

as well as in croplands (Xiao et al., 2005). Compared to LUE models, the growing season 123 

EVI or EVI-based models (e.g., Temperature-Greenness model; Sims et al., 2008) provide a 124 

comparable or better estimation of GPP at both the 16-day (Sims et al., 2008; Sims et al., 125 

2006b) and annual (Verma et al., 2014) time-scales. As well as EVI, cumulative growing 126 

season fAPAR with separate functions for herbaceous plants, evergreen forests and all other 127 

vegetation types has been used to predict annual GPP in Europe (Jung et al., 2008). The 128 

disadvantage of selecting fAPAR against EVI is subtle: fAPAR consists of fractional 129 

absorbance of PAR absorbed by both chlorophyll and by non-photosynthetic pigments 130 

(Zhang et al., 2005), while EVI is much closer to the fraction of PAR absorbed by 131 

chlorophyll. Moreover, fAPAR shows no significant correlation with GPP in deciduous 132 

broadleaf forests (Jung et al., 2008). Therefore, the use of EVI should be favored over 133 

fAPAR in correlating to GPP. However, current studies on EVI-GPP relationships or EVI-134 

based models have been focused within only a limited number of biomes and these EVI-135 

based models generally need to compute the start and end or the length of the growing season 136 

period (Jung et al., 2008; Sims et al., 2008; Sims et al., 2006b; Verma et al., 2014), which 137 

constitutes an extra source of uncertainty. Simultaneously, environmental influences on the 138 

ability of EVI to estimate GPP across a wide spectrum of biomes have not yet been 139 

investigated (Sims et al., 2006b; Sjöström et al., 2011). 140 

In this study, we used the annual integral of MODIS EVI (iEVI), which only needs removal 141 

of those values that have been affected by cold temperature or snow and subtracting the soil 142 

background signal, to regress with annual eddy covariance measured GPP across 12 land 143 

cover types. The developed set of formulae were then applied at the global scale and 144 

compared with a widely used GPP benchmark dataset to evaluate the effectiveness and 145 
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robustness of iEVI, thereby determining whether iEVI can serve as a reference for other GPP 146 

models over a fine-to-coarse resolution. The impacts of environmental conditions on iEVI in 147 

estimating GPP were further investigated across biomes, to improve our understanding of the 148 

underlying mechanistic processes that differentiate responses of vegetation photosynthetic 149 

activity to remote sensing spectral measurements among biomes.        150 

 151 

2. Data and Methods 152 

2.1 Eddy covariance and meteorological data 153 

The eddy covariance method is a micrometeorological technique that directly measures net 154 

carbon, water and energy fluxes across a horizontal plane between vegetation canopies and 155 

the atmosphere (Aubinet et al., 2000; Baldocchi et al., 2001). In the present study a total of 156 

155 sites (Supplementary Table S1) were selected, consisting of 624 site-years of data and 157 

representing a worldwide spectrum of biomes and climate regimes with excellent coverage in 158 

North America, Eurasia and Oceania (Table 1, Fig. 1; Baldocchi, 2008; Baldocchi et al., 2001; 159 

Wang and Dickinson, 2012).  160 

The flux data were obtained from three sources: (1) a small fraction (mainly high-latitude and 161 

wetland sites) was collected directly from published studies, which only included annual 162 

values of flux and meteorological forcing; (2) a larger fraction was contributed directly from 163 

participating site researchers; and (3) the majority were from FLUXNET level 2 or level 4 164 

products that were downloaded from the database. Of the latter two categories, only site-165 

years with small gaps (i.e., individual gaps in NEE of less than 5% of the entire annual record) 166 

were selected except in certain ecosystems of the boreal region where only growing season 167 

data were available. Carbon and water fluxes and meteorological variables in all selected site-168 

years were then processed through gap-filling and flux partitioning routines. If the principal 169 



 
 

8 

investigator at each site had already performed these processes, the already gap-filled and 170 

partitioned GPP dataset was aggregated from a half-hourly time-step to an annual time-scale 171 

(GPPEC). Otherwise, half-hourly GPP derived using one of the two FLUXNET standard 172 

methods, either the marginal distribution sampling (MDS, a local method; Reichstein et al., 173 

2005) or a feed-forward artificial neural network (ANN, trained on an annual dataset; Papale 174 

and Valentini, 2003), were obtained from the FLUXNET products to calculate annual GPP. 175 

Both partitioning methods show good performance according to previous studies (Papale and 176 

Valentini, 2003; Reichstein et al., 2005). For sites with neither investigator’s decomposition 177 

nor standardized flux partitioning, the publicly available online MDS tool (http://www.bgc-178 

jena.mpg.de/~MDIwork/eddyproc/index.php; Reichstein et al., 2005) was used to gap-fill and 179 

partition NEE. The derived half-hourly GPP, temperature, precipitation and vapour pressure 180 

deficit (VPD) of all site-years were screened for outliers and linearly interpolated in bins 181 

representing the measurement hour of the day before aggregation into the annual scale.  182 

 183 

Table 1. Summary of number of sites and site-years used for each biome. CNM: 184 

cropland/natural vegetation mosaic; CRO: croplands; CSH: closed shrublands; DBF: 185 

deciduous broadleaf forest; DNF: deciduous needle-leaf forest; EBF: evergreen broadleaf 186 

forest; ENF: evergreen needle-leaf forest; GRA: grasslands; MF: mixed forest; OSH: open 187 

shrublands; SAV: savannas; WET: permanent wetlands; WSA: woody savannas. 188 

Biome CRO CSH DBF DNF EBF ENF GRA MF OSH SAV WET WSA 

Sites 16 4 18 4 13 40 24 8 7 7 9 5 

Site-years 61 11 83 6 55 190 76 28 21 24 34 35 

 189 
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 190 

Fig. 1. Geographical distribution of flux towers overlaid onto the 2001 MODIS IGBP land 191 

cover map at a 0.5º × 0.5º resolution.  192 

 193 

2.2 Benchmark dataset 194 

The model tree ensemble (MTE) approach was used to empirically up-scale FLUXNET 195 

measurements of fluxes (hereafter GPPMTE) to the global scale. Explanatory variables for the 196 

model consisted of meteorological variables, the biophysical state of the vegetation, and 197 

vegetation types (Jung et al., 2009; Jung et al., 2011). GPPMTE constitutes a benchmark for 198 

global FLUXNET up-scaling that has been used as a baseline for evaluating land surface 199 

models and estimating global CO2 uptake (e.g., Beer et al., 2010; Bonan et al., 2011). 200 

However, GPPMTE has its own weakness, specifically for estimates of GPP in high-201 

production croplands (Guanter et al., 2014). Mean annual GPPMTE was calculated at a spatial 202 

resolution of 0.5º for the years 1982-2008. The same grid was also applied in our global GPP 203 

estimation. 204 

 205 
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2.3 Satellite data 206 

2.3.1 EVI data 207 

EVI is widely used as a proxy of canopy “greenness” to address spatial and temporal 208 

variations in terrestrial photosynthetic activity (e.g., Huete et al., 2002; Ma et al., 2013). EVI 209 

is defined as (Huete et al., 1997):  210 

 
1 2

NIR red

NIR red blue

EVI G
C C L

 

  




    
 211 

where NIR , red  and blue  are atmospherically corrected, either fully or partially, values of 212 

surface near-infrared (NIR, 841-876 nm), red (620–670 nm) and blue (459-479 nm) spectral 213 

reflectance, respectively; G  is the gain factor (set at 2.5); (set at 1.0) is the canopy 214 

background adjustment; and 1C (set at 6) and 2C  (set at 7.5) are the coefficients of the 215 

aerosol resistance term, which uses the blue band to correct for the influence of aerosols in 216 

the red band.  217 

MODIS monthly VI products (MOD13A3.005) for February 2000 to 2013 were obtained 218 

from the USGS repository (http://e4ftl01.cr.usgs.gov/MOLT/MOD13A3.005/). This dataset 219 

is produced globally over land at 1-km resolution and monthly compositing periods from 220 

atmospherically corrected surface reflectances. The compositing algorithm is based on a 221 

constrained-view angle-maximum value composite (CV-MVC) to minimize atmospheric and 222 

bidirectional reflectance distribution function (BRDF) influences (Huete et al., 2002). 223 

It is difficult to precisely co-locate the pixels that directly correspond to the footprint of an 224 

EC tower (Sims et al., 2006b). Fluctuations in flux tower footprint size and shape, due to the 225 

underlying topography, vegetation, wind speed and etc., may induce a footprint mismatch 226 

between the tower and MODIS (Jung et al., 2009; Sims et al., 2006b; Sjöström et al., 2011). 227 

Where the landscape is homogenous, the scale mismatch is not a serious problem and the 228 

L
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MODIS pixels can adequately represent flux site conditions. Discrepancies are typically 229 

observed at grassland and cropland sites, likely due to the fragmentation of these landscapes 230 

(Cescatti et al., 2012). However, sub- and inter-pixel heterogeneity is unavoidable in most 231 

cases and thus introduces additional bias. Consequently, a central 3 × 3 km window 232 

surrounding the flux tower was used to extract mean EVI time series. The 3 × 3 km window 233 

has been found to reduce scale mismatch relative to a centrally located 1 km pixel or window 234 

sizes of 5 × 5 or 7 × 7 km  (e.g., Ma et al., 2013; Rahman et al., 2005; Sims et al., 2006b; 235 

Sjöström et al., 2011; Xiao et al., 2005). At sites with spatially varying amounts of mixed 236 

vegetation types, averaging across the MODIS window is equivalent to averaging across time 237 

in flux measurements (Sims et al., 2006b).  238 

 239 

2.3.2 Smoothing method of EVI 240 

To reduce noise and uncertainties in the MODIS EVI time series at each site, the singular 241 

spectrum analysis (SSA) was employed. SSA is a data adaptive, non-parametric analysis 242 

approach based on embedding a time series   : 1,X t t N  in a vector space of dimension 243 

M and it works well in the analysis of non-linear dynamics in geophysical datasets 244 

(Kondrashov and Ghil, 2006; Ma et al., 2013; Wang and Liang, 2008). The SSA technique 245 

consists of two complementary stages: decomposition and reconstruction (Hassani, 2007). 246 

The one-dimensional time series   : 1,X t t N  is first embedded into a trajectory matrix247 

   
,

1 , 1
,...

L K

K ij i j
X X X x


  , where 1.K t L    Next, singular value decomposition (SVD) is 248 

applied to X : 249 

 
'

1

,
d

T

i j j j j

j

X U V V X 


       250 
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where j  is the jth eigenvalue of 
'XX , jU  is the jth eigenvector of 

'XX , and d  is the rank of 251 

X . The reconstruction includes the eigentriple grouping and diagonal averaging (i.e., 252 

Hankelization of a matrix), to produce a length N  time series from the matrix X . The SSA 253 

method is more robust to outliers than linear filtering because it conducts a global 254 

reconstruction (i.e., convolution) of the whole time series as with Fourier methods 255 

(Alexandrov, 2009). 256 

Key parameters in SSA are the decomposition window length L and the number of leading 257 

components in reconstruction.  In the monthly EVI time series, a window length of 37 (i.e. 37 258 

months) and 6 leading components best captured the periodicity and simultaneously reduced 259 

random noises during reconstruction. The missing EVI value in January 2000 was 260 

extrapolated, thereby yielding a complete set of 14 years of EVI data. Since bare soil yields 261 

an EVI value of 0.08 ~ 0.10, around which GPP is zero (Sims et al., 2008; Sims et al., 2006b), 262 

monthly values of EVI reconstructed from SSA were corrected by offsetting 0.10 to remove 263 

the background signal. EVI data are also contaminated by snow effects in mid- and high 264 

latitudes that result in a false positive signal (Huete et al., 2002). To minimise the 265 

contamination, the snow/ice flag in MOD13A3 VI quality assurance field was first used to 266 

remove the snow-covered EVI values; and then EVI values were further screened for effects 267 

of cold temperature (daytime land surface temperature below -2 ºC; Tan et al., 2011; Zhang et 268 

al., 2004) using the MODIS land surface temperature product (MOD11C3). Finally, positive 269 

values of monthly EVI during non-snow and non-cold temperature periods were summed into 270 

annual, integrated values (iEVI) to regress against annual GPP calculated at each flux site. In 271 

our global GPP estimation, the 1 km EVI data were re-gridded into 0.5º resolution to compare 272 

with global GPPMTE and then processed the same way as the site level analysis. 273 
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2.3.3 Leaf area index data 274 

The MOD15A2.005 leaf area index (LAI) product is composited every 8 days at 1 km 275 

resolution and is available at the USGS repository 276 

(http://e4ftl01.cr.usgs.gov/MOLT/MOD15A2.005). LAI is retrieved through a three-277 

dimensional radiative transfer model that requires land cover classification (Knyazikhin et al., 278 

1998). By applying a procedure similar to that used for EVI, a central 3 × 3 km window was 279 

used to extract LAI time series from 2000 to 2013, and SSA was applied to smooth the series. 280 

At each site, peak LAI values in individual site-years were averaged to represent the mean 281 

annual maximum LAI (LAImax) of the site and then the site LAI values within a land cover 282 

type were averaged to get the mean LAI for each of the land cover classifications except 283 

wetlands, which have no observed values in MOD15A2.005. In our analyses we assigned a 284 

mean LAI value of 6.3 (± 2.3) for the 6 wetland sites, obtained from a global synthesis of 285 

LAI observations (Asner et al., 2003).  286 

 287 

2.3.4 Land cover types 288 

The MCD12Q1.005 land cover type product provides options of five global land cover 289 

classification systems. We used the IGBP land cover scheme which includes 17 land cover 290 

classes: water, evergreen needle-leaf forest (ENF), evergreen broadleaf forest (EBF), 291 

deciduous needle-leaf forest (DNF), deciduous broadleaf forest (DBF), mixed forest (MF), 292 

closed shrublands (CSH), open shrublands (OSH), woody savannas (WSA), savannas (SAV), 293 

grasslands (GRA), permanent wetlands (WET), croplands (CRO), urban and built-up, 294 

cropland/natural vegetation mosaic (CNM), snow and ice, barren or sparsely vegetated. The 295 

IGBP land cover map in 2001 was obtained from ORNL DAAC 296 

(http://webmap.ornl.gov/wcsdown/wcsdown.jsp?dg_id=10004_1). The product has a spatial 297 
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resolution of 500 m. In our global GPP estimation, this map was resampled into 0.5º 298 

resolution to match the GPPMTE product. Four land cover types were excluded (water, urban 299 

and built-up, snow and ice, and barren or sparsely vegetated), and CNM was classed with 300 

CRO. The GPPMTE product and spatial EVI data were overlayed using the IGBP map. 301 

 302 

2.4 Statistical analyses 303 

Annual GPP calculated for each site in each year was correlated with the corresponding 304 

annual iEVI using log-log regressions following (Campos et al., 2013). Since the goodness-305 

of-fit for intra-annual GPP-EVI correlations may differ across biomes (Rahman et al., 2005; 306 

Sims et al., 2006b; Wu et al., 2010), the GPP-iEVI relationship was further investigated 307 

within each biome. The performance of these GPP-iEVI models within each biome was 308 

evaluated based on leave-one-out cross-validations (CV), which can test the practical 309 

accuracy of these models. The GPP-iEVI models based on biomes were then applied to the 310 

whole globe, and the final global GPP estimation was compared to GPPMTE. Two standard 311 

statistical measures were employed to assess the regression relationships:  the coefficient of 312 

determination (
2R ) and the root mean squared error (RMSE). 313 

2

2
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 315 

where ix  denotes the observed data, iy  the modeled data, n the number of observations. 
2R  316 

represents the proportion of total variation of observed data explained by the model. RMSE 317 

measures the bias between modeled and observed data. 318 



 
 

15 

3. Results 319 

3.1 The overall relationship between GPP and iEVI without biomes categorization 320 

The significant logarithmic-logarithmic regression (R2 = 0.67, p < 0.001, Fig. 2, inset) 321 

between GPPEC and iEVI at the annual scale shows that there was a good general 322 

correspondence between GPPEC and iEVI across all biomes (Fig. 2). The leave-one-out cross-323 

validation based performance measures (CV R2 = 0.66, Table 2) further demonstrated the 324 

effectiveness of the logarithmic model (log-log) in regressing GPP against iEVI. The 325 

estimated GPPiEVI using the global GPP-iEVI relationship also showed reasonable agreement 326 

with GPPEC (R2 = 0. 62, p < 0.001), although GPPiEVI was consistently underestimated 327 

relative to field (EC) measurements. However, the point distribution in the relationship was 328 

much more scattered at medium to high production biomes (approximately GPP > 800 g C m-329 

2 yr-1). The global relationship was unable to satisfactorily estimate GPP accurately for some 330 

of the biomes, such as evergreen broadleaf forest and woody savannas, although the data 331 

from these biomes still occurred within the overall distribution (Fig. 2). Consequently, it was 332 

necessary to further investigate the individual GPP-iEVI relationship within each biome. 333 
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 334 

Fig. 2. Relationship between derived annual GPP from iEVI (GPPiEVI) and eddy covariance 335 

tower measured GPP (GPPEC) since 2000 based on all sites and across 12 different biomes. 336 

The inset shows ln-transformed annual GPPEC and annual iEVI for all site-years. The solid 337 

line represents the least squares regression line. The dashed line represents the 1:1 line. 338 

 339 

3.2 Biome-specific relationships between GPP and iEVI 340 

There was considerable variation among the 12 individual biome types in the regression 341 

relationships between GPPEC and iEVI (Fig. 3). The poorest performance of iEVI in 342 



 
 

17 

estimating GPPEC was observed in wetlands in raw regression (R2 = 0.11, p < 0.05, RMSE = 343 

297.2 g C m-2 yr-1) and in cross validations (Table 2). The correlation was strongest in woody 344 

savannas, closed shrublands, deciduous needle-leaf forests, grasslands, and open shrublands; 345 

and moderate in croplands, evergreen needle-leaf forests, savannas, mixed forests, deciduous 346 

broadleaf forests, and evergreen broadleaf forests (Fig. 3). Meanwhile, we calculated the 347 

anomalies (by subtracting the mean value) of GPP and iEVI within each biome and 348 

investigated correlations between GPP anomaly and iEVI anomaly using linear regressions. 349 

Except for the wetlands, GPP anomaly and iEVI anomaly showed moderate to strong 350 

correlations within biomes (Figure S1). This result was consistent with our non-linear models 351 

using GPP and iEVI themselves (Figure 3). Further, cross-validations revealed that the GPP-352 

iEVI models within each biome (except wetlands) performed robustly and thus could be 353 

applied to the global scale. It is notable that the strength of the correlation within deciduous 354 

biomes was generally better (higher R2 and lower RMSE) than those within evergreen 355 

vegetation, except deciduous broadleaf forest (still with better iEVI performance than 356 

evergreen broadleaf forest). The relationship for mixed forests had a similar R2 to evergreen 357 

needle-leaf forest but was associated with the largest RMSE (490.3 g C m-2 yr-1) across all 358 

biomes. There was also a wide range of values for the fitted slopes of the relationship 359 

between GPPEC and iEVI. Croplands and deciduous needle-leaf forests occupied a similar 360 

and narrow iEVI spectrum, but GPPEC of the former was more sensitive (larger slope) to iEVI. 361 

Among forested biomes, GPPEC of evergreen broadleaf forest was less sensitive to iEVI than 362 

evergreen needle-leaf forests. Likewise, GPPEC of deciduous broadleaf forests was less 363 

sensitive to iEVI than deciduous needle-leaf forests. GPPEC of grasslands and savannas, both 364 

of which are grass-dominated biomes, exhibited similar responses to iEVI. Although the 365 

range of GPPEC and iEVI values differed substantially among mixed forests and woody 366 



 
 

18 

savannas, the biome-specific regression slopes were found to be close, whereas woody 367 

savannas had a much smaller RMSE (Fig. 3).  368 

 369 

Fig. 3. Biome-specific relationships between tower-estimated annual GPP (GPPEC) and iEVI. 370 

Solid lines represent GPP-iEVI relationships derived from the ln(GPPEC) ~ ln(iEVI) formulas 371 

within each biome. Coefficient of determination (R2) represents the fit goodness of the 372 

ln(GPPEC) ~ ln(iEVI) relationship, and the root mean squared error (RMSE) represents the 373 

bias between GPP estimated using iEVI and GPPEC. All relationships are statistically 374 

significant. 375 
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Table 2. Summary of the raw and leave-one-out cross-validation (CV) performance measures 376 

(coefficients of determination, R2; root mean squared error, RMSE) of ln(GPP)-ln(iEVI) 377 

models for all data points and each  biome, respectively. 378 

Biomes Raw R2 CV R2 Raw RMSE CV RMSE 

All 0.67 0.66 454.7 455.8 

CRO 0.51 0.48 326.7 335.9 

CSH 0.90 0.81 195.4 239.6 

DBF 0.39 0.36 251.5 256.0 

DNF 0.90 0.51 175.1 284.9 

EBF 0.36 0.32 477.4 492.1 

ENF 0.49 0.48 448.8 454.2 

GRA 0.70 0.67 291.2 296.2 

MF 0.48 0.33 490.3 529.2 

OSH 0.61 0.52 104.6 115.0 

SAV 0.48 0.43 375.3 395.2 

WET 0.11 0.01 297.2 311.9 

WSA 0.93 0.93 214.3 222.8 

 379 

Estimated GPP based on the biome-specific GPP-iEVI formulae at all sites were then 380 

compared with observed GPPEC (Fig. 4). The relationship between GPPiEVI and GPPEC was 381 

significantly strengthened relative to the regression obtained without biome partitioning (Fig. 382 

2) with increased R2 (from 0.62 to 0.74), larger slope (from 0.538 to 0.723), decreased RMSE 383 

(from 454.7 to 368.2 g C m-2 yr-1) and smaller intercept (from 492 to 295). There was a large 384 

dispersion of points around the linearly fitted function, but these points were mainly obtained 385 

from high-GPP locations (> approximately 2400 g C m-2 yr-1).   386 
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 387 

Fig. 4. Comparison of modelled annual GPP (GPPiEVI) using biome-specific GPP-iEVI 388 

relationships with eddy covariance tower measured GPP (GPPEC). The solid line represents 389 

the linear regression line. The dashed line represents the 1:1 line. 390 

 391 

3.3 Global application of biome-specific GPP-iEVI relationships 392 

The set of biome-specific GPP-iEVI relationships were applied to the global data of iEVI and 393 

IGBP land cover types. Per-pixel comparison between GPPiEVI and GPPMTE demonstrated the 394 

consistency of biome-specific GPP-iEVI models when up-scaling GPP from the site to global 395 
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scales (R2 = 0.79, RMSE = 387.8 g C m-2 yr-1; Fig. 5). The very high accuracy of global, 396 

multi-year, averaged GPP (R2 = 0.97) within each biome was unexpected given that the 397 

number of flux towers was restricted and their distribution was not geographically uniform. 398 

Individual biomes for which annual GPP was larger than 10 Pg C yr−1 were scattered farther 399 

from the 1:1 line, resulting in underestimation of GPP by iEVI in EBF and overestimation in 400 

WSA, CRO and CNM in comparison with the benchmark dataset.  401 

 402 

Fig. 5. Comparison between modelled average annual GPP using iEVI (GPPiEVI) (2000-2013) 403 

and the benchmark GPP (GPPMTE) (1982-2008) at a grid level (left) and a biome level (right) 404 

across the globe. The red solid line represents the linear regression line and the black dashed 405 

line represents the 1:1 line. Horizontal and vertical error bars (right) indicate standard 406 

deviations of mean annual biome GPPiEVI (2000-2013) and GPPMTE (1982-2008), 407 

respectively. 408 

 409 
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 410 

Fig. 6. Spatial comparison of (A) the mean annual GPP from iEVI (GPPiEVI, g C m-2 yr-1) 411 

(2000-2013) with (B) the benchmark GPP (GPPMTE, g C m-2 yr-1) (1982-2008) and the 412 

distribution of (C) the residual (g C m-2 yr-1) between GPPiEVI and GPPMTE within the 5-95% 413 

quantile. 414 

 415 

The mean spatial pattern of GPP was accurately reproduced by iEVI (Fig. 6). However, GPP 416 

was primarily underestimated by iEVI in the tropics, western Russia and equatorial Africa 417 
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and was overestimated in Europe, eastern North America, the high-latitude tropics of Africa, 418 

southeastern South America, southeastern Australia, southeastern Asia, and parts of India and 419 

north China. In these regions, central Africa was dominated by tropical EBF (area around 420 

equator) and its north and south edges (area around 5º N and 5º S) were dominated by woody 421 

savannas; Europe, eastern North America, southeastern South America and Australia, India 422 

and north China were widely covered by cropland/natural vegetation mosaics or croplands 423 

(Fig. 1), which were both parameterised as croplands when calculating GPPiEVI. Latitudinal 424 

GPP derived from the iEVI showed positive biases from the benchmark in the regions 30º-38º 425 

S,  8º-15º N, 20º-28º N and 30º-55º N, and negative biases in the region 10º S-5º N (Fig. 7).   426 

 427 

Fig. 7. Latitudinal patterns (0.5º bands) of mean annual GPP by iEVI (GPPiEVI, 2000-2013) 428 

and the benchmark (GPPMTE, 1982-2008), respectively. The red shaded area represents the 429 

standard deviation of all GPPiEVI values of cells along the latitude. The grey shaded area 430 

represents the standard deviation of all GPPMTE values of cells along the latitude. 431 
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3.4 Canopy structure effect on biome-specific GPP-iEVI relationships 432 

Among vegetation and climatic factors (mean annual maximal LAI, temperature, 433 

precipitation and VPD), only LAI and precipitation influenced the regression between GPP 434 

and iEVI. The strength of the biome-specific correlations between GPP and iEVI decreased 435 

with increasing mean annual LAI (R2 = 0.37, p < 0.05) (Fig. 8). The strength of biome-436 

specific GPP-iEVI relationships with mean annual precipitation followed the same negative 437 

trend, but the R2 was only marginally statistically significant (R2 = 0.33, p = 0.051; Fig. 8 438 

inset). The slopes of relationships between GPPEC and iEVI (i.e., the sensitivity of GPP to 439 

EVI) across 12 biomes increased at small values of maximal LAI and then decreased across 440 

larger values of maximal LAI (LAI breakpoint was estimated to be 1.98 m2 m-2, Fig. 8). 441 

 442 

Fig. 8. Strength (R2) and slopes of relationships between ln(GPPEC) and ln(iEVI) for each of 443 

all biomes as a function of either mean annual precipitation (Prcp, inset) or mean annual 444 

maximum LAI in each biome. Black lines represent the segmented linear regression line. The 445 

dashed vertical line indicates the breakpoint of the segmented linear relationship. The shaded 446 

area represents 95% confidence band.  447 

 448 
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4. Discussion 449 

4.1 Uncertainty analysis 450 

4.1.1 Gap-filling and partitioning of eddy covariance carbon fluxes 451 

Two major concerns in up-scaling of eddy covariance measurements of fluxes are (1) the 452 

associated propagation of uncertainty within the source datasets, and (2) the up-scaling 453 

method itself. Systematic and random errors in measurement, gap-filling and partitioning 454 

procedures can result in uncertainty for estimates of GPP (Papale, 2006). Flux measurements 455 

can be subject to substantial random errors, which can be modelled as a double exponential 456 

distribution (Hollinger and Richardson, 2005). To minimise gap-filling errors in this study, 457 

we included only site-years without large gaps (less than 5% missing data). A short-term 458 

empirical temperature function was used to model ecosystem respiration in the MDS method 459 

and the robustness of this function depends on the noisiness of the flux data and the range of 460 

temperatures during the short period (Reichstein et al., 2005). Therefore, at sites with stable 461 

temperatures and noisy eddy covariance data, it can be difficult to establish a reliable 462 

relationship between ecosystem respiration and temperature (Reichstein et al., 2005). 463 

Consequently, datasets from the FLUXNET ANN product were preferred above the MDS 464 

product. The total annual error in eddy fluxes has been conservatively estimated to be below 465 

200 g C m-2
 yr-1 (Reichstein et al., 2007) and the products from these standard methodologies 466 

are widely used in up-scaling and benchmarking models (e.g., Beer et al., 2010; Bonan et al., 467 

2011; Jung et al., 2009; Rahman et al., 2005). However, it is noteworthy that neither the ANN 468 

nor the MDS method may be the best option in all flux sites. 469 

 470 
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4.1.2 Ecosystem heterogeneity   471 

A further source of error is introduced when scaling EVI to global GPP. To match the spatial 472 

resolution of GPPMTE, MODIS EVI (1 km resolution) and IGBP classification maps (500 m 473 

resolution) were resampled into 0.5º, thereby simplifying prediction of GPP at the global 474 

scale. However, resampling unavoidably introduced error in areas with mixed land cover 475 

types. The loss of information concerning landscape heterogeneity within larger pixels can 476 

cause misuse of the biome-specific GPP-iEVI formulae at the sub-pixel level. The 477 

incongruence between GPPiEVI and GPPMTE in WSA, CNM and CRO could be due to varying 478 

proportions of vegetation components within a grid cell. For WSA, the eddy covariance 479 

measured flux data were mostly from Australia, where the woody and herbaceous 480 

components of woody savannas are substantially heterogeneous (Hirota et al., 2011). Even 481 

within a single continent (e.g., Africa or Australia), woody savannas display significant 482 

variation in structural and phenological patterns (Kutsch et al., 2008; Sjöström et al., 2011; 483 

Sjöström et al., 2013). However, EVI only has a moderate capacity to predict ecosystem 484 

structural and functional attributes such as basal cover of vegetated patches, perennial plants 485 

species richness and retention of nutrients (Gaitán et al., 2013). Similar situations (e.g., 486 

different species, cultivars and fragments of croplands) can be encountered in CNM and CRO, 487 

besides the fact that the CRO specific GPP-iEVI formula was applied in CNM. In addition, 488 

crops are generally intensely managed (e.g., irrigation, fertilisation, sowing and harvest), 489 

which constrains the reflectance-based greenness indices to accurately estimate GPP of crops 490 

(Guanter et al., 2014). Consequently, the benchmark dataset GPPMTE underestimates cropland 491 

GPP in large agricultural regions such as the US Corn Belt, the Indo-Gangetic Plain and the 492 

North China Plain but tends to moderately overestimate cropland GPP in South America 493 

(Guanter et al., 2014). Thus, the overestimation of GPPiEVI in comparison with GPPMTE in 494 

croplands of North America, north India and north China (Fig. 6) seems reasonable but is still 495 
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biased in other agricultural areas. Limitations arising from global scaling can be overcome 496 

using the original relatively high-spatial resolution satellite data (Sjöström et al., 2011; Zhao 497 

et al., 2005). However, using these fine resolution data will inevitably increase modeling 498 

complexity. Furthermore, the 500 m resolution MODIS IGBP map has its own weakness and 499 

uncertainty (Friedl et al., 2010). Errors due to global scaling were similar in GPPiEVI and 500 

GPPMTE and consequently were comparable in this study (Fig. 5).  501 

 502 

4.2 The relationships between EVI and GPP 503 

Vegetation greenness indices (VIs) associated GPP models are generally based on one of the 504 

following two hypothetical relationships between either LUE or GPP and VIs. The first holds 505 

that VIs provide proxy information for parameterizing LUE or fAPAR (Gitelson et al., 2006; 506 

Inoue et al., 2008; Sims et al., 2006a; Sims et al., 2006b; Wu et al., 2012) in photosynthetic 507 

(as opposed to non-photosynthetic) tissues (Xiao et al., 2004a; Xiao et al., 2004b; Xiao et al., 508 

2005). Following the logic of classical LUE theory, various LUE models have been 509 

developed based on eddy covariance observation and satellite data (Gitelson et al., 2006; 510 

Peng et al., 2011; Running et al., 2004; Sims et al., 2008; Yuan et al., 2010). Each of these 511 

models includes a combination of equations that are scaled by environmental regulation of 512 

GPP (Beer et al., 2010). The second is that VIs can estimate GPP alone. Values of EVI 513 

follow changes in the greenness and structure of vegetation regardless of the cause of those 514 

variations (Huete et al., 2002), resulting in a stronger correlation between tower-estimated 515 

GPP and EVI than the correlations between tower-estimated GPP and MODIS GPP or 516 

between tower LUE and EVI during the photosynthetic period (Sims et al., 2006b). The 517 

assumption that EVI can be taken as a proxy of LUE results in curvilinear relationships 518 

between GPP and EVI (Sims et al., 2006a). This strongly supports our results (Fig. 3), 519 

suggesting the two hypotheses are essentially consistent, and it is therefore reasonable to 520 
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assume a strong correlation between GPP and EVI. However, EVI does not perform 521 

satisfactorily across all vegetation types, particularly at evergreen forest sites (Rahman et al., 522 

2005; Sims et al., 2006b; Wu et al., 2010). Furthermore, EVI is not able to capture GPP 523 

variations at short time-scales because short-term fluctuations in photosynthetic capacity are 524 

not reflected by variations in canopy greenness over physiological timescales (Sims et al., 525 

2006a). For example, low temperature can significantly and rapidly reduce GPP whilst  526 

having little effect on canopy greenness (Wu et al., 2010).  527 

 528 

4.3 Environmental constraints on the ability of EVI to estimate GPP 529 

4.3.1 LAI affects covariation (R2) of GPP with iEVI 530 

The performance of EVI in estimating GPP is constrained by environmental conditions, 531 

including features of both climate and vegetation structure. The covariation between GPP and 532 

EVI is often better in deciduous sites than evergreen sites (Rahman et al., 2005; Sims et al., 533 

2006b; Wu et al., 2010). Deciduous sites experience a large range between maximal and 534 

minimal EVI (as a result of large seasonal variation) and among sites the range is 535 

significantly correlated with mean summer rainfall (positive correlation) or mean summer 536 

VPD (negative correlation) (Sims et al., 2006b). Our results showed that the strength of the 537 

correlation between GPP and iEVI in deciduous biomes was generally better than in 538 

evergreen biomes, although the strength of the correlation in DBF was only slightly better 539 

than in EBF. Evergreen biomes show smaller seasonal variation in EVI than deciduous 540 

biomes. Observable seasonal variation in vegetation greenness may be a prerequisite for 541 

successful use of VIs to estimate vegetation production. Deciduous biomes demonstrate 542 

distinct seasonal dynamics of leaf greenness, thus satellite data can accurately capture these 543 

large seasonal changes in greenness (Ma et al., 2013; Verma et al., 2014). In contrast, it is 544 
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difficult to achieve the same level of accuracy within evergreen biomes. This presumably 545 

explains the poor performance of iEVI in estimating GPP of EBF, either in wet tropical areas 546 

(Fig. 5, 6, 7) or in semi-arid evergreen forests, where photosynthetic capacity can vary 547 

independently of EVI and LAI in response to dry conditions (Maseyk et al., 2008). However, 548 

either the seasonal change of EVI or LAI cannot effectively explain the weak correlation 549 

between iEVI and GPP in DBF. Nagai et al. (2010) found EVI to increase earlier than GPP 550 

during the leaf-expansion period in DBF, and this caused systematic variability in the GPP-551 

EVI relationship (Richardson et al., 2012; Verma et al., 2014). To address the asynchronicity 552 

between GPP and EVI in DBF, a phenological scalar may be needed in GPP-iEVI equations, 553 

as has been applied in the vegetation photosynthesis model of  Xiao et al. (2004b). This 554 

suggests that large seasonal variance of EVI does not necessarily imply a good correlation of 555 

EVI and GPP and thus EVI variance is not appropriate to explain the covariation of iEVI-556 

GPP across biomes. Our result also showed that iEVI variance across biomes can be greatly 557 

divergent while R2 of iEVI-GPP correlations can be close. For example, iEVI standard 558 

deviations for CRO and ENF are 0.44 and 0.94, whereas R2 are 0.51 and 0.49, respectively 559 

(Figure 3). In contrast, peak LAI can be as a metric of the complexity of canopy structures of 560 

a biome and thus is appropriate to indicate the covariation strength of iEVI-GPP relationships. 561 

As peak LAI increases, the iEVI-GPP relationship is weakened (Fig. 8) by the increased 562 

structure complexity due to either small seasonal EVI variations in a biome such as EBF or 563 

the asynchronicity between GPP and EVI in a biome such as DBF.  564 

Another possible factor contributing to the poor correlation between GPP and iEVI in 565 

vegetation with high LAI that are most located in wet regions may be the extensive cloudy 566 

conditions that reduce the quality of EVI retrievals (Nagai et al., 2010). In arid and semi-arid 567 

areas where cloud cover is minimal, precipitation is a controlling factor of vegetation 568 

phenology and productivity (Bradley et al., 2011; Cleverly et al., 2013; Huxman et al., 2004; 569 
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Jolly and Running, 2004; Ma et al., 2013; Schwinning and Sala, 2004). Moreover, peak LAI 570 

is typically limited by water availability in arid and semi-arid regions (Eamus and Prior, 2001; 571 

Sjöström et al., 2011). Consequently, the correlation between the strength of GPP-iEVI 572 

relationships with mean annual precipitation showed the same trend as that for LAImax (Fig. 8 573 

inset). The correlation between the strength of GPP-iEVI relationships and LAImax may help 574 

identifying the regions where iEVI is most likely to be a good predictor of GPP. Globally, 575 

underestimation of GPP in some locations was compensated by overestimation in other 576 

locations within the same biome type (Fig. 5, 6), with a consequential minimisation of biases 577 

on the estimation of GPP due to global patterns of LAI.  578 

 579 

4.3.2 LAI scales the sensitivity (fitted slopes) of GPP to iEVI 580 

Lindroth et al. (2008) proposed that LAI is the principal scaling parameter for GPP in 581 

northern deciduous and coniferous forests. In biomes with a relatively small peak LAI (e.g., 582 

less than 2.5 m2 m-2), the sensitivity of GPP to EVI increases with LAI (Sjöström et al., 2011), 583 

although there were too few arid vegetation classes in the study to identify a statistically 584 

significant trend in sensitivity across small values of LAI (less than 1.98 m2 m-2, Fig. 8). 585 

Conversely, as vegetation become less water limited, the sensitivity of GPP to EVI tended to 586 

decrease across large values of LAI (larger than 1.98 m2 m-2, Fig. 8), which to our knowledge 587 

has not yet been found at a global scale. Degradation of the GPP-iEVI relationship at large 588 

LAI is due to (1) decreased sensitivity of variation in EVI to changes in canopy structure, 589 

including LAI and canopy type, of dense forests (Gao et al., 2000) and (2) biased or 590 

decreased seasonality of variations in EVI.  591 

 592 
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5. Conclusions 593 

We comprehensively evaluated the ability of MODIS EVI to estimate annual GPP across 12 594 

land cover types based on GPP from eddy covariance. iEVI does not require calculation of 595 

the duration of the growing season, which significantly simplifies the estimation of annual 596 

GPP by EVI at the global scale. Cross validations demonstrated the robustness of biome-597 

specific ln(GPP)~ln(iEVI) models. In comparison to a global benchmarking dataset of mean 598 

annual GPP, we showed that the performance of iEVI was consistent from site to global 599 

scales. Compared to GPPMTE, GPPiEVI performed better in croplands of high productivity but 600 

poorer mainly in forests. The strength of the GPP-iEVI relationships across biomes was 601 

correlated with peak LAI, by which the slope was also scaled. These findings suggest that 602 

vegetation structure is an important factor regulating the accuracy and sensitivity of EVI in 603 

estimating spatial patterns of annual GPP across multiple biomes. While LUE models, data-604 

driven models and terrestrial biosphere models are usually difficult to parameterize or are 605 

limited by coarse resolution meteorological inputs, our study provides a promising and very 606 

convenient approach to estimate global spatial patterns of GPP at either a fine or coarse 607 

resolution. Nevertheless, the use of EVI in estimating GPP requires further study, especially 608 

in deciduous broadleaf forest and evergreen biomes. Our findings on impacts of vegetation 609 

structure provide valuable information for such efforts in improving EVI-based models of 610 

GPP.  611 
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