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Abstract

Spectral clustering is a fundamental technique in the
field of data mining and information processing. Most
existing spectral clustering algorithms integrate dimen-
sionality reduction into the clustering process assisted
by manifold learning in the original space. However,
the manifold in reduced-dimensional subspace is likely
to exhibit altered properties in contrast with the orig-
inal space. Thus, applying manifold information ob-
tained from the original space to the clustering process
in a low-dimensional subspace is prone to inferior per-
formance. Aiming to address this issue, we propose a
novel convex algorithm that mines the manifold struc-
ture in the low-dimensional subspace. In addition, our
unified learning process makes the manifold learning
particularly tailored for the clustering. Compared with
other related methods, the proposed algorithm results in
more structured clustering result. To validate the effi-
cacy of the proposed algorithm, we perform extensive
experiments on several benchmark datasets in compar-
ison with some state-of-the-art clustering approaches.
The experimental results demonstrate that the proposed
algorithm has quite promising clustering performance.

Introduction
Clustering has been widely used in many
real-world applications (Jain and Dubes 1988;
Wang, Nie, and Huang 2014). The objective of cluster-
ing is to cluster the original data points into various
clusters, so that data points within the same cluster
are dense while those in different clusters are far away
from each other (Filippone et al. 2008). Researchers have
proposed a variety of clustering algorithms, such asK-
means clustering and mixture models (Wang et al. 2014;
Nie, Wang, and Huang 2014; Nie et al. 2011b),etc.

The existing clustering algorithms, however, mostly work
well when the samples’ dimensionality is low. When par-
titioning high-dimensional data, the performance of these
algorithms is not guaranteed. For example,K-means clus-
tering iteratively assigns each data point to the cluster
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with the closest center based on specific distance/similarity
measurement and updates the center of each cluster. But
the distance/similarity measurements may be inaccurate
on high-dimensional data, which tends to limit the clus-
tering performance. As suggested by some researchers,
many high-dimensional data may exhibit dense grouping
in a low-dimensional subspace (Nie et al. 2009). Hence, re-
searchers have proposed to first project the original data
into a low-dimensional subspace via some dimensionality
reduction techniques and then cluster the computed low-
dimensional embedding for high-dimensional data cluster-
ing. For instance, a popular approach is to use Princi-
ple component analysis (PCA) to reduce the dimensional-
ity of the original data followed by Kmeans for cluster-
ing (PcaKm) (Xu and Wunsch 2005). Ding et al. present a
clustering algorithm based on Linear discriminant analysis
(LDA) method (Ding and Li 2007). Ye et al propose dis-
criminative K-means (DisKmeans) clustering which uni-
fies the iterative procedure of dimensionality reduction and
K-means clustering into a trace maximization problem
(Ye, Zhao, and Wu 2007).

Another genre of clustering,i.e., spectral clustering
(Shi and Malik 2000) integrates dimensionality reduction
into its clustering process. The basic idea of spectral clus-
tering is to find a clustering assignment of the data points
by adopting the spectrum of similarity matrix that leverages
the nonlinear manifold structure of original data. Spectral
clustering has been shown to be easy to implement and of-
tentimes it outperforms traditional clustering methods be-
cause of its capacity of mining intrinsic geometric struc-
tures, which facilitates partitioning data with more com-
plicated structures. The benefit of utilizing manifold infor-
mation has been demonstrated in many applications, such
as image segmentation and web mining. Due to the ad-
vantage of spectral clustering, different variants of spec-
tral clustering algorithms have been proposed these years
(Li et al. 2015). For example, local learning-based cluster-
ing (LLC) (Wu and Schlkopf 2006) utilizes a kernel regres-
sion model for label prediction based on the assumption
that the class label of a data point can be determined by its
neighbors. Self-tuning SC (Zelnik-Manor and Perona 2004)
is able to tune parameters automatically in an unsupervised
scenario. Normalized cuts is capable of balancing the vol-
ume of clusters for the usage of data density information
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(Shi and Malik 2000).
Spectral clustering is essentially a two-stage approach,

i.e., manifold learning based in the original high-
dimensional space and dimensionality reduction. To achieve
proper clustering, spectral clustering assumes that two
nearby data points in the high density region of the reduced-
dimensional space have the same cluster label. However, this
assumption does not always hold. More possibly, these near-
est neighbors may be far away from each other in the original
high-dimensional space due to the curse of dimensionality.
That being said, the distance measurement of the original
data could not precisely reflect the low-dimensional mani-
fold structure, thus leading to suboptimal clustering perfor-
mance.

Intuitively, if the manifold structure in the low-
dimensional space is precisely captured, the clustering
performance could be enhanced when applied to high-
dimensional data clustering. Aiming to achieve this goal, we
propose a novel clustering algorithm that is able to mine the
inherent manifold structure of the low-dimensional space for
clustering. Moreover, compared to traditional spectral clus-
tering algorithms, the shrunk pattern learned by the proposed
algorithm does not have an orthogonal constraint, giving it
more flexibility to fit the manifold structure. It is worthwhile
to highlight the following merits of our work:

• The proposed algorithm is more capable of uncovering the
manifold structure. Particularly, the shrunk pattern does
not have the orthogonal constraint, making it more flexi-
ble to fit the manifold structure.

• The integration of manifold learning and clustering makes
the former particularly tailored for the latter. This is in-
trinsically different from most state-of-the-art clustering
algorithms.

• The proposed algorithm is convex and converges to global
optimum, which indicates that the proposed algorithm
does not rely on the initialization.

The rest of this paper is organized as follows. After re-
viewing related work on spectral clustering in section 2, we
detail the proposed algorithm in section 3. Extensive experi-
mental results are given in section 4 and section 5 concludes
this paper.

Related Work
Our work is inspired by spectral clustering. Therefore, we
review the related work on spectral clustering in this section.

Basics of Spectral Clustering
To facilitate the presentation, we first summarize the no-
tations that will be frequently used in this paper. Given a
datasetX = {x1, . . . , xn}, xi ∈ R

d(1 ≤ i ≤ n) is thei-th
datum andn is the total number of data points. The objec-
tive of clustering is to partitionχ into c clusters. Denote the
cluster assignment matrix byY = {y1, . . . , yn} ∈ R

n×c,
whereyi ∈ {0, 1}c×1 (1 ≤ i ≤ n) is the cluster indicator
vector for the datumxi. Thej-th element ofyi is 1 if xi is
clustered to thej-th cluster, and 0 otherwise.

Existing spectral clustering algorithms adopt a weighted
graph to partition the data. Let us denoteG = {X , A} as a
weighted graph with a vertex setX and an affinity matrix
A ∈ R

n×n. Aij is the affinity of a pair of vertexes of the
weighted graph.Aij is commonly defined as:

Aij =

{
exp(−

‖xi−xj‖
2

δ2
), if xi andxj arek nearest neighbors.

0, otherwise.

whereδ is the parameter to control the spread of neigh-
bors. The Laplacian matrixL is computed according to
L = D − A, whereD is a diagonal matrix with the diag-
onal elements asDii =

∑
j Aij , ∀i. Following the work in

(Ye, Zhao, and Wu 2007), we denote the scaled cluster indi-
cator matrixF as follows:

F = [F1, F2, . . . , Fn]
T = Y (Y TY )−

1
2 , (1)

whereFi is the scaled cluster indicator ofxi. Thej-th col-
umn ofF is defined as follows by (Ye, Zhao, and Wu 2007):

fj =


0, . . . , 0,︸ ︷︷ ︸

∑j−1

i=1
ni

1
√
nj

, . . . ,
1

√
nj

,

︸ ︷︷ ︸
nj

0, . . . , 0︸ ︷︷ ︸∑
c
i=j+1

nk


 , (2)

which indicates which data points are partitioned into thej-
th clusterCj . nj is the number of data points in clusterCj .

The objective function of spectral clustering algorithm is
generally formulated as follows:

min
F

Tr(FTLF )

s.t. F = Y (Y TY )−
1
2

(3)

whereTr(·) denotes the trace operator. By denotingI as
an identity matrix, we can define the normalized Laplacian
matrixLn as:

Ln = I −D− 1
2AD− 1

2 . (4)

By replacingL in Eq. (3) with the normalized Laplacian
matrix, the objective function becomes the well-known
SC algorithm normalized cut (Shi and Malik 2000).
In the same manner, if we replaceL in Eq. (3)
by the Laplacian matrix obtained by local learning
(Yang et al. 2010)(Wu and Schlkopf 2006), the objective
function converts to Local Learning Clustering (LLC).

Progress on Spectral Clustering
Being easy to implement and promising for many applica-
tions, spectral clustering has been widely studied for dif-
ferent problems. Chen et al. propose a Landmark-based
Spectral Clustering (LSC) for large scale clustering prob-
lems (Chen and Cai 2011). Specifically, a few representa-
tive data points are first selected as the landmarks and
the original data points are then represented as the lin-
ear combinations of these landmarks. The spectral clus-
tering is performed on the landmark-based representation.



Yang et al. propose to utilize a nonnegative constraint to
relax the elements of cluster indicator matrix for spectral
clustering (Yang et al. 2011). Liu et al. propose to com-
press the original graph used for spectral clustering into a
sparse bipartite graph. The clustering is then performed on
the bipartite graph instead, which improved the efficiency
for large-scale data (Liu et al. 2013). Xia et al. propose a
multi-view spectral clustering method based on low-rank
and sparse decomposition (Xia et al. 2014). Yang et al. pro-
pose to use Laplacian Regularized L1-Graph for cluster-
ing (Yang et al. 2014). Tian et al. recently propose to adopt
deep learning in spectral clustering (Tian et al. 2014).

In spite of the encouraging progress, few of the existing
spectral clustering methods have considered learn the mani-
fold in the low-dimensional subspace more precisely, not to
mention integrating such manifold learning and clustering
into a unified framework. This issue shall be addressed in
this paper for boosted clustering performance.

The Proposed Algorithm
In this section, we present the details of the proposed algo-
rithm. A fast iterative method is also proposed to solve the
objective function.

Problem Formulation
Our algorithms is built atop the aim of uncovering the utmost
manifold structure in the low-dimensional subspace of orig-
inal data. Inspired by (Hou et al. 2013), we adopt the pattern
shrinking during the manifold learning and the shrunk pat-
terns are exploited for clustering simultaneously.

To begin with, we have the following notations. Denote
the shrunk patterns ofn data samples as{g1, · · · , gn},
wheregi ∈ R

c. We first obtain spectral embeddingF of
the original samples by minimizing the traditional spectral
clustering algorithmmin Tr(FTLnF ), whereLn is a nor-
malized Laplacian matrix.

Next, the shrunk patterns are computed by satisfying the
following requirements. (1) The shrunk patterns should keep
consistency with the spectral embedding. To be more spe-
cific, the shrunk patterns should not be far away from the
spectral clustering. (2) Note that nearby points are more
likely to belong to the same cluster. We thus design a sim-
ilarity matrix to measure pair similarity of any two spectral
embedding, which the shrunk patters should follow.

To characterize the manifold structure of the spectral em-
bedding{f1, · · · , fn}, a k-nearest neighbor graph is con-
structed by connecting each point to itsk nearest neigh-
bors. The similarity matrix,W , is computed byWij =

exp(− ‖fi−fj‖
2

δ2
).

From this similarity matrix, we can observe that if two
spectral embeddings are nearby, they should belong to the
same cluster and the corresponding weight should be large,
which satisfies the first requirement (Nie et al. 2011a).

To keep the local similarity of spectral embedding, we
propose to optimize the following objective function.

min
G

∑

ij

Wij‖gi − gj‖2 (5)

We also aim to keep the consistency between spectral em-
bedding and shrunk patterns. Hence, we propose to mini-
mize the following loss function directly.

min
G

‖G− F‖22 (6)

To this end, we formulate the objection function as fol-
lows:

min
G

‖G− F‖22 + γ
∑

i,j

Wij‖gi − gj‖2 (7)

whereγ is a balance parameter.
It can be easily proved that our formulation is convex. Due

to the space limit, we omit the proof here. Since our method
exploits shrunk patterns as the input for clustering, we name
it Spectral Shrunk Clustering (SSC).

As indicated in (Ma et al. 2012;
Kong, Ding, and Huang 2011), the least square loss
function is not robust to outliers. To make our method
even more effective, we follow (Ma et al. 2012;
Nie et al. 2010) and employl2,1-norm to handle the
outliers. The objective function is rewritten as follows:

min
G

‖G− F‖2,1 + γ
∑

i,j

Wij‖gi − gj‖2 (8)

Optimization
The proposed function involves thel2,1-norm, which is dif-
ficult to solve in a closed form. We propose to solve this
problem in the following steps. DenoteH = G − F and
H = [h1, · · · , hd], whered is the dimension of spectral em-
bedding. The objective function can be rewritten as follows:

min
G

Tr((G− F )TS(G− F )) + γ
∑

ij

wij‖gi − gj‖2 (9)

where

S =




1

2‖h1‖2

. . .
1

2‖hd‖2


 . (10)

Denote a Laplacian matrix̃L = D̃ − W̃ , whereW̃ is a
re-weighted weight matrix defined by

W̃ij =
Wij

2‖gi − gj‖2
(11)

D̃ is a diagonal matrix with thei-th diagonal element as∑
j W̃ij .
By simple mathematical deduction, the objective function

arrives at:

min
G

Tr((G− F )TS(G− F )) + γT r(GT L̃G). (12)

By setting the derivative of Eq. (12) toG to 0, we have:

G = (S + γL̃)−1SF. (13)



Based on the above mathematical deduction, we propose
an iterative algorithm to optimize the objective function in
Eq. (3), which is summarized in Algorithm 1. Once the
shrunk patternsG are obtained, we performK-means clus-
tering on it to get the final clustering result.

Algorithm 1: Optimization Algorithm for SSC

Data: DataX ∈ R
d×n, Parameterγ and the number of

clustersc
Result:

The discrete cluster assignmentY ∈ R
n×c

1 Compute the normalized Laplacian matrixLn ;
2 Obtain the spectral embeddingF by using the

traditional spectral clustering ;
3 Compute the similarity matrixW using the spectral

embeddingF ;
4 Obtain the Laplacian matrix with the reweighted weight

matrix according to Eq. (11) ;
5 Sett = 0 ;
6 InitializeG0 ∈ R

n×c;
7 repeat
8 ComputeHt = Gt − F ;
9 Compute the diagonal matrixSt according to (10) ;

10 ComputeGt+1 according to

Gt+1 = (St + γW̃ )−1StX ;
11 t = t + 1 ;
12 until Convergence;
13 Based onG∗, compute the discrete cluster assignment

matrixY by usingK-means clustering;
14 Return the discrete cluster assignment matrixY .

Convergence Analysis

To prove the convergence of the Algorithm 1, we need the
following lemma (Nie et al. 2010).

Lemma 1. For any nonzero vectorsg, gt ∈ R
c, the follow-

ing inequality holds:

‖g‖2 − ‖g‖22/2‖gt‖2 ≤ ‖gt‖2 − ‖gt‖22/2‖gt‖2 (14)

The following theorem guarantees that the problem in Eq.
(8)converges to the global optimum by Algorithm 1 .

Theorem 1. The Algorithm 1 monotonically decreases the
objective function value of the problem in Eq.(8) in each
iteration, thus making it converge to the global optimum.

Proof. Definef(G) = Tr((G−F )TS(G−F ). According
to Algorithm 1, we know that

Gt+1 = argmin
G

f(G) + γ
∑

i,j

(W̃ )ij‖gi − gj‖22 (15)

Note that(W̃t)ij =
Wij

2‖gt
i−gt

j‖2
, so we have

f(Gt+1) + γ
∑

ij

Wij‖gt+1

i − gt+1

j ‖22
2‖gti − gtj‖2

≤f(Gt) + γ
∑

ij

Wij‖gti − gtj‖22
2‖gti − gtj‖2

(16)

According to Lemma 1, we have

∑

ij

Wij(‖gt+1

i − gt+1

j ‖2 −
‖gt+1

i − gt+1

j ‖22
2‖gti − gtj‖2

)

≤
∑

ij

Wij(‖gti − gtj‖2 −
‖gti − gtj‖22
2‖gti − gtj‖2

)

(17)

By summing Eq. (16) and Eq. (17), we arrive at:

f(Gt+1) + γ
∑

ij

Wij‖gt+1

i − gt+1

j ‖2

≤f(Gt) + γ
∑

ij

Wij‖gti − gtj‖2
(18)

Thus, Algorithm 1 monotonically decreases the objective
function value of the problem in Eq. (8) in each iterationt.
When converged,Gt andL̃t satisfy Eq. (13). As the problem
in Eq. (8) is convex, satisfying Eq. (13) indicates thatGt

is the global optimum solution of the problem in Eq. (8).
Therefore, using Algorithm 1 makes the problem in Eq. (8)
converge to the global optimum.

Experiment
In this section, we perform extensive experiments on a va-
riety of applications to test the performance of our method
SSC. We compare SSC to several clustering algorithms
including the classicalK-means, the classical spectral
clustering (SC), PCAKmeans (Xu and Wunsch 2005),
PCA spectral clustering (PCASC), LDA Kmeans
(Ding and Li 2007), LDA spectral clustering (LDASC),
Local Learning Clustering (LLC) (Wu and Schlkopf 2006)
and SPLS (Hou et al. 2013).

Datasets
A variety of datasets are used in our experiments
which are described as follows. The AR dataset
(Martinez and Benavente 1998) contains 840 faces of
120 different people. We utilize the pixel value as the fea-
ture representations. The JAFFE dataset (Lyons et al. 1997)
consists of 213 images of different facial expressions from
10 different Japanese female models. The images are resized
to 26×26 and represented by pixel values. The ORL dataset
(Samaria and Harter 1994) consists of 40 different subjects
with 10 images each. We also resize each image to32 × 32
and use pixel values to represent the images. The UMIST
face dataset (Graham and M 1998) consists of 564 images
of 20 individuals with mixed race, gender and appearance.
Each individual is shown in a range of poses from profile



to frontal views. The pixel value is used as the feature
representation. The BinAlpha dataset contains 26 binary
hand-written alphabets and we randomly select 30 images
for every alphabet. The MSRA50 dataset contains 1799
images from 12 different classes. We resize each image to
32 × 32 and use the pixel values as the features. The YaleB
dataset (Georghiades, Belhumeur, and Kriegman 2001)
contains 2414 near frontal images from 38 persons under
different illuminations. Each image is resized to32 × 32
and the pixel value is used as feature representation. We ad-
ditionally use the USPS dataset to validate the performance
on handwritten digit recognition. The dataset consists of
9298 gray-scale handwritten digit images. We resize the
images to16× 16 and use pixel values as the features.

Setup
The size of neighborhood,k is set to 5 for all the
spectral clustering algorithms. For parameters in all the
comparison algorithms, we tune them in the range of
{10−6, 10−3, 100, 103, 106} and report the best results. Note
that the results of all the clustering algorithms vary on differ-
ent initialization. To reduce the influence of statistical vari-
ation, we repeat each clustering 50 times with random ini-
tialization and report the results corresponding to the best
objective function values. For all the dimensionality reduc-
tion based K-means and Spectral clustering, we project the
original data into a low dimensional subspace of 10 to 150
and report the best results.

Evaluation Metrics
Following most work on clustering, we use clustering ac-
curacy (ACC) and normalized mutual information (NMI) as
our evaluation metrics in our experiments.

Let qi represent the clustering label result from a clus-
tering algorithm andpi represent the corresponding ground
truth label of an arbitrary data pointxi. ThenACC is de-
fined as follows:

ACC =

∑n

i=1
δ(pi,map(qi))

n
, (19)

whereδ(x, y) = 1 if x = y andδ(x, y) = 0 otherwise.
map(qi) is the best mapping function that permutes cluster-
ing labels to match the ground truth labels using the Kuhn-
Munkres algorithm. A larger ACC indicates better clustering
performance.

For any two arbitrary variablesP andQ, NMI is defined
as follows (Strehl and Ghosh 2003):

NMI =
I(P,Q)√
H(P )H(Q)

, (20)

whereI(P,Q) computes the mutual information between
P and Q, and H(P ) and H(Q) are the entropies ofP
and Q. Let tl represent the number of data in the clus-
ter Cl(1 ≤ l ≤ c) generated by a clustering algorithm
and t̃h represent the number of data points from theh-th
ground truth class. NMI metric is then computed as follows
(Strehl and Ghosh 2003):

NMI =

∑c
l=1

∑c
h=1

tl,hlog(
n×tl,h

tl t̃h
)

√
(
∑c

l=1
tl log

tl
n
)(
∑c

h=1
t̃h log

t̃h
n
)
, (21)

wheretl,h is the number of data samples that lie in the inter-
section betweenCl andh-th ground truth class. Similarly, a
larger NMI indicates better clustering performance.

Experimental Results

The experimental results on listed in Table 1 and Table 2. We
can see from the two tables that our method is consistently
the best algorithm using both evaluation metrics. We also
observe that:

1. The spectral clustering algorithm and its variants achieve
better performance than the classicalk-means and its vari-
ants. This observation suggests that it is beneficial to uti-
lize the pairwise similarities between all data points from
a weighted graph adjacency matrix that contains helpful
information for clustering.

2. PCA Kmeans and LDAKmeans are better than K-means
whereas PCASC and LDASC are better than SC. This
demonstrates that dimensionality reduction is helpful for
improving the cluster performance.

3. LDA Kmeans outperforms PCAKmeans while LDASC
outperforms PCASC. This indicates that LDA is more
capable of keeping the structural information than PCA
when doing dimensionality reduction.

4. Among various spectral clustering variants, LLC is the
most robust algorithm. This means using a more sophisti-
cated graph Laplacian is beneficial for better exploitation
of manifold structure.

5. SPLS is the second best clustering algorithm. This is be-
cause it incorporates both the linear and nonlinear struc-
tures of original data.

6. Our proposed Spectral Shrunk Clustering (SSC) consis-
tently outperforms the other K-means based and spectral
clustering based algorithms. This advantage is attributed
to the optimal manifold learning in the low-dimensional
subspace and it being tightly coupled with the clustering
optimization.

Parameter Sensitivity

In this section, we study the sensitivity of our algorithmw.r.t.
the parameterγ in Eq. (3). Fig 1 shows the accuracy (y-axis)
of SSC for differentγ values (x-axis) on all the experimen-
tal datasets. It can be seen from the figure that the perfor-
mance varies when different values ofγ are used. However,
except on MSRA50 and USPS datasets, our method attains
the best/respectable performance whenγ = 1. This indi-
cates that our method has a consistent preference on param-
eter setting, which makes it uncomplicated to get optimal
parameter value in practice.



Table 1: Performance comparison (ACC%±Standard Deviation) betweenK-means, Spectral Clustering, PCAKmeans,
LDA Kmeans, PCASC, LDA SC, LLC, SPLS and SSC.

AR JAFFE ORL UMIST binalpha MSRA50 YaleB USPS
K-means 36.3± 1.4 75.6 ± 1.8 60.5 ± 1.8 41.3 ± 1.6 41.7± 1.1 46.2± 1.7 14.4 ± 1.5 65.4 ± 1.7

SC 41.6± 2.1 76.1 ± 1.6 72.7 ± 2.3 52.2 ± 1.4 43.6± 1.5 52.3± 1.8 34.8 ± 1.4 64.3 ± 1.4
PCA Kmeans 39.8± 1.8 75.8 ± 1.5 64.5 ± 2.3 48.8 ± 1.7 42.4± 1.5 56.0± 1.9 24.9 ± 1.8 69.4 ± 1.8

PCA SC 43.2± 1.7 76.9 ± 1.8 67.8 ± 2.1 54.1 ± 1.9 44.3± 1.8 54.9± 1.6 36.8 ± 2.0 69.1 ± 1.5
LDA Kmeans 40.4± 1.5 76.5 ± 1.7 65.6 ± 2.6 49.7 ± 1.8 42.9± 1.7 56.4± 1.8 26.1 ± 1.8 70.1 ± 1.3

LDA SC 44.5± 1.3 77.4 ± 1.9 68.3 ± 2.4 54.7 ± 1.5 45.1± 1.4 55.1± 1.7 38.2 ± 1.6 70.4 ± 1.5
LLC 48.7± 1.6 78.6 ± 1.5 71.5 ± 2.2 63.3 ± 1.8 40.7± 1.8 48.1± 1.4 38.2 ± 1.5 63.9 ± 1.7
SPLS 49.2± 1.4 79.5 ± 2.1 74.2 ± 1.8 70.4 ± 1.6 48.5± 1.9 60.3± 1.3 47.3 ± 1.7 71.4 ± 1.6
SSC 51.3± 1.5 81.2± 1.6 76.0± 1.6 71.1± 1.8 49.4± 1.3 63.2± 1.1 49.8± 1.6 75.5± 1.9

Table 2: Performance Comparison (NMI%±Standard Deviation) betweenK-means, Spectral Clustering, PCAKmeans,
LDA Kmeans, PCASC, LDA SC, LLC, SPLS and SSC.

AR JAFFE ORL UMIST binalpha MSRA50 YaleB USPS
K-means 68.7± 3.0 79.4 ± 0.8 80.3 ± 1.8 64.4 ± 1.5 58.6± 1.4 56.7± 1.8 17.3 ± 1.5 67.3 ± 1.8

SC 71.3± 2.6 80.2 ± 0.9 85.8 ± 1.9 72.1 ± 1.7 59.7± 1.6 70.0± 1.6 55.6 ± 1.6 69.5 ± 1.6
PCA Kmeans 69.4± 2.8 79.8 ± 0.8 80.6 ± 1.6 68.2 ± 1.8 59.1± 1.8 60.3± 1.5 26.7 ± 1.8 73.1 ± 1.9

PCA SC 70.3± 2.4 81.5 ± 1.3 86.3 ± 1.4 72.9 ± 1.5 60.6± 1.9 72.4± 1.8 38.6 ± 1.5 74.2 ± 1.8
LDA Kmeans 69.9± 1.9 82.1 ± 1.4 81.1 ± 2.1 68.8 ± 1.5 59.8± 1.6 61.1± 1.9 29.4 ± 1.6 75.1 ± 1.6

LDA SC 70.8± 1.5 81.9 ± 0.9 86.8 ± 1.7 74.1 ± 2.0 61.3± 1.7 73.2± 1.6 39.9 ± 1.4 75.4 ± 1.7
LLC 71.2± 2.4 82.5 ± 1.7 84.9 ± 1.5 77.3 ± 1.8 61.4± 1.9 66.2± 1.6 34.1 ± 1.3 67.5 ± 1.5
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Figure 1: The clustering performance (ACC) variation of ouralgorithmw.r.t.different parameter settings. From the experimental
results, we observe that the proposed algorithm has a consistent preference on parameter setting, which makes it uncomplicated
to get optimal parameter value in practice.

Convergence Study
As mentioned before, the proposed iterative approach in Al-
gorithm 1 monotonically decreases the objective function
value in Eq. (3). In this experiment, we show the conver-
gence curves of the iterative approach on different datasets
in Figure 2. The parameterγ is fixed at 1, which is the me-
dian value of the tuned range of the parameters.

It can be observed that the objective function value con-
verges quickly. The convergence experiment demonstrates
the efficiency of our algorithm.

Conclusion
In this paper, we have proposed a novel convex formulation
of spectral shrunk clustering. The advantage of our method
is three-fold. First, it is able to learn the manifold structure in
the low-dimensional subspace rather than the original space.
This feature contributes to more precise structural informa-
tion for clustering based on the low-dimensional space. Sec-
ond, our method is more capable of uncovering the mani-
fold structure. Particularly, the shrunk pattern learned by the

proposed algorithm does not have the orthogonal constraint,
which makes it more flexible to fit the manifold structure.
The learned manifold knowledge is particularly helpful for
achieving better clustering result. Third, our algorithm is
convex, which makes it easy to implement and very suit-
able for real-world applications. Extensive experiments on a
variety of applications are given to show the effectivenessof
the proposed algorithm. By comparing it to several state-of-
the-art clustering approaches, we validate the advantage of
our method.
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Figure 2: The convergence curves of our algorithm on different datasets. From the figures, we can observe that the objective
function converges quickly, which demonstrates the efficiency of the proposed algorithm.
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