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Physical properties of the ground and excited stateskioefaral Hamiltonian are largely determined by the
k-particle reduced density matricds RDMs), or simply thek-matrix for fermionic systems—they are at least
enough for the calculation of the ground state and excitee snergies. Moreover, for a non-degenerate ground
state of ak-local Hamiltonian, even the state itself is completelyedetined by itsk-RDMs, and therefore
contains no genuing k-particle correlations, as they can be inferred frierparticle correlation functions. It is
natural to ask whether a similar result holds for non-dergireexcited states. In fact, for fermionic systems, it
has been conjectured that any non-degenerate excitedgtaelocal Hamiltonian is simultaneously a unique
ground state of anotheX-local Hamiltonian, hence is uniquely determined byJtmatrix. And a weaker
version of this conjecture states that any non-degeneratiéed state of a&-local Hamiltonian is uniquely
determined by it2-matrix among all the pure-particle states. We construct explicit counterexampeshbw
that both conjectures are false. It means that correlaiiorexcited states of local Hamiltonians could be
dramatically different from those in ground states. WeHartshow that any non-degenerate excited state of a
k-local Hamiltonian is a unique ground state of anot¥edocal Hamiltonian, hence is uniquely determined by
its 2k-RDMs (or 2k-matrix).

PACS numbers: 03.65.Ud, 03.67.Mn, 89.70.Cf

In many-body quantum systems, correlations in quantungenerate. This kind of “unique determination” legitimates
states, both ground states and excited states, play antmmpor a very strong sense, the reduced density matrix approach for
role for many interesting physics phenomena, ranging frommany-body systems (cf. Ref/]).
high temperature superconductivity, fractional quantuaiiH  gimijar observation applies for fermionic systems, namely
effect to various kind of quantum phase transitions. Tradiyhe ynique ground state oftalocal fermionic Hamiltonian is
tionally, corrc_elauon is characterized by correlationdtians uniquely determined by its-matrix. Indeed, related studies
of local physical observablt_es. To better understand thestr o, fermionic systems in quantum chemistry date back tojearl
ture of many-body correlations, however, we need a methodggos p1, 5], where the properties of both ground states and
to separate out the contribution of the amount that comes fro o cite states df-local fermionic Hamiltonians were studied.
essentially fewer-body correlations. Irreducibiparty corre-  £q excited states, it is conjectured that any non-degémera
lation [1, 2], a concept originating from information theoreti- g citeq state of @-local fermionic Hamiltonian is simulta-
cal ideas, provides such a method to quantify many-body cofieqysly a unique ground state of anotheocal fermionic
relations. Especially, an-particle pure staté)) contains no Hamiltonian, hence is uniquely determined byzitmatrix [].
irreducible>k-party correlation if it is uniquely determined apq 4 weaker version of this conjecture states that any non-
by its k-particle reduced density matricesRDMSs), mean-  gegenerate excited state obdocal fermionic Hamiltonian

ing that there does not exist any otheparticle state, pure or g uniquely determined by it-matrix among all theoure n-
mixed, which has the sanieRDMs as those ofi)). particle fermionic states.

As a physical interpretation of irreducible correlationg, If these conjectures were true, then understanding the
note that the non-degenerate ground state/efecal Hamil-  excited-state properties of a system/éffermions could be
tonian contains no irreducible k-party correlation. More restricted in studying the set of all tRematrices, whose char-
concretely, the HamiltoniaH of a realn-particle system usu- acterization is called th& -representability problem in quan-
ally involves terms of at most-body interactions, wherkis  tum chemistry §]. The N-representability problem has been
a small numberd]. This kind of Hamiltonian is called:-  studied extensively in the past several decades and seyniific
local and for most physical systerhs= 2. If |¢)) isaground  progresses in studying practical chemical systems hawe bee
state ofH, then the ground state ener@y = (Vo|H|1o) is  made [—6], though this problem is shown to be difficult in
determined by thé&-RDMs of |¢y). Generically, the ground the most general settingg][ Meanwhile, it is also natural to
state will be non-degenerate. In this caBgg,) is uniquely  ask whether similar conjectures may hold for excited states
determined by itsk-RDMs, because if there exists any other k-local spin Hamiltonians, as excited states are also inaport
n-particle state, pure or mixed, which has the sariRDMs  for characterizing nice physics phenomena, especiallpim n
as those ofiy), then there must be another pure state whictzero temperature situation. Sometimes even the zero temper
has the same energy &g,), making the ground space de- ature physics cannot be characterized by ground states only


http://arxiv.org/abs/1106.1373v2

2

for instance, in certain kind of quantum phase transitiGhs [ n = 3. First of all, we need a state) which is not uniquely
Here we construct explicit counterexamples to show thatletermined by it2-RDMs and then further show thap)
both conjectures for fermionic systems are false. In more ge is a non-degenerate eigenstate of sdl¥lecal Hamiltonian
eral settings of.-particle systems, not necessarily fermionic, # = ) . H;, where eachH; acts non-trivially on at most
we further show that any non-degenerate excited statéiof a two qubits. It is well known that almost afi-qubit states
local Hamiltonian is a unique ground state of anottietocal  are uniquely determined by thetrRDMs except those lo-
Hamiltonian, hence is uniquely determined byJdisRDMs.  cally equivalent to the GHZ-type state$000) + 3|111), for
This implies, for fermionic systems wit-local Hamiltoni-  «, 5 # 0 [1, 11]. Up to local unitary operations, one only
ans, that the understanding of some properties of excitelsst needs to consider the case whergs are real. Apparently,
will need the information of theit-matrices. We also apply the pure stater|000) + Se??|111) has the same-RDMs as
our understanding to the study of correlationgiqubit sym-  those ofa|000) + 5|111), s0«|000) + 5|111) is not uniquely
metric Dicke statesd] and show that they are uniquely de- determined by it-RDMs, even among pure states.
termined by their2-RDMs. We believe that our result sets  To show thate|000) + 5|111) can be a non-degenerate
a good starting point for studying excited-state propsrtie  eigenstate of som2-local Hamiltonian, we construct th
many-body systems based on the reduced density matrix afscal Hamiltonian explicitly. We start from a simple case of
proach, and will lead to fruitful results in related areas, i the GHZ state where: = 3 = 1/v/2, |¥)gnz = (|000) +
cluding quantum information science, quantum chemistdy an|111))/+/2. The GHZ state is the eigenstate of the commut-
many-body physics. ing Pauli operatorg’; Z», 7> 75, X1 X2 X3 with eigenvalue,
From spin systems to fermion systemsFe- relate the WhereX; Y, Z; stands for the Pauk’, Y, Z operators acting
fermionic problem to known results in quantum information O thei-th qubit. In the language of stabilizers], [’)chz is
theory, we need a map from a qubit system to a fermionigtabilized by the group generated ByZ, 7> 73, X1 X> X3.
system. We now show how to map arqubit system to a For the Hamiltoniantly = —7,75 — Z5 73, |{))enz is an
fermionic system, withV = n fermionsand// = 2N modes. ~ €igenstate but degenerate with any state in the space spanne
This map has been already discussed/ini[], so we briefly by [000),[111). In order to remove the-fold degeneracy
review the construction here. The idea is to represent eachnd to make:)crz a non-degenerate eigenstate, we note that
qubits as a single fermion that can be in two different modesX1X2X3|¢)eHz = [¢)cHz. Therefore,v)cnz is an eigen-
a;, b;, SO eachi-qubit basis state corresponds to the following State ofH1 = X1.X> — X5 with eigenvalué, which is not the

N-fermion state: case for any other state in the space spannelddsy, [111).
Finally, one concludes th&b) sz is a non-degenerate eigen-
21,y 2) = (@) 2 (D)2 (0 ) 2 (b)), state of the2-local HamiltonianH = —Z,7Z, — ZsZ5 +

¢(X1 X2 — X3), for a properly chosen (for instance, one can
choose: = —1 then|y)gnz is the non-degenerate first excited
state ofH, with energy—2.)

For the statex|000) + 8|111), similar ideas apply. Denote
a2 x 2 diagonal matrix with diagonal elemenis;, ase by
diag(ai1, asz), then we have

wherez; = 0,1 and|2) is the vacuum state. Also, all the
relevant single-qubit Pauli operators can be mapped via

In addition, one needs to add the following projectors asext

terms in the fermionic Hamiltonian: B«
dlag(—, —)1X1X2X3(a|000) +B|111>) = a|000) +B|111>,
P = (2ala; — 1)(2b]b; — 1). a B

As all the P;’s are biquadratic and commute with all the Where the operator did, )i acts on the-th qubit. There-

single-qubit Pauli operators, the complete Hamiltoniath wi fore, @|000) + 3|111) is a non-degenerate eigenstate of the

be block diagonal. By making the weights of these projectorg-local Hamiltonian

large enough, we can always guarantee that the ground state B«

of the full Hamiltonian will have exactly one fermion peresit H =aZ1Z5+bZZ3 + ¢ (d|ag(a, E)1X1X2 - X3),
Therefore, to disprove both conjectures for fermionic sys-

tems, one only needs to find counterexamples-tubit sys-  for some properly chosen b, c.

tems. In other words, we will need to find anqubit pure These3-qubit examples can thus be mapped to fermionic

state|:)) which is a non-degenerate eigenstate of seAezal  counterexamples of three fermions with six modes, thus dis-

Hamiltonian, but there exists another pure staté whichhas  prove the conjecture discussed ki and its weaker version

the same-RDMs as those ofy). Therefore /) cannot be in [6].

a unique ground state of artylocal Hamiltonian. Then by \ore counterexamples.©ne may think that the existence of
applying the spin-to-fermion map discussed above, one caghe counterexamples frofaqubit states is due to the fact that
result in a counterexample for the fermionic case. almost all (except the GHZ-typ@)}qubit states are uniquely
Simple counterexamples froBaqubit states.—T0 construct determined by thei2-RDMs, and hope that these conjectures
explicit counterexamples, we start from the simplest cdse ocould actually hold for most of the other cases. Here we show



that the above discussion of the counterexamples f-apubit

particle GHZ state

states provides a systematic way to find a large class of coun-

terexamples.
The idea of constructing the counterexamples fqubit
states is the following: start from Zlocal HamiltonianH,

L
V2

For simplicity we taken even (the odd cases can be dealt

[ )enz = —=(|0)®" + [1)®™).

whose ground space is degenerate (for simplicity, we assumgith similarly). Note the GHZ state is not uniquely deter-

it is two-fold degenerate). Choose a bagig) and|C;) for
the ground space dfl such that: 1)Cj) and|C}) have the
same2-RDMs; 2) there exists a weiglt or 4 operatorM
such thatM |Cy) = |Cp) but M|Cy) # |Cy). Then one can
‘decompose’ the operatdvl into a2-local oneH; such that

mined by its(n—1)-RDMs, as the Stat%(|0>®"+ei9|1>®”)
has the samén — 1)-RDMs.

Using similar ideas of the3-qubit case, we know that
[(M)enz is @ non-degenerate ground state of thdocal
Hamiltonian

|Co) is an eigenvector with eigenvalue zero (for instance, if

M = X,1X»>Z374, One can ChOSéfl = X1 X5 — Z3Z4),

then the Hamiltoniall = H, + c¢H, will have |Cy) as a non-
degenerate eigenstate for a properly chesérhus|Cy) gives
a counterexample after applying the spin-to-fermion map.

H=—-7Z17y—Z3Z3— "+ — Zn_1Zn
+e(XiXo- Xpjo — Xnjor1 Xnjoq2 - Xn),

for a properly chosem. Using the idea based on quantum

In general, for a giverH{, one cannot guarantee the exis- €rror-correcting codes, one can also find other states which
tence of suchCy), |C1) and M. However, in certain case are non-degenerate eigenstates dflacal Hamiltonian but

of quantum error-correcting codes], they are easy to find.
Consider a quantum error-correcting code of dimensioh
which is a ground state of 2local Hamiltonian, with dis-

are not uniquely determined by thdirRDMs, even among
pure states.
Given that a unique ground state ofkalocal Hamilto-

tance3 or 4. Then any state in the code space has thdlian is uniquely determined by ifsRDMs, these examples

same2-RDMs [10, 13], so one can easily finf”y) and|C4)

which are orthogonal. If the code is a stabilizer or stabiliz

subsystem code, then the logical operatdmwhich satisfies
M|Cy) = |Co) andM|Cy) = —|Cy) will be a Pauli operator
of weight3 (if the code distance 3) or 4 (if the code distance
is4).

One simple example is the Bacon-Shor code dhsa 3
(or 4 x 4) square lattice4]. We discuss th& x 3 case for

simplicity. The system consists af= 9 qubits arranged on a

3 x 3 square lattice, and the Hamiltonian is given by

Hy=—Jo Y Xk Xjpih —J= > ZinZjkin,
Jik k,j

show that correlations in excited states of local Hamikioni
ans could be dramatically different from correlations ie th
ground states. Then an interesting question arises: haw ‘dr
matic’ this correlation could be for non-degenerate eitgns

of local Hamiltonians? More concretely, can a non-degdrera
eigenstate of &-local Hamiltonian have non-zero irreducible
r-party correlations for any < n? This question becomes
more intriguing wherk is a constant independentof That

is, can a non-degenerate eigenstate of a local Hamiltonian
have non-local irreducible correlations?

We show, however, this is not the case—a non-degenerate
eigenstate of &-local Hamiltonian is uniquely determined
by its 2k-RDMs and , therefore, cannot havek-party ir-
reducible correlation. To see this, let us consider a non-

whose ground space is two-fold degenerate, constituting eegenerate eigenstaj¢) of a k-local HamiltonianH with

guantum error-correcting code of distarigzevhereJ,., J, >

0, the subscriptg, k refer to the qubit of the-th row and
k-th column and the addition is m8d An orthonormal ba-
sis of the code space can be chosen(as and |C;) such
that the logicalZ operatorZ, satisfyingZ|Cy) = |Cy) and
Z|Cl> = —|Cl>, is given byZ = Z17122,123,1 [14] There-
fore,|Cy) is a non-degenerate eigenstate ofzHecal Hamil-
tonian

H=Hy+c(Z11Z21 — Z3,1)

for a properly chosen.

Correlations in excited states.We would like to consider
this problem in more general settings ofparticle states

H|v) = hly), and without loss of generality, assure= 0.
Then, H?|¢)) = 0, and|+)) becomes the ground state HF.
BecauseH is k-local, H? is at most2k-local, |+) is then
uniquely determined by it8k-RDMs. This result shows that
although correlations in non-degenerate excited statadamf

cal Hamiltonians are different from those in ground states,
they are still ‘local’ irreducible correlations.

We mention that thek bound is tight, as there exists a non-
degenerate excited state okdocal Hamiltonian that is not
uniquely determined by it2%—1)-RDMs. One simple exam-
ple is the GHZ state ofk qubits, which is a non-degenerate
excited state of &-local Hamiltonian, but is not uniquely de-
termined by it52k—1)-RDMs.

It is also easy to see that the discussion here about non-

which are not necessarily fermionic, or do not have any kindl€generate eigenstates can be directly extended to tha-dege
of symmetry. Our method directly generalizes to the case offate case. Thatis, If is an eigenspace of/alocal Hamil-

k > 2, showing that a non-degenerate eigenstate/etacal
Hamiltonian may not be uniquely determined byktRDMs,

tonian, thenl/ is a ground space of 2&-local Hamiltonian.
Applications.—We have discussed in a very general setting

even among pure states. A simple example could be:the about correlations in excited states of local Hamiltonials
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turns out that our techniques can also help to understand cor We further showed that any non-degenerate excited state of
relations in certain quantum states in a relatively simpdg.w  a k-local Hamiltonian is a unique ground state of another
As an example, we discuss correlationsiqubit symmetric  local Hamiltonian, hence is uniquely determined bydts

Dicke states. RDMs. Moreover, thi2k bound is indeed optimal. For a
The n-qubit symmetric Dicke state|W,(i)) (¢ =  constant, this result indicates that a non-degenerate excited
0,1,...,n) is the equal weight superposition of weight- state cannot have ‘non-local’ irreducible correlations.
bit strings P]. For instance,|W,,(0)) = ]00---0), and Our techniques also helped us to understand correlations
W, (1)) = (J10---0) +[01---0) +--- + |00---1))/y/nis  in certain quantum states in a relatively simple way. As an
then-qubit W state. example, we have shown that all thequbit symmetric Dicke
As |V, (0)) and |W,(n)) are product states, they are states are uniquely determined by ti2iRDMs.
uniquely determined by theil-RDMs. We know that In conclusion, our work corrects some misconceptions

|W,.(1)) is uniquely determined by i8-RDMs [15], and the  about the excited states bflocal Hamiltonians and provides
case forW,,(i)) (i = 2,3,...,n — 2) remain open. Here we the basis for further investigation of excited state préipsiof
show that\¥, (i)) is uniquely determined by it&-RDMs for  many-body quantum systems. We hope that our investigations
anyi. Note, however, that non-symmetric Dicke states, whichwill help to build new connections between quantum informa-
are non-equal weight superposition of weigltiit strings, are  tion science, quantum chemistry and many-body physics.
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