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Abstract
Inelastic scattering processes such as Brillouin scattering can often function in cascaded regimes and
this is likely to occur in certain integrated opto-acoustic devices.We develop aHamiltonian formalism
for cascaded Brillouin scattering valid for both quantum and classical regimes. By regarding Brillouin
scattering as the interaction of a single acoustic envelope and a single optical envelope that covers all
Stokes and anti-Stokes orders, we obtain a compactmodel that is well suited for numerical
implementation, extension to include other optical nonlinearities or short pulses, and application in
the quantum-optics domain.We then theoretically analyze intra-mode forward Brillouin scattering
(FBS) for arbitrarywaveguides with andwithout optical dispersion. In the absence of optical
dispersion, we find an exact analytical solution.With a perturbative approach, we furthermore solve
the case of weak optical dispersion. Ourwork leads to several key results on intra-mode FBS. For
negligible dispersion, we show that cascaded intra-mode FBS results in a pure phasemodulation and
discuss how this necessitates specific experimentalmethods for the observation offiber-based and
integrated FBS. Further, we discuss how the descriptions that have been established in these two classes
of waveguides connect to each other and to the broader context of cavity opto-mechanics andRaman
scattering. Finally, we draw an unexpected striking similarity between FBS and discrete diffraction
phenomena inwaveguide arrays, whichmakes FBS an interesting candidate for future research in
quantum-optics.

1. Introduction

The phenomenon of Brillouin scattering, whereby an acousticfieldmediates transitions between opticalmodes
in an optical waveguide [1–3], has been the focus of intense research interest in recent years, driven by a suite of
key applications in nanophotonics ranging frommicrowave photonic filters to novel light sources [4]. Brillouin
scattering can be categorized according to the direction of light scattered by the phonon field: backwardBrillouin
scattering, by broad consensus called stimulated Brillouin scattering (SBS) because of the self-reinforcing nature
of the phenomenon, arises commonly in optical fibers and results from the interaction of optical guidedwaves
with a longitudinal acoustic wavewith awave length of only few hundred nanometers. In contrast, forward
Brillouin scattering (FBS) arises due to the interaction of light with long-wavelength acousticmodes. Depending
onwhether the interaction occurs within the same opticalmode (intra-mode FBS) or between different optical
modes (inter-mode FBS), the relevant acoustic field either forms a transverse wavewithwave length on the order
of centimeters or complex a torsional orflexuralmodewith intermediate wave length (see figure 1). Although
observed experimentally as early as 1985 [5] in conventional step indexfibers, FBS appearsmost naturally in
waveguides that possess complex transverse structure; FBS has been observed in photonic crystalfibers (PCFs)
and tapers [6–12], while the parallel development of on-chip integrated optical circuits has led to experimental
observation of FBS in semiconductor nanowires [13, 14], and theoretical consideration of slot waveguides [15]
and hybrid photonic-phononic waveguides [16]. The observation that FBS ismuch easier to generate in
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integrated silicon circuits than its backward counterpart [14, 17, 18]means that FBS is critically important for
applications that seek to harness the interaction of sound and light on the nanoscale.

The established theory for Brillouin processes, inwhich a single pair of optical fields are related by an
acousticmode, has been developed from the study of backward SBS [2, 19, 20], backwardGAWBS [21] and
cladding BS [22] in homogeneousmaterials and opticalfibers.With some importantmodifications [18, 23, 24],
for backward SBS this formalism can be directly applied to the nanostructures that are of recent interest.
However the existing theory is not well-suited to the study of FBS. Themain reason for this is the phenomenon
of cascading, whereby the generation of a single, orfirst-order, Stokes line results inmultiple follow-on orders.
Under certain conditions cascading can occur in backwards SBS, however the process usually only arises in the
presence of reflections or resonances [25, 26]. By contrast, cascading arises in FBS because of the less-stringent
phase-matching requirements. In principle the existence of large numbers of Stokes lines in FBS could be
addressed by an ad hoc expansion of the existing formalism, however this approach restricts the optical
spectrum to a comb of Stokes lines, introduces artifacts if the expansion of Stokes orders is truncated, and
becomes rather cumbersome in the presence of optical dispersion or in combinationwith other optical
nonlinearities such as Raman scattering or the instantaneous Kerr effect. This approach also requires severe
restrictions on the optical fields, whichmust vary slowly on the time and length scales of the acoustic field, and on
the opto-acoustic response, which is assumed to be perfectly Lorentzian. The range of experimental situations
that can be treatedwith existing approaches is therefore highly limited.With the recent intense interest in the
generation of FBS in nanostructures, a general theory that fully describes FBS is not only essential to gain
physical insight and to guide experiments, butwill formpart of the ongoing program aiming to adapt Brillouin
processes for use in nanophotonics and to unify the theorywith that of traditional optomechanics [27].

Here we present a new and rigorous formulation of FBS that includes cascading to all orders. To this end, we
allowoptical envelopes to cover any number of (anti-)Stokes lines, which reduces fully cascaded FBS to an
interaction between one optical and onemechanical envelope. Figure 2 shows a schematic of a prototypical
system: amodulated pump is injected into awaveguide that supports nearly transversalmechanical eigenmodes.
The pumpmodulation can be either a dedicated Stokes seed as commonly used in silicon photonics experiments
or the inevitable intensity noise of the pump laser. For vanishing dispersion, ourmodel has a full general
analytical solution in the sense that the opticalfield at thewaveguide’s output is given as an explicit integral of the
arbitrary input envelope. A key finding is that without dispersion the optically driven vibrations only cause an
additional optical phasemodulation. This is in agreement with the recent theoretical observation that FBS in the
absence of dispersion has negative single-pass gain [18].We then show thatweak dispersion leads to two
different regimes: in one regime dispersionwashes out intensity fluctuations of an incident pump laserwhile
generating additional phase noise. In the other regime, it leads to self-amplifying dynamics along thewaveguide.
We also demonstrate the great similarity of FBSwith Raman scattering as it is encountered, for example, in the
context of soliton dynamics. Finally, wefind an unexpected striking similarity between dispersionless FBS and
discrete diffraction inwaveguide arrays. Thismakes optically driven FBS an interesting candidate for few-
photon experiments. Our single-envelope formulation of cascaded FBS is ideally suited for this type of problem,
as it conveniently describes superpositions of different Stokes orders with a single operator.

Our formalism allows arbitrary optical spectra spanning several Stokes shifts, including soliton-like pulses
and it facilitates the inclusion of optical dispersion and other optical nonlinearities, whichwe demonstrate for

Figure 1. Sketch of the threemain variants of guided Brillouin scattering: backward (stimulated) scattering (left), inter-mode forward
scattering (center) and intra-mode forward scattering (right). For each case thefigure schematically shows the acousticallymediated
transitions within the optical dispersion relation aswell as typical examples for the corresponding acousticmodes. Note that only for
intra-mode forward scattering (right panel) all Stokes order are connected by the same acousticmode (i.e. same symmetry, wave
number and frequency). Thismotivates why intra-mode FBS is particularly prone to cascading.
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Raman-scattering and theKerr effect. Furthermore, our formalism illuminates the placement of FBSwithin the
family of optical nonlinearities. FBS bears resemblance with several other scattering phenomena, and exhibits
different characteristics that depend on the parameters of the experiment. This chimeric quality is reflected in
the different names FBS has been given, each of which highlights specific aspects of the phenomenon. The term
‘guided acoustic wave Brillouin scattering’ (GAWBS) [5, 6, 8, 10, 11] emphasizes the confined nature of the
acoustic wave and the directionality of FBS in silicafibers. In contrast, ‘Raman-like light scattering’ [7, 28]
highlights that (unlike in backward SBS) the Stokes shift is nearly independent of the optical wavelength and that
FBS easily leads, as in the Raman process, to cascading. Finally, ‘forward stimulated Brillouin scattering’ (FSBS)
[16, 23]draws the strong formal connectionwith backward (stimulated)Brillouin scattering.

A result of the formalismpresented here is that these aspects are unified: specific observations can be
explainedwith the fact that fibers and integratedwaveguides can be quite different in optical loss, dispersion,
power handing, length, and opto-mechanical interaction strength. For this reasonwe have adopted the very
general term ‘FBS’ and devote section 6.2 in our discussion to the different regimes referred to by the above
mentioned terms and the correspondingmeasurement techniques.

This paper consists of twomain blocks: first we derive our theoreticalmodel for cascaded FBS fromfirst
principles and show its consistencywith established theory. Starting in section 4, we proceed to analyze the
model. Each of these two blocks is fairly self-contained; in particular, we re-state the basic equations of our
model at the beginning of section 4. Readers who aremostly interested in the results and their discussion can
skip section 3 on afirst reading. The structure of this paper is as follows: in section 2, we state the approximations
and assumptions that are required for describing an optical pump and all (anti-)Stokes orders in an optical band
with a single envelope function.We also comment on the differences between a classical and a quantum-
mechanical description. In section 3, we then go on tofirst derive the quantum-mechanical Hamiltonian for
Brillouin scattering in a single-envelope picture and state both quantum-mechanical and classical equations of
motion, whichwe then specialize for intra-mode forward scattering.We demonstrate how the established
multi-envelope theory is derived from this. Next, we solve the dispersionless case analytically for any optical
input in section 4. Based on this result, the case of weak optical dispersion and shallow optical intensity
variations is solved perturbatively in section 5. Section 6 finally concludes our paper with an in-depth discussion
and a summary of themainfindings.

2. Approximations, assumptions and theoretical approach for cascadedBrillouin
scattering

The established coupledmode theory [2, 19, 20, 23, 24, 29] of SBS is centered around two approximations: a
restrictive slowly varying envelope approximation (SVEA) for thewave propagation and a restrictive rotating
wave approximation (RWA) for the opto-acoustic interaction. The approximations are restrictive in the sense

Figure 2. Schematic of a prototypical setup for cascaded forward Brillouin scattering: in awaveguide (e.g. a nanowire, ribwaveguide or
an opticalfiber) amechanical vibrationwith near-zerowave number and group velocity is excited by an incident optical pump and a
weak Stokes seed (e.g. due to intensity noise in the pump laser). This results in the exiting light being predominantly phase-modulated
with pronounced higher-order (anti-)Stokes side bands.
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that all but themost slowly varying interaction terms are neglected and that the acoustic envelopes as well as the
envelopes describing individual Stokes orders (usually only the pump and the first Stokes band) only vary on a
time scale larger than the acoustic period. In intra-mode FBS settings the acoustic field is assumed to be the same
for the interaction between each pair of adjacent optical lines.

This approach has twomain disadvantages for the study of problemswhere cascading effects are relevant.
Firstly, each Stokes order requires an additional differential equation, which can become cumbersome if other
nonlinear effects such asKerr-induced four-wavemixing and optical dispersion are to be included. This is
mostly a technical problem. Secondly, the decomposition into individual Stokes orders requires a very restrictive
implementation of the SVEA and the RWA in that the optical envelopes have to vary slowly on the order of the
acoustic time and length scales. In the same vein, the opto-acoustic interaction term is stripped of all
contributions that deviate from a perfect Lorentzian response. This restriction of the established theory
precludes for example the description of opto-acoustic dynamics of light pulses that vary on the acoustic time
scale.We therefore seek a less restrictive description of Brillouin scattering.

An optical envelope can cover several THz and still be considered slowly varying, thus one single optical
envelope is sufficient to describe all Stokes orders at once. However, this is in conflict with the RWAas it is
commonly applied to the opto-acoustic interaction term: in the established literature, the interaction term is
averaged over a timewindowmuch longer than the acoustic period. Instead, we have to relax the RWA to allow
for variations on the same time scale as the optical envelope, i.e. severalmultiples of the acoustic period. As a
result, such amodel has to allow for far off-resonant excitations of themechanical system and for example
include static deformations. Consequently, the acoustic amplitude cannot be described as a slowly varying
envelope, but instead has to explicitly contain the time dependence of themechanical oscillations.We note that
the single-envelope picture outlined above is quite common in short-pulse Raman physics [2, 3, 30].
Furthermore, we remark that a formulation of non-cascaded backward Brillouin scattering based on a non-
slowly varying envelope picture has been studied in the past [31].

Brillouin scattering can be formulated as a problemof classical physics e.g. based on a Lagrangian or a
coupledmode picture, both of which allow for an elegant incorporation of loss. Alternatively, if can be described
based on a classical or quantum-mechanical Hamiltonian, whichwe feel have the advantage that the different
forms of RWAcan be presentedmore clearly compared to the two non-Hamiltonian approaches.We therefore
choose to derive our single-envelope description from first principles via aHamiltonian formalism. As it turns
out, there is basically no difference in complexity between a classical and quantum formulationHamiltonian:
the quantumdescription only adds a few factors of w in the equations (1)–(27), the use of commutators
instead of Poisson brackets and the intermediate result equations (26) and (27). This presents the opportunity to
lay the formal foundation for later work on quantum-optics using FBS as a bonus to our analysis of cascaded
classical FBS.We therefore derive the framework in a quantum-mechanical Hamiltonian picture and switch to
the classical picture at the end of section 3, wherewe also add the loss terms that are well known from the
literature. During revisions of thismanuscript, a study on quantumBrillouin scattering based on a related
relaxedRWAappeared online [32].

3.Hamiltonian and equations ofmotion

We follow the example of [29] and start our investigationwith the opto-acousticHamiltonian. From this, we
derive equations ofmotion for the quantummechanical amplitudes of the optical and acousticfields.
Originating from aHamiltonian representationwithout external baths, thismodel is lossless.We thenmove on
to the classical realm,wherewe also introduce acoustic loss. This is adequate to describemost experiments.

TheHamiltonian for opto-acoustic interactions in a longitudinally invariant waveguide (oriented along z)
can be expressed in amodal expansion of the form [29]

ò òå åw= + W +
a

a a a
b

b b b
-¥

¥

-¥

¥
ˆ ˆ ˆ ˆ ( )† †

  k a a q b bd d , 1k k k q q q

where  is the opto-acoustic interaction term, aâ k is the annihilation operator for a photon in theαth optical
modewithwave number k and energy wa k, and b̂b q likewise for a phonon in theβth acousticmodewithwave

number q and energy Wb q. The ladder operators aâ k and b̂b q are not to be confusedwith the classical envelope
functions a ( )a z t, and b ( )b z t, that will be introduced towards the end of this section.We furthermore
introduce the electric inductionfield operator and themechanical strain operator
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with ‘h.c.’ representing theHermitian conjugate.Here, ad̄ k is the electric induction field of theαth classical
optical eigenmodewithwave number k and has been normalized according to
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where ad k is an arbitrary solution to the classical optical wave equation and a k its classical energy per unit
length of thewaveguide [24]. Analogously, themodal strain field b̄s q

ij associatedwithwave number q andmode
indexβ is normalized to its classical energy b q per unit length of waveguide [24]:
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Note that in the original Hamiltonian formulation [29], the optical and acousticmodal fields were each
normalized to carry a single quantumper unit waveguide length, as opposed to the arbitrary normalizationwe
allowhere. The two pictures can be connected by choosing w=a a k k and = Wb b q k.

To obtain a representation suitable for describing pulse propagation, we transform to the spatial domain by
introducing envelope operators yaˆ ( )z t, , fbˆ ( )z t,
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wherewe explicitly assume that all optical carriers have the same frequency w0, because in basically every
experiment the optical frequency is defined by the vacuumwave length of the used laser; the different optical
wave numbers and thewave numbers and frequencies of the excited acousticmodes follow from this frequency
via the optical and acoustic dispersion relations. Thefirst (n= 1) elements in each set of coefficients
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are the optical and acoustic acoustic group velocities, respectively. Their products with themodal energies  per
unit length of waveguide are themodal powers through the transversal waveguide plane:

= =a a a b b b
( ) ( )   v v, .1 1

The operator a emerges from equation (1) by expressing the optical dispersion relation wak as a Taylor series in
k and by substituting

 - ¶k i ,z

in the course of the Fourier transformation to the real-space representation. The operator b is defined likewise
for the acoustic dispersion relation. This description is based on the convergence of the k-space Taylor series and
is therefore valid inside a disk in complex k-space where the radius is determined by the nearest complex point of
degeneracy (found at band crossings and near anti-crossing). The operators faˆ and ybˆ are fast operators in the
sense that they oscillate according to a( )k zexp i and b( )q zexp i , respectively. They have dimensions of

1 length and fulfill the commutation relations
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This differs from the formally very similar operators introduced for each individual Stokes order by Sipe and
Steel [29]. The difference is that the integrals in equations (4) and (5) formally cover the complete k-range instead
of small k-space intervals of widthD » W ak v as in [29].

Our first approximation is an SVEA: the field distributions are approximated asmodulations of the carrier
eigenmodes

å w
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2
h.c ., 12
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q
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wherewe explicitly allow for envelopes that vary on a time scale shorter than the acoustic period (whatwe call a
‘relaxed’ SVEA). Equations (11) and (12) are justified if neither the optical dispersion relation nor the optical
mode patterns vary appreciably over thewave number range ofmultiple Stokes shifts. This is usually the case
away from special points in the dispersion relation such as band edges.

3.1.Hamiltonian
Wenowderive the interaction term that is appropriate for our choice of envelopes. Here, we focus on the
electrostrictive interaction term in order to keep our equations short. Discussions of how to derive radiation
pressure within a coupled-mode picture of SBS can be found in the literature [23, 24, 29]. The electrostrictive
interaction term is [29]:
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where ( )p rijkl is the photoelastic tensor distribution.Wenow employ an optical RWA, i.e. we neglect the terms

proportional to yaˆ
2
and ya( ˆ )† 2, because these terms oscillate at twice the optical frequency and cannot excite the

acoustic system.We do, however, retain terms describing off-resonant excitation at harmonics of the acoustic
frequency.Within this approximation, we find:
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where aa b¢Q pe is the transverse electrostrictive overlap integral involving conventional eigenmodes:
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This integral is only defined up to a phase factor that is given by the arbitrary global phase of the acoustic
eigenmode. aa b¢Q pe and as a result Gaa b¢¯ can be chosen to be real-valued for one pair of opticalmodesα and a¢
(but not necessarily for all pairs of opticalmodes at once). The addition of radiation pressure leads to the same
result except for the addition of a surface integral aa b¢Q mb to the total opto-acoustic overlap term aa b¢Q . This is
well documented in the literature [23, 24, 29] and therefore need not be repeated here. The totalHamiltonian for
the FBS problem is thus
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If desired, the optical operators in the interaction term can be normal-ordered:
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where the commutator diverges according to equation (9), because it involves operators yaˆ ( )z t, and ya¢ˆ ( )
†

z t,
evaluated at the same coordinate z. This only leads to a static deformation of thewaveguide and is irrelevant for
the dynamics of FBS. It can be interpreted as the contribution of the guided opticalmodes to the total Casimir
force on thewaveguide.We note that this force is not only restricted to boundary forces, but also has an
electrostrictive contribution.

3.2. Equations ofmotion
TheHeisenberg equations for the envelope operators are:

å

y y

y f f y

¶ =

= + G + G + G + G

a a

a a
a b

aa b a ab b a ab aa b b a
¢

¢ ¢ ¢ ¢ ¢

ˆ [ ˆ ]

ˆ [( ¯ ¯ ) ˆ ( ¯ ¯ ) ˆ ] ˆ ( )†* *



 





1

i
,

1

i

1

2i
, 20

t

å

f f

f y y y y

¶ =

= + G + G

b b

b b
aa

a ab a a aa b a a
¢

¢ ¢ ¢ ¢

ˆ [ ˆ ]

ˆ ( ¯ ˆ ˆ ¯ ˆ ˆ ) ( )
† †* *



 





1

i
,

1

i

1

2i
. 21

t

Aswe have already discussed, the commutator y ya a¢[ ˆ ˆ ]†
, is irrelevant for the dynamics of FBS and therefore it can

be safely ignored:

åf f y y y y¶ = + G + Gb b b
aa

a ab a a aa b a a
¢

¢ ¢ ¢ ¢ˆ ˆ ( ¯ ˆ ˆ ¯ ˆ ˆ ) ( )
† †* *

 


1

i

1

2i
. 22t

It is convenient to transform the optical operators to a rotating frame that eliminates both the temporal and
the spatial carrier. It should be stressed that we do not apply such a transformation to the acoustic envelopes as
this would lead to an explicitly time-dependent interaction term. Furthermore, the (nearly) vanishing acoustic
group velocity suggests a rescaling to normalize with respect to energies rather than powers:

y w wY = -a a aˆ ( ) ˆ ( ) ( ) ( )z t z t t k z, , exp i i , 230 0

fF = Wb b b b
ˆ ( ) ˆ ( ) ( )z t z t, , , 24q

w
G =

W
G =aa b

b
aa b

a a b
aa b¢ ¢

¢
¢

b

¯ ( )
    

Q
1 1

. 25
q0

The product operators Y Yˆ ˆ†
and F Fˆ ˆ†

thus express the local optical and acoustic energies rather than the local
number of photons and phonons, respectively.

Using equations (6) and (7), the resulting quantum equations ofmotion are:

åw
¶ + ¶ - ¶ + Y =- G + G F

+ G + G F Y

a
a

a
a b

aa b a ab b

aa b a ab b a
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2

i

2
e

, 26

t z z
k k z1

2
2 0 i

å¶ + W + ¶ - - ¶ - + F =-
W

G Y Y

+ G Y Y

b b b
b

b b
b
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a ab a a
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¢

-
¢ ¢

-
¢ ¢

b

b a a

a a
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¢
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⎥⎥v q

v
qi i i

2
i

i

2
e

e . 27

t q z z
q k k z

k k z

1
2

2 i

i



Inmost situations a classical description is sufficient and allows for the simple inclusion of loss via damping
coefficients ga and gb . To this end, we identify the expectation value of theQMenergy density operatorwith the
classical energy density ofmodulatedmodes:

áY Y ñ = áF F ñ =a a a a b b b bˆ ˆ ∣ ∣ ˆ ˆ ∣ ˜ ∣ ( )† †
 a b, , 282 2

where a ( )a z t, and b̃ ( )b z t, are classical dimensionless envelope functions. The tilde indicates that the acoustic
envelopes are subject to a different phase convention than the optical envelopes. The classical equations of
motion are therefore obtained from equations (26) and (27) by identifying:

Y  F a a a b b bˆ ˆ ˜ ( ) a b, ; 29
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R

åg
w
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b b
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2
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31

t q z z
q k k z

k k z

1
2

2 i

i



Note that the optical damping coefficient is definedwith respect to amplitudes and not powers. Thus, it satisfies
g a=a av 2loss , where aloss is the conventional power attenuation coefficient.

The framework presented thus far is directly applicable intra-mode FBS—which is themain focus of this
paper—and for non-cascaded inter-mode backward SBS. The treatment of cascaded inter-mode FBS and intra-
mode backward SBS requires two carriers either in an acoustic or in an opticalmode in order to describe forward
and backward propagating acoustic waves (in the case of inter-mode FBS) or forward and backward propagating
optical waves (in the case of intra-mode backward SBS).

3.3. Intra-mode FBS
Often, only one opticalmode a a= ¢ and one acousticmodeβ are relevant. In this case, the coefficients simplify
and phase factors disappear:

= =aa b a ab¢ ¢ ( )Q Q Q, 32

= =- -a a a a¢ ¢ ( )( ) ( )e e 1, 33k k z k k zi i

themode-index summations in the interaction terms disappear andwe drop the subscriptsα,β, kα and qβwhere
appropriate and use k0, W0, and q0 to denote the optical and acoustic carrier wave parameters. This leads to
simplified quantum equations ofmotion

w¶ + ¶ + Y = - GF + G F Ya[ ] ˆ ( ˆ ˆ ) ˆ ( )( ) †*v i , 34t z
1

0

¶ + W + ¶ - + F = - W G Y Yb[( ) ( ) ] ˆ ˆ ˆ ( )( ) †*v qi i i , 35t z0
1

0 0

and their classical counterparts:

Rg
w

+ ¶ + ¶ + = -a a
a

[ ] { ˜} ( )( )


v a Qb a

2i
, 36t z

1 0

g + ¶ + W + ¶ - + = -
W

b b
b

[ ( ) ( ) ] ˜ ∣ ∣ ( )( ) *


v q b Q ai i
i

. 37t z0
1

0
0 2

The remainder of this paper is entirely based on the classical equations ofmotionwith only one relevant optical
and one relevant acousticmode.

Wenowdemonstrate how the equations (30) and (31) can be reduced to the standard treatment with
individual optical amplitudes for each Stokes order. First, we assume that the optical amplitude can be
represented as a superposition of a pump andN Stokes andM anti-Stokes orders:

å= - W -
=-

( ) ( ) [ ( )] ( )a z t a z t n q zt, , exp i , 38
n M

N

n 0 0

where each individual amplitude an is assumed to vary slowly on the time and length scales of the acoustic
problem. Furthermore, it is now convenient to transform the acoustic envelope to a rotating frame:

= W -( ) ˜( ) ( ) ( )b z t b z t t q z, , exp i i . 390 0

We insert this into equation (30) to obtain:

å g

w

= + ¶ - W + ¶ + - ¶ + ¶ - +

+ +

a a
a

a
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W -

+ W - - W -

( ) ( ) ( )

[ ]

( )

( ) ( )
( )

( )( ) ( )( ) * *


⎪

⎧⎨
⎩

⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭

n v nq
v

n q n q a

Qb Q b a

0 e i i i
2
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e e .

40

n M

N
n t q z
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n t q z n t q z
n

i i
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1
0

2
2

0
2

0
2

0 i 1 i i 1 i
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
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Given the slowly varying constraint, this equation is equivalent to a family of equations for the individual Stokes
orders:

g
w

+ ¶ - W + ¶ + + = - +a a
a

- +[ ( ) ( ) ] ( ) ( )( ) * *


n v nq a Qba Q b ai i
i

, 41t z n n n0
1

0
0

1 1

with the truncation condition

= =- - + ( )a a 0. 42M N1 1

Analogously, we now insert the optical decomposition into the acoustic equation ofmotion(30):

åg + ¶ + ¶ - ¶ + =-
W

+b b
b

b =-

-

+ - ( )( )
( )

* *


⎡
⎣
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⎤
⎦
⎥⎥v

v
b

Q
a ai

2

i
non resonant terms, 43t z z

n M

N

n n
1

2
2 0

1

1

where ‘non-resonant terms’ contains all products of optical envelopes where the beating is not proportional to
- W( )q z texp i i0 0 . Neglecting these terms is equivalent to tightening the optical RWA to an acousto-optical

RWA that ignores all contributions that disappear when averaged over a time scalemuch longer than the acoustic
period. Equations (41)–(43) are the conventional coupled-mode equations for a large number of (anti-)Stokes
orders.

The common case of a pump and a single Stokes side-band are obtained forM=0,N=1:

g
w

+ ¶ + ¶ + = -a a
a

( ) ( )( )


v a

Q
ba

i
, 44t z

1
0

0
1

g
w

+ ¶ + ¶ + = -a a
a

( ) ( )( ) *
*


v a

Q
b a

i
, 45t z

1
1

0
0

g + ¶ + ¶ + = -
W

b b
b

( ) ( )( ) * *


v b
Q

a a
i

, 46t z
1 0

1 0

wherewe have used the fact that the terms containing W0 and q0 cancel each other in equation (45) if the acoustic
wave satisfies the phase-matching condition. The termswith W0 and q0 never appear in equation (44),
because n=0.

Equations (44)–(46) are in agreementwith the literature on conventional classical coupledmode theory for
SBS [23, 24].With this, we have demonstrated that the commonly employedmulti-envelope theory to FBS
emerges fromour treatment by restricting the assumptions about the optical spectrum andneglecting terms
oscillating atmultiples of the acoustic frequency in the interaction.

It should be remarked that higher-order dispersion terms (indicated by ellipses in equations (35)–(44)) are
implicitly included and can lead to slight variations in the spacing between subsequent Stokes orders. In the case
of a locally linear optical dispersion relation, the acoustic dispersion relation is irrelevant and the Stokes orders
are uniformly spaced. For a locally curved optical band, any acoustic dispersion (including b

( )v 1 ) leads to the
aforementioned varying spacing and non-local effects. A further discussion of this can be found see in
section 6.3.

4. Complete analytical solution in dispersionless intra-mode FBS

Optical and acoustic dispersion are typically very small over the narrow frequency ranges (usuallyMHz toGHz)
of Brillouin phenomena. Furthermore the propagation length of sound in awaveguide can be far smaller than
the variation of the acoustic and optical envelopes, and so the propagation of acoustic waves is often neglected in
Brillouin calculations. Having established the governing equations (30) and (31)wenow examine the important
limit where both optical and acoustic dispersion can be entirely neglected, andwhere the propagation length of
acoustic waves is assumed to be equal to zero.Wewill see that this canonical situation provides insight, in the
formof analytic solutions to the governing equations, into the overall behavior of FBS processes. In this section,
wewill solve the dispersionless initial value problem corresponding to equations (30) and (31) in this no-
dispersion, no-acoustic-propagation limit:

R
w

g¶ + ¶ = - +
a

a( ) { ˜} ( )


⎛
⎝⎜

⎞
⎠⎟v a Qb a

2i
, 47t z

0

g¶ + + W = -
W

b
b

( ) ˜ ∣ ∣ ( )*


b
Q

ai
i

, 48t 0
0 2

= =( ) ( ) ( )a z t A t0, , 49
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= = = <( ) ˜( ) ( ) ( )a z t b z t A t t, , 0 for 0, 50

whereA(t) is the incident optical envelope at the start of thewaveguide.
The general approach in solving this system is tofirst integrate the optical equation (47) tofind the optical

amplitude as a function of z and t. This solutionwill depend on the incident optical fieldA(t) and the yet
unknown acoustic envelope ˜( )b z t, .We then insert it into equation (48) andfind that the resulting equation
happens to be solvable. By back-substitution into the solution to equation (47)wefind the analytical solution to
cascaded FBS as an explicit integral and evaluate it for a typical experimental setup.

4.1. General solution
Equation (47) is separable when integrating along the characteristic of the one-waywave equation. In other
words, we obtain the phase of the optical amplitude at the point (z, t) by integrating along a line ¢ ¢( )z t, in space
time defined by

¢ = - ¢ = - ( )z z vs t t s, , 51

where s is the running parameter. This leads to the solution (expressed in the original coordinates):

Rò
g w

= - - ´ ¢ ¢ -
- ¢a
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v
z Qb z t
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v
, exp exp

2

i
d , . 52

z
0

0

It should be pointed out that the integrand is purely real-valued and thus the acoustic envelope only introduces a
phase. In the absence of optical dispersion, the effect of the acoustic deformation on the optical wave is a pure
phasemodulation and the optical intensity does not depend on b̃ . However, the only thing relevant for
equation (48) is the optical intensity distribution:

g
= - - a∣ ( )∣ ( )⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
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z

v
, exp

2
. 532

2

With this, equation (48) becomes an ordinary differential equation that can be explicitly solved via its Green
function:

ò=
W

¢ - ¢ -
b

g
¥

- + W ¢-b
ga˜( ) ( )( )*


⎜ ⎟⎛
⎝

⎞
⎠b z t

Q
t A t t
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v
,

i
d e , 54t0

0

i
2

z
v0

2

This expression only depends onA(t), but not on ( )a z t, . Therefore, equation (52) is a simple integral rather
than an integral equation. Furthermore, the z-integral in equation (52) is trivial.Wefind for the b̃-related term
appearing under the z-integral:
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The stationary solution for the optical envelope of cascaded FBS in the dispersionless case and for any incident
optical envelopeA(t) is therefore:
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eff
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where the effective propagation length of the optical field at point z is

g
=

-

a

- ga( )
( )L

v 1 e

2
. 57eff

z
v

2

The resulting optical field can then be understood as the inputfieldA(t) attenuated according to the damping
g va while being phasemodulated by its own intensity over the effective length.
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4.2. Example: two-tone excitation and zero optical loss
The explicit formula(56) is the complete solution to the problemof cascaded FBS in the absence of optical
dispersion. To gainmore insight into its nature, we next evaluate it for an example that is typical both for
theoretical and experimental studies of SBS: the excitationwith a strong optical pump and aweak Stokes side
band:

= - W( ) [ ( )] ( )A t A M t1 i exp i , 580 0

whereA0 is the amplitude of the pumpwave andMA0 is that of the Stokes seed. The corresponding pump and
Stokes seed powers are

= =a a∣ ∣ ∣ ∣ ( ) P A P MA 59P 0
2

S 0
2

Weassume thatM is real-valued, which is always possible by an appropriately chosen time origin.We
furthermore neglect the optical loss ga in this specific example; the inclusion is straight-forward but tends to
obscure the equations. On thus letting L zeff and g a 0, the solution becomes
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For highmechanical quality factors (i.e. gW b0  ), the additional phase factor due to static waveguide
deformations and the out-of-phase contributions due to the counter-rotating term are negligible compared to
the resonant effect.We introduce a natural unit of length that depends on the optical input powers and the
intrinsic SBS parameters andwe shift the origin of the time coordinate to amore convenient point:

z = ( )z L , 62nat
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v
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0
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w
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1
, 64nat

2

0 0
2

P S SBS P S

where GSBS is the quantity that is often referred to as the ‘SBS power gain’ [24]. In these units, the cascaded FBS
effect (excluding static deformations that only introduce a very slow phase factor z( )Aexp i whereA is
approximately the inversemechanical quality factor) takes a generic and simple form:

z t t z t= W( ) ( ) [ ( )] ( )a A, exp i cos . 650

Wewill now investigate three properties of this solution that are of particular interest for the characterization
of SBS-based frequency combs: the frequency spectrum, the intensity evolution and the auto-correlation
function.

The frequency spectrumof the total signal equation (65) is the convolution of the spectrumof the incident
signal t( )A and the SBS-modulation function

z t z t= W( ) [ ( )] ( ) , exp i cos , 660

which reflects the effect of cascaded FBS.Due to the periodicity of the problem, its spectrumonly contains
narrow lines at integermultiples of the Stokes shift W0. Therefore, the spectral component of the nth (anti-)
Stokes order is given by

òz
p

t t z t= W + W
p W

( ) [ ( )] ( ) n
1

2
d exp i i cos 67n

0

2

0 0

0

z=
W

( ) ( )J
1

, 68n
0

where z( )Jn is the Bessel function of order n.We therefore can directly plot the generation of the individual
Stokes orders along thewaveguide (see figure 3). Cascaded FBS clearly generates a frequency comb in the sense
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that it generatesmany equally spaced frequency lines.We note that this result is in agreement with theory
presented in the supplementarymaterial of [28].

However, very often frequency combs are associatedwith the generation of light pulses that are equally
spaced in time domain. The solution of cascaded FBS in the absence of optical dispersion in a straight waveguide
does not predict the formation of pulses. Evenmore, the SBS response function z t( ) , is a pure phase factor,
i.e. the FBS process does not affect the intensity distribution at all. A related feature of this is that (in the absence
of optical loss and dispersion) the acoustic amplitude is constant along thewaveguide: the soundwave is not
amplified. This is in agreementwith an earlier work on the optical single-pass gain of FBS structures [18]. As a
result, the effect of cascaded FBS in the non-dispersive regime cannot be observed in the RF-domain by detecting
the interferencewithin the optical outputwith a photodetector.

Finally, auto-correlationmeasurements of optical combs are often used instead ofmeasuring the time-
dependence of the optical intensity in order to grade the quality of a frequency comb. It turns out that the
cascaded FBS process in a dispersionless straight waveguide causes a pronounced auto-correlation peak despite
the complete lack of intensitymodulation. The amplitude auto-correlation for this problemwith time period

p= WT 2 0 can be defined as:

òt t z t z t t= ¢ ¢ ¢ +( ) ( ) ( ) ( )*  
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1
d , , 69

T

0

ò t z t t t

z
t

= ¢ W ¢ - W ¢ +

=
W

{ [ ( )]}

( )⎜ ⎟⎛
⎝

⎞
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d exp i cos cos

2 sin
2

, 70

T

0
0 0

0
0

where ( )J x0 is the Bessel function of order zero. Infigure 4we show the absolute value squared of this result for a
range of normalizedwaveguide lengths ζ.

4.3. Typical parameter ranges in experiments
The question that arises naturally at this point is which values of ζ are typical for various types of experiments, i.e.
which ranges of thefigures 3and 4 can be observed in the laboratory. To this end, we consider the cases of a
suspended silicon nanobeam and amicrostructured silicafiber. According to equation (64), the range of
observable ζ is given by the ‘SBS power gain’ and the product of input Stokes and pumppower. Since power
handling of awaveguide is usually limited by the total optical power (i.e. by the sum +P PP S), themaximal value
for ζ can be found for the case =P PP S, although this does not imply aweak Stokes as assumed infigures 3and 4.

First, we consider a suspended silicon nanobeam as presented in [27]with a nominal ‘SBS power gain’ of
» - -G 6500 W mSBS

1 1, amaximal traveling optical power of + »P P 30 mWP S (i.e. P P 15 mWP S ) and a
waveguide length up to =L 2.5 mm. This results in a length unit of up to »L 10 mmnat and hence z  0.25,
which is somewhat below the appearance of the additional sidebands infigure 3. Amore recent experiment [33]

Figure 3.Evolution of the absolute amplitude (gray scale) of various (anti-)Stokes orders (frequency on the abscissa) as a function of
position ζ along thewave guide (ordinate) assuming vanishing dispersion and an optical excitationwith a strong pump and aweak
Stokes side-band.
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with » - -G 1000 W mSBS
1 1 and P P 30 mWP S corresponds to a length unit of up to »L 30 mmnat . Given

a total waveguide length of 80 mm, which is feasible because of the extremely low optical loss of the design, this
device can operate at up to z » 2.5 and therefore should exhibit signs of cascaded FBS given optimal levels of
pump and input Stokes power. Finally, we consider amicrostructured fiber as discussed in [28]with a nominal
‘SBS power gain’ of » - -G 1.5W mSBS

1 1 and pumppowers around »P 500 mWP resulting in =L 2.7 mnat .
Given that fibers can be fabricatedwith lengths of several 100 mand can have low optical loss, very large values of
ζ can be realized inmicrostructured fibers.

5. Intra-mode FBS in dispersivewaveguides

In the previous section, we have shown that in the absence of optical dispersion our cascadedmodel of FBS does
not exhibit variations in the acoustic amplitude nor the intensitymodulation along thewaveguide. This is in fact
not due to some hidden assumptions within ourmodel but the result of the conservation ofmomentum and
energy, i.e. phasematching. To illustrate this, we assume awaveguide that is acousticallymodulatedwith the
angular frequency W0 and ask how the forward-scattering of light by thismodulationmodifies the acoustic
intensity.

Figure 5 shows schematically a small section of an optical dispersion relation: a pump field at angular
frequency w0 andwave number k0 is scattered into the Stokes and anti-Stokes side bands at angular frequencies
w W0 0 andwave numbers +k k0 . Thewave number differences can be expanded in terms of the frequency:

=  W + W + ( )( )
( )

k s
s

2
, 711

0

2

0
2 

where the group slowness and slowness dispersion parameters are connected to themore familiar group velocity
and dispersion parameters (equation (8)) via:

= = -- -[ ] [ ] ( )( ) ( ) ( ) ( ) ( )s v s v v, . 721 1 1 2 2 1 3

Whenpart of the optical pump at w0 is scattered, its energy andmomentum are distributed between the acoustic
system and the two optical side bands expressed by amplitudes -a and +a at the Stokes and anti-Stokes
frequencies, respectively.

Figure 4.Absolute square t∣ ( )∣ 2 of the auto-correlation function (see equation (69)) of the SBS-generated signalmodulation
z t( ) , for a range of waveguide lengths ζ expressed in natural units of length Lnat (see equation (64)). The delay parameter τ is

normalized to the acoustic period p= WT 2 0.

Figure 5. Sketch of a dispersive optical band. Three points are highlighted: a carrier wave at w0 and k0, an anti-Stokes wave at w + W0 0

and + +k k0 and a Stokeswave at w - W0 0 and + -k k0 (note that -k is chosen to be negative).
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First, wewillfind a condition for the case that the acoustic amplitude is notmodified, i.e. that the energy and
momentum are distributed only among the optical side bands:

+ =+ + - -∣ ∣ ∣ ∣ ( ) k a k a 0, 732 2

W - W =+ -∣ ∣ ∣ ∣ ( ) a a 0. 740
2

0
2

This is only possible if = -+ -k k , i.e. for vanishing optical dispersion (note that the acoustic wave number
= +q k is not zero). In addition, wefind that =+ -∣ ∣ ∣ ∣a a2 2, i.e. that both side bands are equally excited in

agreementwith section 4. Finally, wemay conclude that in the presence of optical dispersion, a two-wave process
is not sufficient to simultaneously conserve energy andmomentum, i.e. the acoustic system is required as a third
participatingwave.

Next, wewe introduceB as the (positive or negative) change in the acoustic intensity ∣ ∣b 2. The conservation of
energy requires:

W - W + W =+ -∣ ∣ ∣ ∣ ( )  a a B 0, 750
2

0
2

0

 = -- +∣ ∣ ∣ ∣ ( )B a a . 762 2

Self-amplification occurs if energy is dumped into the acoustic field, i.e. for >B 0. For the conservation of
momentum,we find:

+ + =+ + - -∣ ∣ ∣ ∣ ( )  k a k a qB 0, 772 2


W

+ + - W =- +(∣ ∣ ∣ ∣ ) ( ) ( )
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( )s
a a q s B

2
0. 78

2
0
2

2 2 1
0

From this we can see that a change in the acoustic intensity is necessary in the presence of optical dispersion.
Furthermore, we can see that (unlike in the dispersionless case) the acoustic phase velocitymust slightly differ
form the optical group velocity.

This very simple argument based on the conservation of energy andmomentum alone demonstrates that
dispersion is necessarily required tomodify the acoustic intensity via FBS.However, it cannot predict inwhich
regime self-amplification occurs, because no assumptions aremade about the opto-acoustic interaction. This
requires amore detailed approach, as wewill show in the following.

5.1. Amplification and suppression in theweak dispersion limit
Wenow study the full problems of FBSwith optical dispersion, wherewe neglect optical loss for the sake of
simplicity:

R
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= = = <( ) ( ) ( ) ( )a z t b z t A t t, , 0 for 0. 82

In this problem, the optical dispersion gradually shifts the phase between adjacent Stokes lines with propagation
along z and therefore slowly converts the pure phase-modulation of the opto-acoustic interaction into a partial
amplitude-modulation. Depending on the sign of this process, the optical interference pattern is amplified or
attenuated along thewaveguide. Unfortunately, the parabolic nature of the optical equation precludes a closed
form solution similar to equation (56).We therefore restrict ourselves to a few relevant aspects of the problem.

First, we eliminate constants that only clutter the notation by substituting

=
a b

( ) ∣ ∣ ( ) ( )
 

f z t
Q

a z t, , , 83

= -
a

( ) ˜( ) ( )


g z t
Q

b z t, , , 84

and by introducing the symbols = a
( )v v 1 and = a

( )w v 22 . This leads to the equivalent equations:

w¶ + ¶ + ¶ + + =[ ( )] ( )*v w g g fi i 0, 85t z z
2

0

g¶ + + W = Wb( ) ∣ ∣ ( )g fi i . 86t 0 0
2

In the case of weak dispersion ( »w 0), an approximate solution to equations (85) and (86) over a short
length of waveguide ( »z 0) can be found via first order perturbation theory. To this end, wefirstmake the
ansatz
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= +( ) [ ( ) ( )] ( )f z t h z t j z t, exp , i , , 87

with real-valued functions ( )h z t, and ( )j z t, . Inserting this into equation (85) and separating real and
imaginary parts of this equation, we reach the system

g¶ + + W = Wb( ) ( )gi i e , 88t
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0 0
2
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We thenwrite the exact function h ( j and g likewise) as an expansion:

= + + +( ) ( ) ( ) ( ) ( )h z t h z t h z t h z t, , , , , 910 1 2 

where h0 is the solution to the dispersionless problem, hn are the nth-order corrections corresponding to the
powerswn, andwewill truncate after the first order term. As in the dispersionless solution, we take our previous
result from section 4.2:
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is the transformed opticalmean amplitude andwe have omitted overallmeaningless phase factors due to static
deformation in order to keep the equations concise. The intensitymodulation depthM is assumed to be small
and connected to the acoustic amplitude g= W b∣ ∣G F Mi0 0

2
0 .

Next, we calculate thefirst-order correction to h and its effect on g; the resulting correction to j is not relevant
within this context and therefore not shown. The correction to h satisfies:

¶ + + ¶ ¶ = - ¶[ ( )] ( )h v w j h w j2 , 96t z z z1 0 1
2

0

with the boundary condition at z=0

=( ) ( )h t0, 0. 971

This leads to thefirst order correction expressions (the intermediate steps leading up to this result can be found
in the appendix):
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wherewe have neglected any non-resonant excitation of themechanical system. This is justified for high
mechanical quality factors.

Thismeans that tofirst approximation and over a small distance z the acoustic amplitude ismodified by a
relative factor of

w
g
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This suggests tomake the ansatz
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For infinitesimally smallDz .We can then approximate awaveguide offinite length z as a concatenation of pieces
of decreasing lengthDz :

D » + D + D - D( ) ( ) [( ) ] ( )G n z a z b z G n z1 1 , 1042
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This can be expressed in terms of the normalized length variable ζ by introducing a normalized dispersion
parameter w̄:
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Figures 6 and 7, show the evolution of the optical spectrum along awaveguide for = -w̄ 0.15 and = +w̄ 0.15,
respectively. This nicely illustrates that—within the bounds of this first-order perturbation theory, i.e. weak

Figure 6.Evolution of the (anti-)Stokes orders for a normalized dispersion of = -w̄ 0.15 assuming that thewaveguide is long
compared to the acoustic wave length and an optical excitationwith a strong pump and aweak Stokes side-band (see alsofigure 3).

Figure 7.Evolution of the (anti-)Stokes orders for a normalized dispersion of =w̄ 0.15 assuming that thewaveguide is long compared
to the acoustic wave length and an optical excitationwith a strong pump and aweak Stokes side-band (see alsofigure 3).
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dispersion, weak optical intensity contrast—the opticalmodulation pattern is compressed along z for >w 0
and stagnates for <w 0. The underlying reason for this is that anomalous dispersion translates the opto-
acoustic phasemodulation into an amplitudemodulationwith the same sign as the opticalfluctuation that
drives the acoustic oscillation. As a result, both the intensitymodulation and the acoustic amplitude grow along
thewaveguide. In contrast, normal dispersion leads to an amplitudemodulation that diminishes optical
intensityfluctuations along thewaveguide.

5.2. Connection of intra-mode FBS toRaman scattering and soliton dynamics
The formalismpresented so far is particularly well suited for the combination of FBSwith other optical
nonlinearities, especially Raman-scattering and theKerr effect. This is because themulti-Stokes optical envelope
readily covers nonlinear interference terms between various Stokes orders, which have to be explicitly included
inmore conventional coupledmode theory [34] andwould clutter the equations for cascaded Brillouin
scattering [35]. The dynamics of solitons in optical fibers can be expressed by a retarded nonlinear Schroedinger
equation, [30]where the instantaneousKerr effect andRaman scattering enter through the convolution of the
optical intensity with a (time-dependent) response function r(t) as the convolution kernel. Our FBS equations of
motion including this response function and for the complete set ofmechanicalmodes read:
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The acoustic equations ofmotion can be formally solved usingGreen functions:
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This allows us to combine the Raman kernel with the Brillouin response in a single function ( )r z t,eff :
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where the effective response function is spatially non-local due to the traveling nature of the soundwaves in
addition to the temporal non-locality that is known fromRaman scattering:
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This spatial non-locality is themain difference between FBS andRaman scattering. This non-locality would be
relevant for FBS involving aDirac cone in the acoustic dispersion relation at q=0.However, in practice FBS
occurs at acoustic band edges, where the the acoustic group velocity b

( )v 1 so small that the phonon propagation
length (i.e. the spatial non-locality) is but a few nanometers. In this case, spatial non-locality is negligible and
intra-mode FBS can be regarded as a simple contribution to the low-frequency tail of the Raman spectrum:
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FBS can therefore be expected to contribute to the formation and the self-frequency shift of nanosecond-scale
solitons inwaveguides [30].

6.Discussion

After the analysis of the previous sections we now combine the results obtained in the different regimes and
discuss their implications.

6.1. Phasemodulation versus intensitymodulation
We found in section 4, that intra-mode FBSwithout optical dispersion has a closed analytical solution in the
formof a simple integral. One key observationwithin this result is that the acoustic field does not affect the
optical intensity, i.e. neither the optical beat pattern nor the acoustic amplitude vary along thewaveguide.
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Consequently, dispersionless intra-mode FBS results only in a phasemodulation of the optical signal. Thus, the
acoustic amplitude is constant throughout thewaveguide and the phasemodulation grows linearly.

The situation changes fundamentally if thewaveguide is dispersive. The optical dispersion slowly shifts the
various (anti-)Stokes orders out of phase and thereby creates an FBS-related beating pattern, i.e. an optical
intensitymodulation. Depending on the sign of the dispersion constant, this newbeating pattern can have the
opposite or the same sign as the intensityfluctuation that drives the acoustic wave in the first place. In the former
case, the total optical intensity variations (and thus the acoustic amplitude) diminish along thewaveguide.
However, the entropy of the fluctuating pump cannot disappear, so the reduction in the intensitymodulation
has to be countered by a phasemodulation. In the other case (additive beat patterns), optical intensity
fluctuations (aswell as the acoustic amplitude) are amplified along thewaveguide and both the intensity and the
phasemodulation grow exponentially along thewaveguide.We note that, having used a perturbative approach
to solve this problem, these results are strictly only valid forweak dispersion andweak intensity contrasts—this
approximationwill therefore break down as the Stokes grows to be comparable with the pump.Nevertheless
these results can be expected to remain qualitatively valid even in the cases of strong dispersion and large
intensity contrasts.

6.2.Measurement of FBS
FBS occurs in various fields such as PCFs or integrated siliconwaveguides. These systems are typically studied
with different experimental techniques because of the very dissimilar loss regimes, power handling and
waveguide lengths.Most fiber experiments capture themodulation of the optical wavewith highfidelity either
by using an interferometric setup or bymeasuring in another polarization. They usually do not inject a dedicated
Stokes seed and instead observe scattering fromphonons that are either thermally excited or generated by the
intensity noise of the pump laser. The long interaction lengths and power handling infiber optics allows for
complex interplay of FBSwith other nonlinearities and often result in cascaded dynamics. Extreme examples of
this are lasers that are passivelymode-locked at the acoustic resonance frequency [36, 37]. It should be stressed
that in the case of a straight dispersionless waveguide and for strict intra-mode scattering the intensity variations
at the end of awaveguide do not differ from those at the front, because the beat of the pump and Stokes lines and
among the Stokes lines vanishes exactly. This is the reasonwhymanymeasurements are either done in
orthogonal polarizations or in interferometric setups that are designed to eliminate themain pump line [6–11].
Through the amplitude and phasemodifications of the individual Stokes order this leads to a beat signal, which
can then be easily detected by a photodiode and analyzed in the RF domain. It should be noted that the relative
amplitudes of the lines in theRF spectrum can differ considerably from relative amplitudes in the actual optical
spectrum.

In contrast, experiments on FBS in integrated photonics often require a pump-probe configurationwith
fairly strong Stokes seeds in order to lift the spectral peaks above the detection threshold. As a consequence, the
measurements are usually not sensitive enough to distinguish between ‘stimulated’ (in the sense of ‘self-
amplifying’)dynamics and an ‘optically driven’ phasemodulation. Furthermore, these experimentsmay not
require special ‘phase-mixing’ elements (e.g. interferometric loops) to convert the pure phasemodulation into a
partial intensitymodulation, because (narrow-band) grating couplers readily introduce phases and the
waveguides are dispersive in themselves. Quite often, the interaction lengths are too short for cascading to set in.
Without the need to capture cascading, the theoretical description is often restricted to basic coupled-mode
theory borrowed frombackward SBS.Only recently, an extension of the coupled-mode formulation to include
thefirst anti-Stokes line has led to the realization [18] that self-amplifying FBS is not generally expected in
integratedwaveguides. Care should be takenwhen studying FBS inweakly dispersive integratedwaveguideswith
broad-band couplers (or even butt-coupling): without the phasemodification to the individual Stokes orders,
this will only result in a pure phasemodulation that will go un-noticed if directly analyzedwith a photo diode.

6.3. Stimulated versus Raman-like scattering
Aswe havementioned in the introduction, FBS is knownunder different names, especially as ‘Raman-like’ or as
‘forward stimulated’ scattering. Each of them is justified, because they indicate features thatmay ormay not be
dominant depending on the specific type of waveguide and themeasurement technique employed. For example,
in section 5.2, we have clearly shown that intra-mode FBS is phenomenologically indistinguishable from a low-
frequency tail of the Raman spectrum if and only if the acoustic group velocity (i.e. the velocity at which an
acoustic pulse travels along thewaveguide) is negligibly small. This is usually the case in intra-mode FBS and
inter-mode FBS between degenerate opticalmodes (see figure 8). In these systems the term ‘Raman-like’ is well
justified. Large acoustic group velocities can occur for inter-mode FBS or if the acoustic dispersion relation has a
Dirac point at q=0. The formation ofDirac points through the combination of symmetry-related and
accidental degeneracies at theΓ-point is well understood in the context of photonic crystals [38] and similar
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effects are expected inmechanical systems, as well. In these two cases, FBS differs fromRaman scattering in that
it becomes non-local over the length scale of the acoustic decay length (approx. 50–100 μm), which can be very
relevant in integrated photonics [39].

Both Brillouin scattering processes, forward and backward, are referred to as SBS in parts of the literature,
while some authors restrict this terminology to the backward scattering process, only. The observation that FBS
in the absence of dispersion does not result in any amplification of the Stokes signal prompts the question:
should FBS be classified as a stimulated process? The answer to this depends on one’s definition of what a
stimulated process entails. In the context of backward Brillouin scattering andRaman scattering, the term
‘stimulated’ scattering has been used since the early papers [19, 20] to denote the positive feedback that results in
self-amplification of both the optical and acousticfields. Using this definition a clear distinction is drawn
between the spontaneous processes, inwhich the pump signal is tooweak to cause a runaway effect so strong that
thermal excitations are amplified to levels comparable to the pump power, and the stimulated process, inwhich
significant self-amplification occurs and the backscattered Stokes signal grows exponentially along the length of
thewaveguide. This definition applies to FBS provided that thewaveguide exhibits an appropriate optical
dispersion, as we have shown in section 5, but does not if this condition is notmet. Adopting this pragmatic
approach, it seems fair to call FBS a stimulated process, but to keep inmind that whether or not the effect is
‘stimulated’will always depend on the details of thewaveguide and experiment.While the presence of dispersion
certainly allows forward amplification, our analysis shows that for the zero dispersion case, ormore physically,
for distances shorter than the dispersion length, there is no significant self-amplification at powers where
amplificationwould certainly be seen in the backwards case. This suggests that while FSBS is a defensible
terminology, perhaps FBS is to be preferred in generality.

6.4. Similarities to cavity opto-mechanics and discrete diffraction
The problemof FBS bears similarities to other fields of optics apart frombackward SBS andRaman scattering.
One example is the close similarity between FBS in dispersive waveguides and side-band heating and cooling in
cavity opto-acoustics [40]. In both cases the opto-acoustic interaction can either suppress acoustic vibrations or
lead to an exponential growth. The particular outcome is determined by the imbalance of the optical density of
states on the red and the blue side of the optical pumpbeam. Such a connection is somewhat expected given the
intimate connection between bothfields [27]. However, there is one fundamental difference: in cavity opto-
acoustics, the acoustic oscillations are amplified or suppressed over time, whereas in FBS they aremodified along
thewaveguide.

While cavity opto-acoustics and FBS are clearly based on the same physics, the intimate connection between
FBS and discrete diffraction inwaveguide arrays is on a formal rather than a physical level. The various Stokes
orders constitute channels of light propagation similar to an array of waveguides and a transversal acousticmode
provides a coupling between these channels, whosemagnitude is proportional to the acoustic amplitude. It is a
fortunate coincidence that in the absence of optical dispersion the acoustic amplitude is constant along the
waveguide, i.e. that the process of FBS is formally equivalent to an array of parallel waveguides. As a result, the
evolution of the optical intensity through the Stokes orders along thewaveguide is governed by the same
equations and the solution of the two-tone problem (section 4.2) is identical to the diffraction of light in an array
of parallel waveguides. One of the intriguing features of this analogy is that the inter-channel coupling coefficient
(or alternatively the effective length ζ of thewaveguide array) can be tunedwith extreme flexibility via the optical
pumppower. This similarity raises the possibility for FBS-based quantum-walk experiments.

Figure 8. Schematic examples for acoustic dispersion relations with low acoustic group velocity of the higher-order acousticmode
(red dot in left panel) andwith aDirac point at q=0 leading to high acoustic group velocities of some of the higher-order acoustic
modes (red dot in right panel). FBS in the conventional casewith low acoustic group velocity can be described as a low-frequency
contribution to the local Raman response. In contrast, FBS in the right-hand casemanifests as a non-local effect along thewaveguide.
It should be noted that the questionwhether self-amplification can occur is not related to this, but determined by the optical dispersion
relation.
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6.5. Summary and conclusions
Wehave presented here a new and rigorous formulation of the FBS process, which implicitly includes all
coupling amongst the combof cascaded orders. Because the differences between the quantumand classical
formulations areminimal, we have chosen themore general case for our derivation of the equations ofmotion,
beginningwith the full optomechanical Hamiltonian of the system. This formalism can therefore be applied to
problems of interest in the limit of low photon/phonon numbers, andwould be especially useful for the
prediction and interpretation of single phonon scattering experiments.

The established description of FSB is derived from the theory of the backward SBS process infibers. In this,
the pump and Stokesfields aremodeled as independent, spectrally extremely narrowfields. This is partially
motivated by the strong dependence of the acoustic frequency on the optical wave length and the narrow
acoustic resonances. Cascading effects can occur in backward SBS [25], but are not a very common feature.
Instead, exponential growth of the optical and acoustic amplitudes along thewaveguide is themost common
manifestation. In contrast, FBS ismostly independent of the optical wavelength, it has a strong tendency towards
cascading and requires the help of optical dispersion to have any impact on the optical and acoustic intensities.
Thus, themulti-mode ansatz that is so successful in BSBS is not ideal for FBS.Wefind that a description
coupling only one broad-band opticalfield to an acousticfield ismuch better suited.

In particular for the dispersionless case wefind closed-form solutions, inwhich the amplitude of the
cascaded orders is given simply by a series of Bessel functions. The simplicity of this result follows fromone of
themain insights arising from this formalism: that the acoustic field exerts, in the absence of dispersion, a pure
phasemodulation on the opticalfield. This implies that for dispersionless waveguides FBS is not capable of
amplifying the intensity beat between a pump and a Stokes signal.
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Appendix. Derivation offirst-order perturbative dispersion terms

Herewe derive the corrections to the optical and acoustic fields for the dispersive dynamics shown in
equations (98) and(99).

We start with the dispersion-free stationary two-tone solution:
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The dispersive correction to the effective group velocity is of orderw and therefore introduces corrections of
orderw.Wemay therefore approximate:
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Through the substitution
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whereC(s) is defined through the boundary condition expressed in the transformed coordinates =( )h vs s, 01 .
Therefore, thefirst order correction to p is:
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This recovers equation (98) in themain text.
The remaining step is tofind the correction to the acoustic problem:
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Assuming that the intensity of the incident optical signal varies only weakly (weak incident Stokes seed, e.g. due
to thermalfluctuations), we can replace »∣ ( )∣ ∣ ∣F t F2
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where only retained the resonant contribution to the convolution. This is the second expression required in the
main text.
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