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ABSTRACT

Lipophilic copper (Cu)-containing complexes have shown promising antibacterial activity
against a range of bacterial pathogens. To examine the susceptibility of the intracellular
hum an pathogen Chlamydia trachomatis to copper complexes containing
bis(thiosemicarbazone) ligands [Cu(btsc)], we tested the in vitro effect of Cu”—diacetyl— and
Cu”-glyoxal-bis[N(4)-m ethylthiosem icarbazonato] (Cu(atsm )and Cu(gtsm ), respectively) on
C. trachomatis. Cu(atsm) and to a greater extent, Cu(gtsm), prevented the formation of
infectious chlamydial progeny. Impacts on host cell viability and respiration were also
observed in addition to the Chlamydia impacts. This work suggests that copper-based
complexes may represent a new lead approach for future development of new therapeutics

againstchlamydialinfections,although hostcellimpactsneed to be fully explored.
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Chlamydia trachomatisis the mostcommon sexually transm itted bacterialinfection

worldwide. As an obligate intracellularbacterialpathogen, Chlamydia has a unique

developmentalcycle thatconsistsof an extracellular,non-replicative,infectiousform

(elementary body) and an intracellular,replicative form (reticulate body). Chlamydia relies

heavily on the host for nutritionand energy and ATP/ADP transportershave been identified.

Yet, metabolicdata has dem onstrated thatChlamydia iscapable of generatingenergy through

substrate level phosphorylation and oxidative phosphorylation with a respiratory chain

terminating in a cytochrome bd oxidase (reviewed in (Omsland et al.,2014)).

Chlamydia infectionsare currently treated with 1 g of azithrom ycin.In some cases, a

seven day doxycycline regimen isused, although thisis less preferred as non-com pliancecan

resultin the induction of chlam ydialpersistence and treatmentfailure.The increasing

prevalence of Neisseria gonorrhoeae co-infectionsand a rise in resistance (orreduced

susceptibility)of gonococcus to azithromycinsuggeststhat more effectivecombination

treatm ents thattarget both pathogens are needed. In thiscontext, recentwork hasidentified

that smalland lipophiliccoppercomplexes are highly effective against N. gonorrhoeae,

including multidrug-resistantstrains (Djokoetal.,2012, Djoko etal., 2014, Djoko etal.,

2015).

Copper isessential for bacterial metabolism butitis bacteriotoxic in excess. The

antimicrobialpropertiesofexcess copper ions have been documented for centuries. Copper

primarily poisons bacteria by displacing other metalions in metalloproteinsandinactivating

key bacterial metabolic pathways (M acomber& Imlay,2009). In the pre-antibioticage, ionic

coppersalts were used to control bacterialinfectionsbut due to poor membranepermeability,

there was a high dose requirement.Recently,we and others have explored the use of sm all,
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lipophilicligands or pro-ligands to facilitate delivery of copper ions across bacterial
membranes (termed as “copper ionophores”) (Speeretal., 2013, Festaetal., 2014, Haeiliet
al., 2014, Shah etal.,2016). These copperionophores are effective againsta varietyof
pathogens,including Mycobacterium tuberculosisand Staphylococcusaureus (Speer etal.,
2013, Haeilietal., 2014, Shah etal.,2016). Of interestto thiswork are copper ionophores
containing bis(thiosem icarbazonato)ligands (Cu(btsc)s)such as Cu”—diacetyl— and cu''-
glyoxal-bis[N(4)-methylthiosem icarbazonato] (Cu(atsm)and Cu(gtsm ), respectively) (Figure
1A),which showed activity in vitro against N.gonorrhoeae (Djoko etal.,2014, Djoko et al.,
2015). Ithas previously been established thatcopper ions willinhibitChlamydia if added
priorto cellularentry,and some reports indicate thatwomen using copper intrauterine
devices as acontraceptive may have a lower frequency of contracting Chlamydia (Kleinm an
etal., 1989). To evaluateif copperionophores could also be effectiveagainst Chlamydia, we

tested the in vitro effectof Cu(gtsm ) and Cu(atsm)on Chlamydia trachomatis.

Cu(btsc) complexeswere added to Chlamydia trachomatis serovar D/UW -3/Cx
cultures (in M cCoy B cells)at the mid-replicative phase (20 h PIl). Cu(atsm )and Cu(gtsm)
were provided as powders by Dr Paul Donnelly from The University of M elbourne (Gringras
etal., 1962, Paterson & Donnelly, 2011). Cultures were propagated using standard conditions
ata multiplicity ofinfectionof 1 (Huston etal.,2008). The compounds were leftin the
culturesuntil the conclusion of the developmentalcycle and cultureswere harvested and re-
infected onto fresh M cCoy B monolayersto enumerate infectiousprogeny (previously
described protocols (Huston et al., 2007, Huston et al., 2008, Lawrence etal.,2016)).The
compounds were highly effective with aloss of infectiousprogeny detected at the low
micromolarrange for both compounds (Figure 1B). The Cu(gtsm ) had a greaterimpacton

chlamydialinfectiousprogeny production (1.6 pM ), comparedto Cu(atsm) (3.2 pM ,Figure
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1B). Note that10e3 is the limitationof detection for this assay asthe numberof IFU below

this threshold cannot be reliably quantified.

The elementary body (EBs) doesnotundergo cellulardivision, butdoes have

m etabolicactivity (Omsland etal., 2012). To evaluate whether the Cu(btsc) complexesare

also effective againstthe elementary body, we incubated elementary bodies with each

compound in Sucrose Phosphate Glutam ate (SPG) media for 30 mins,washed, and

immediately added to a M cCoy B cell monolayertocommence achlamydialinfection.The

infectiousprogeny formed from thisinfectionwere then enumerated. The treatmentof

elementary bodies was effective,although almost50x higher dose (50 puM ) (compared to

treatmentof the intracellular Reticulate body (RB) phase; Figure 1C). As was the case during

the intracellulargrowth phase, Cu(gtsm ) was more effective againstthe Chlamydia

elementary bodies com pared to Cu(atsm ), consistentwith earlierobservationsin N.

gonorrhoeae, Mycobacteriatuberculosis,and Staphylococcus aureus (Speeretal., 2013,

Haeilietal.,, 2014, Djoko etal.,2015). The ionophoresshowed similareffectsagainstthe RB

phase of a distinctstrainof Chlamydia (C.trachomatisL2,data notshown).

Itis notyetcertainifthe Chlamydia reticulate body iscompletely or partially reliant

on hostcell ATP (Tipples & McClarty,1993, Omsland etal.,2014). Ithasbeen previously

dem onstrated that,in addition to the release of bioavailablecopperionsinto the cytoplasm,

Cu(btsc) complexes partition to the mem branesof N.gonorrhoeae where they inhibitthe

activity of Nuo and Nqr,two NADH dehydrogenasesof the gonococcal electron transport

chain (Djoko etal., 2015). Since Chlamydia possessesan Nqr as its sole NADH

dehydrogenase, itis tempting to suggestthatthisis potentialtarget for Cu(btsc) com plexesin

this bacterium .
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Next we assessed the impacton hostcells,by pre-treating M cCoy B hostcellswith

coppercomplexes 5 hrs priorto infectionand then measured the viable infectiousyield of

elementary bodies. W e observed a loss of chlam ydialinfectiousprogeny at5 uM (Figure

1E), which is a slightly higher dose than the dose leading to loss of infectivity when

compounds were added to chlamydialculturesduring the active growth phase. The hostcell

live-dead assay (Figure 1D) indicated thatin thiscell model there was some toxicity that

likely contributed to the phenotypes. Additionally,some EBs were detected atthe toxic host

cellconcentrationof 1.6 pM suggesting thatviable EBs are prevailingeitherin detached host

cellorinthe media itself.This hostcell effectdiffersfrom previousdata on differentcell

lines where minimalcelldeath was detected (Djoko etal.,2015), indicating that further

understanding of host cell-specificimpactsofcopperionophoresisneeded before

progressing to in vivo experiments.

The Cu(btsc) com plexes,particularly Cu(gtsm),are known to inhibitof Complex Iin

isolated ratliver mitochondria (Djoko et al.,2014) butithas notbeen determined whether

Cu(gtsm ) also inhibitsmitochondrial functionin intactcells and tissues. Therefore, we

measured cellularrespirationto assesswhether hostcell mitochondrialimpactscould explain

the loss of infectiousprogeny. W e measured the impactof Cu(gtsm ) and Cu(atsm)on host

cell mitochondrialrespirationusing the Seahorse XF Cell M ito Stress Testm odulators kit

(Agilent Technologies). M cCoy B cells were seeded 96-well plates with 20,000 cells per well

and Cu(atsm )and Cu(gtsm ) coppercomplexes were added at 50 and 150 nM for 30 mins

priortocommencing the assay. W hile Cu(atsm ) did not affectthe spare respiratory capacity

and ATP productionof the host, Cu(gtsm ) resulted in a reductionin spare respiratory

capacity atboth 50 nM and 150 nM (Figure 1F). Lower doses were tested than those where

complete lethality was observed in Figure 1B as we wished to tease out therole of respiratory

impactsin the doses where loss of progeny was observed.
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In sum mary,Cu(btsc) were effective againstboth the intracellularreplicative form of

the Chlamydia and the extracellularform .The reduced effectseen following the pre-

treatmentof EBs (extracellularform ) may be attributable tothe reduced metabolicactivity of

this developmentform and possiblereduced access due to the structuraldensity of the EB

outer membrane.However, given thatthe coppercomplexeswere also demonstrated to

impacton respiratory capacity of the hostcell, itis hard to differentiatetherole of hostcell

impactfrom anti-chlamydialimpactforloss of chlamydialinfectiousprogeny.Itisimportant

to note, however, thatthe pre-treatmentofhostcellsis notthe same as treatmentduring an

active infection as the chlam ydialburden is likely to alterthe respirationrate of the hostand

reduce the amountofcomplex accessing the mitochondria.

These data indicate thatthese copper compounds are toxic to Chlamydia, although

here a hostcellimpactis also notable on M cCoy B cellsthatcontributed to this phenotype. It

was previously reported that other cells are not susceptible to these compounds (Djoko etal.,

2015), suggesting thatthe toxicity observed in this study may relateto hostcelltype. Overall,

whilstshowing some promisemuch isneeded to be done to unravel toxicity and metabolic

impactsof the copper ionophoreson hostcellsbefore in vivo applicationscould be trailed.

Interestingly,these data could suggestthatrespirationisimportantforthe RB phase of

chlamydialgrowth. One possibleapplication of future derivativesof these coppercomplexes

could be as acomponentofa topicalanti-microbiallubricantthatcould inactivate EBs before

they establish an infection from sexual transmission,and potentially in thisapplication could

minimise any toxicity on the hostcells.
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FIGURE LEGEND

Figure 1 A.Structureof Cu(gtsm ) and Cu(atsm ) molecules.B. Inclusion formingunits (IFU)

produced after C. trachomatis D/UW /3/CX (CtD) cultureswere treated with Cu(gtsm)or

Cu(atsm)at the mid-replicative phase (20 h Pl).Infectiousprogeny were measured at

completionof the developmentalcycle (44 h PI). C.Inclusion formingunits after C.

trachomatis D/UW /3/CX elementary bodies were treated with Cu(gtsm ) or Cu(atsm ) for 30

min prior to infection of host cells.Infectiousprogeny were determined from cultures

harvested at44 h PI. D. Live hostcellcounts after 24 h exposure to Cu(gtsm )or Cu(atsm).

E.

Inclusion forming units afterM cCoy B hostcells were pre-treated with Cu(gtsm )or Cu(atsm)

prior to the chlamydialinfection (for 300 min). A-E. Results arerepresentativesof

experimentsrepeatedin independenttriplicatewith n = 27 in each bar. Errors bars depictthe

standard error of the mean.# indicatesno growth detected. F. Impactof Cu(gtsm)and

Cu(atsm)on the basal (energeticdemand of the cellunder baselineconditions)and spare

respiratory capacity (capacity of the cellto respond to energeticdemands) of the hostcells

when treated in the absence of chlam ydialinfection (oxygen consum ptionrate) on the y axis.

The rate of oxygen consum ptionwas measured following the sequentialadditionof

oligomycin (2 uM ; targets ATP synthase),carbonylcyanide-4

(trifluoromethoxy)phenylhydrazone (2 uM ; targetsinner mitochondrialmem brane),and

rotenone/antimycin A (0.5 uM ;targetscomplex I and Ill respectively.Concentrationswere

as perthe manufacturer'srecom mendation. The key to the rightindicatesthe colour

corresponding to each compound on the graphs. Graphicalpresentation of the data and

statisticalanalysiswas conducted using Graphpad Prism (v7).
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