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Abstract. In this paper, we discuss the connection between two genuinely quantum

phenomena—the discontinuity of quantum maximum entropy inference and quantum

phase transitions at zero temperature. It is shown that the discontinuity of the

maximum entropy inference of local observable measurements signals the non-local

type of transitions, where local density matrices of the ground state change smoothly

at the transition point. We then propose to use the quantum conditional mutual

information of the ground state as an indicator to detect the discontinuity and the

non-local type of quantum phase transitions in the thermodynamic limit.

1. Introduction

Quantum phase transitions happen at zero temperature with no classical counterparts

and are believed to be driven by quantum fluctuations [19]. The study of quantum

phase transitions has been a central topic in the condensed matter physics community

during the past several decades involving the study of exotic phases of matter such as

superconductivity [1], fractional quantum Hall systems [11], and recently the topological

insulators [16, 2, 10]. In recent years, it also becomes an intensively studied topic in

quantum information science community, mainly because of its intimate connection to

the study of local Hamiltonians [5].

In a usual model for quantum phase transitions, one considers a local Hamiltonian

H(λ) which depends on some parameter vector λ. While H(λ) smoothly changes

with λ, the change of the ground state |ψ0(λ)〉 may not be smooth when the system is

undergoing a phase transition. Such kind of phenomena is naturally expected to happen

at a level-crossing, or at an avoided (but near) level-crossing [19].

Intuitively, the change of ground states can then be measured by some distance

between |ψ0(λ)〉 and |ψ0(λ + δλ)〉. For a small change of the parameters λ, such

a distance is relatively large near a transition point, while the Hamiltonian changes

smoothly from H(λ) to H(λ+δλ). The fidelity approach, using the fidelity of quantum

states to measure the change of the global ground states, has demonstrated the idea

successfully in many physical models for signaling quantum phase transitions [22, 4].

While the fidelity approach is believed to provide a signal for many kinds of quantum

phase transitions, it does not distinguish between different types of the transition, for

instance local or non-local (in a sense that the reduced fidelity of local density matrices

may also signal the phase transition, as discussed in [4]). Moreover, one usually needs

to compute the fidelity change of a relatively large system in order to clearly signal the

transition point.

In this work, we explore an information-theoretic viewpoint to quantum phase

transitions. Our approach is based on the structure of the convex set given by all

the possible local measurement results, and the corresponding inference of the global

quantum states based on these local measurement results. By the principle of maximum

entropy, the best such inference compatible with the given local measurement results is

the unique quantum state ρ∗ with the maximum von Neumann entropy [6].
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It is known that in the classical case, the maximum entropy inference is

continuous [6, 21, 8]. This means that, for any two sets of local measurement results α

and α′ close to each other, the corresponding inference ρ∗(α) and ρ∗(α′) are also close

to each other. Surprisingly, however, the quantum maximum entropy inference can be

discontinuous! Namely, a small change of local measurement results may correspond to

a dramatic change of the global quantum state.

The main focus of this work is to relate the discontinuity of the quantum maximum

entropy inference to quantum phase transitions. We show that the discontinuity of

maximum entropy inference signals level-crossings of the non-local type. That is, at

the level-crossing point, a smooth change of the local Hamiltonian H(λ) corresponds to

smooth change of the local density matrices of the ground states, while the change of

ρ∗, the maximal entropy inference of these local density matrices is discontinuous.

We then move on to discuss the possibility of signaling quantum phase transitions by

computing the discontinuity of the maximal entropy inference ρ∗. Given the observation

on the relation between discontinuity of ρ∗ and the non-local level-crossings, it is

natural to consider signaling quantum phase transitions by directly computing where

the discontinuity happens. This approach works well in finite systems, but may fail

in the thermodynamic limit of infinite size systems as the places of discontinuity (i.e.

where the system ‘closes gap’) may change when the system size goes to infinity. Hence,

computations in finite systems may provide no information of the phase transition point.

We propose to solve the problem by using the quantum conditional mutual information

of two disconnected parts of the system for the ground states. This idea comes from the

relationship between the 3-body irreducible correlation and quantum conditional mutual

information of gapped systems. As it turns out, the quantum mutual information works

magically well to signature the discontinuity point, thereby also signals quantum phase

transitions in the thermodynamic limit. In some sense, the quantum conditional mutual

information is an analog of the Levin-Wen topological entanglement entropy [12].

We apply the concept of discontinuity of the maximum entropy inference to some

well-known quantum phase transitions. In particular, we show that the non-local

transition in the ground states of the transverse quantum Ising chain can be detected by

the quantum mutual information of two disconnect parts of the system. The scope of

the applicability of the quantum conditional mutual information was extended to many

other systems, featuring different types of transitions [24, 25]. All these studies conclude

that the quantum mutual information serves well as a universal indicator of non-trivial

phase transitions.

We organize our paper as follows. In Sec. 2, we discuss the concept of the maximum

entropy inference and summarize some important relevant facts. In Sec. 3, we analyze

several examples of discontinuity of the maximum entropy inference ρ∗, ranging from

simple examples in dimension 3 to more physically motivated ones. In Sec. 4, we link the

discontinuity of ρ∗ to the concept of the long-range irreducible many-body correlation

and propose to detect the non-local type of quantum phase transitions by the quantum

conditional mutual information of two disconnect parts of the system. In Sec. 5, further
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properties of discontinuity of the maximum entropy inference are discussed. We provide

both a necessary condition and a sufficient condition for the discontinuity to happen.

Finally, Sec. 6 contains a summary of all the main concepts discussed and a discussion

of possible future directions.

2. The Maximum Entropy Inference

We start our discussion by introducing the concept of the maximum entropy inference

given a set of linear constraints on the state space.

2.1. The General Case

Let H be the d-dimensional Hilbert space corresponding to the quantum system under

discussion and ρ be the state of the system. Let D be the set of all possible quantum

states on H. Any tuple F = (F1, F2, . . . , Fr) of r observables defines a mapping

ρ 7→ α =
(
tr(ρF1), tr(F2ρ), . . . , tr(ρFr)

)
, (1)

from states ρ in D to points α in the set

DF =
{
α | α =

(
tr(ρF1), . . . , tr(ρFr)

)
for some ρ

}
.

The set DF can be considered as a projection of D and is a compact convex set in Rr.

If all the Fi’s are commuting (i.e. [Fi, Fj] = 0, corresponding to the classical case), then

DF is a polytope in Rr.

The convex set DF is mathematically related to the so-called “(joint) numerical

range” of the operators Fi’s. For more mathematical aspects of these joint numeral

ranges and the discontinuity of the maximum entropy inference, we refer to [18]. We

remark that DF is also known as quantum convex support in the literature [20].

As it will be clear in later discussions, the observables Fi’s usually come from the

terms in the local Hamiltonian of interest so that the Hamiltonian is in the span of the

observables Fi’s. We will call H =
∑

i θiFi the Hamiltonian related to the observables

in F . The energy tr(Hρ) can be written as∑
i

θi tr(ρFi),

the inner product of the vector θ = (θi) and α. This means that one can think of the

Hamiltonian H geometrically as the supporting hyperplanes of the convex set DF .

Given any measurement result α ∈ DF , we are interested in the set of all states in

D that can give α as the measurement results. We denote such a set as

 L(α) =
{
ρ | tr(ρFi) = αi, i = 1, . . . , r

}
.

It is the preimage of α under the mapping in Eq. (1). In other words, it consists of the

states satisfying a set of linear constraints and we call this subset of D a linear family

of quantum states.
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In general, there will be many quantum states compatible with α and  L(α) contains

more than one state, unless one chooses to measure an informationally complete set of

observables (for example, a basis of operators on H as one often does for the case of

quantum tomography). Especially, when the dimension of system d is large, it is unlikely

that one can really measure an informationally complete set of observables. For instance,

for an n-qubit system when n is large, we usually only have access to the expectation

values of local measurements, each involving measurements only on a few number of

qubits. In this case, quantum states compatible with the local observation data α are

usually not unique.

The question is then what would be the best inference of the quantum states

compatible with the given measurement results α. The answer to this question is

well-known, and is given by the principle of maximum entropy [6, 21]. That is, for any

given measurement results α, there is a unique state ρ∗ ∈  L(α), given by

ρ∗(α) = argmax
ρ∈ L(α)

S(ρ), (2)

where S(ρ) is the von Neumann entropy of ρ. We call ρ∗(α) the maximum entropy

inference for the given measurement results α. More explicitly, it is the optimal solution

of the following optimization problem

Maximize: S(ρ)

Subject to: tr(ρFi) = αi, for all i = 1, 2, . . . , k,

ρ ∈ D.

It may seem counter-intuitive that both the maximum entropy inference ρ∗ and its

entropy can be discontinuous [8] as functions of the local measurement data α. When we

say ρ∗ is discontinuous, we mean the state itself, not its entropy, is discontinuous. Indeed

there could be examples where these two concepts are not the same (e.g. the energy

gap of the system closes but the ground-state degeneracy does not change). For all

examples considered in this paper, however, the entropy is also discontinuous when the

state is. We note that the discontinuity of the maximum entropy inference is a genuinely

quantum effect as the classical maximum entropy inference is always continuous [6, 21].

2.2. The Case of Local Measurements

The discussions in the above subsection specialize to the important case of many-body

physics with local measurements.

Consider an n-particle system where each particle has dimension d. The Hilbert

space H of the systems is (Cd)⊗n, with dimension dn. We know that, for an n-

particle state ρ, we usually only have access to the measurement results of a set of

local measurements F = (F1, . . . , Fr) on the system, where each Fi acts on at most k

particles for k ≤ n. The most interesting case is where n is large and k is small (usually
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a constant independent of n). In this sense, we will just call such a measurement setting

k-local.

Notice that each measurement result tr(ρFi) now depends only on the k-particle

reduced density matrix (k-RDM) of the particles that Fi is acting non-trivially on. It

is convenient to write the set of all the k-RDMs of ρ (in some fixed order) as a vector

ρ(k) = {ρ(k)1 , . . . , ρ
(k)
m }, where each component is a k-RDM of ρ and m =

(
n
k

)
. The

k-RDMs ρ(k) will play the role of expectation values α as in the general case.

Along this line, the set of results of all k-local measurements can be defined in

terms of k-RDMs, and we write the set D(k) of all such measurement results as

D(k) =
{
ρ(k) | ρ(k) is the k-RDMs of some ρ

}
. (3)

Similarly, the linear family can also be defined in terms of k-RDMs,

 L(ρ(k)) =
{
ρ | ρ has the k-RDMs ρ(k)

}
. (4)

The maximum entropy inference given the k-RDMs ρ(k) is

ρ∗(ρ(k)) = argmax
ρ∈ L(ρ(k))

S(ρ). (5)

We remark that, in practice, one may not be interested in all the m =
(
n
k

)
k-RDMs,

but rather only those k-RDMs that are geometrically local. For instance, for a lattice

spin model, one may only be interested in the 2-RDMs of the nearest-neighbour spins.

Our discussion can also be generalized to these cases, as in the discussion in [25] for

one-dimensional spin chains. There could also be cases that the system has certain

symmetry (for instance a bosonic system or fermionic system where all the k-RDMs are

the same), and our theory can be naturally adapted to these cases.

The maximum entropy inference ρ∗ given local density matrices has a more concrete

physical meaning. For any n-particle state ρ, if ρ = ρ∗(ρ(k)), then ρ is uniquely

determined by its k-RDMs using the maximum entropy principle. One can argue, in this

case, that all the information (including all correlations among particles) contained in ρ

are already contained in its k-RDMs. In other words, ρ does not contain any irreducible

correlation [26] of order higher than k. On the other hand, if ρ 6= ρ∗, then ρ cannot be

determined by its k-RDMs and there are more information/correlations in ρ than those

in its k-RDMs. Therefore, ρ contains non-local irreducible correlation that cannot be

obtained from its local RDMs.

3. Discontinuity of ρ∗

In this section, we explore the discontinuity of ρ∗ based on several simple examples.

The first three of them involve only two different measurement observables, but they do

demonstrate almost all the key ideas in the general case.
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3.1. The Examples of Two Observables

We will choose d = 3 for the Hilbert space dimension as it is enough to demonstrate

most of the phenomena we need to see. Fix an arbitrary orthonormal basis of C3, say,

{|0〉, |1〉, |2〉}.

Example 1. F consists of the following two observables

F1 =

1 0 0

0 1 0

0 0 −1

 , F2 =

1 0 1

0 1 1

1 1 −1

 . (6)

First, notice that F1, F2 do not commute. The set of all possible measurement

results DF is a convex set in R2. We plot this convex set in Fig. 1 (a). To obtain this

figure, we let ρ vary for all the density matrices on C3, and let the corresponding tr(ρF1)

be the horizontal coordinate and tr(ρF2) the vertical coordinate. The resulting picture

is nothing but the numerical range of the matrix F1 + iF2.

(a) (b)

Figure 1: (a) The convex set of DF in R2. The horizontal axis corresponds to the value

of tr(ρF1) and the vertical axis corresponds to tr(ρF2); (b) The supporting hyperplanes

of DF in R2 (i.e. the straight lines on the figure which are tangent to DF), which

corresponds to the Hamiltonians H = θ1F1 + θ2F2.

As discussed in Sec. 2, the Hamiltonian H related to F has the form

H = θ1F1 + θ2F2 (7)

for some parameters θ1, θ2 ∈ R. Notice that the Hamiltonian corresponds to supporting

hyperplanes of DF , as the inner product has the form tr(Hρ) = (θ1, θ2) · (α1, α2)
T . We

demonstrate these supporting hyperplanes of DF in Fig. 1 (b).
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It is straightforward to see that the ground state of H is non-degenerate except

for the case θ1 < 0, θ2 = 0, where the ground space is two-fold degenerate with a basis

{|0〉, |1〉} corresponding to the measurement results α0 = (1, 1).

We now show that the maximum entropy inference ρ∗(α) is indeed discontinuous

at the point α0 = (1, 1). To see this, first notice that the corresponding ρ∗ =
1
2
(|0〉〈0| + |1〉〈1|). While for any small ε, the corresponding ground state space of

−F1 + εF2 is no longer degenerate, which means ρ∗(α) is a pure state for α 6= α0.

Therefore, for any sequence of α on the boundary of DF approaching α0,

ρ∗(α) 6→ ρ∗(α0) when α→ α0, (8)

and the discontinuity of ρ∗(α) follows.

This example seems to indicate that the discontinuity simply comes from

degeneracy: as in general degeneracy is rare, whenever such a point of degeneracy

exists, we have a singularity on the boundary of DF so discontinuity happens. However,

it is important to point out that this is not quite true. For example, degeneracy also

happens in classical systems where there can have no discontinuity of ρ∗. We further

explain this point in the following example.

Example 2. F consists of the following two observables

F1 =

1 0 0

0 1 0

0 0 −1

 , F2 =

1 0 1

0 0 1

1 1 −1

 . (9)

Notice that again [F1, F2] 6= 0. And we show the convex set DF in Fig. 2 (a).

Consider the Hamiltonian H = θ1F1 + θ2F2 for some θ1, θ2 ∈ R, as illustrated

as supporting hyperplanes in Fig. 2 (b). Similarly, the ground state of H is two-fold

degenerate for θ1 < 0, θ2 = 0 (corresponding to the vertical line at α1 = 1) with a basis

{|0〉, |1〉}. However, different from Example 1, the ground states do not correspond to

a single measurement result α1 = (1, 1). Instead, they are on the line [(1, 0), (1, 1)].

By simple calculations, now the maximum entropy inference ρ∗(α) is in fact

continuous at the point α1 = (1, 1), and on the entire line [(1, 0), (1, 1)]. In fact,

ρ∗(αp) = p|0〉〈0|+ (1− p)|1〉〈1| for αp = (1, p).

For any small perturbation ε, the corresponding ground state space of −F1 + εF2

is non-degenerate, meaning ρ∗(α) is a pure state. This change of ρ∗(α) from ε < 0 to

ε > 0 is sudden with respect to the small change of ε, which, however, is accompanied

by a sudden change also in the measurement results (from a point near (1, 1) to (1, 0)).

As we are considering the discontinuity of ρ∗ with respect to the measurement data α,

not the parameter ε in the Hamiltonian, ρ∗ is in fact continuous.

This example demonstrates that when Hamiltonian changes smoothly, ground

states have sudden changes accompanied with the sudden change of measurement

results. In other words, the change of ground states can be described already by the

change of local measurement results. This is somewhat a classical feature, as discussed

in the next example.
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(a) (b)

Figure 2: (a) The convex set of DF in R2. The horizontal axis corresponds to the value

of tr(ρF1) and the vertical axis corresponds to tr(ρF2); (b) The supporting hyperplanes

of DF in R2 (i.e. the straight lines on the figure which are tangent to DF), which

corresponds to the Hamiltonians H = θ1F1 + θ2F2.

Example 3. F consists of the following two observables

F1 =

1 0 0

0 1 0

0 0 −1

 , F2 =

1 0 0

0 0 0

0 0 −1

 . (10)

Now this corresponds to the classical situation where [F1, F2] = 0.

The convex set DF in given in Fig. 3 (a). It is a triangle for this example, and a

polytope in the general classical case.

Consider the related Hamiltonian H = θ1F1+θ2F2 for some θ1, θ2 ∈ R, as illustrated

as supporting hyperplanes in Fig. 3 (b). Similarly, the ground state of H is two-fold

degenerate for θ1 < 0, θ2 = 0 (corresponding to the vertical line at α1 = 1) with a basis

{|0〉, |1〉}. For a similar reason, the maximum entropy inference ρ∗(α) is continuous on

the entire line [(1, 0), (1, 1)] as in the previous example.

If we still consider for any small perturbation −F1+εF2, the corresponding ground-

state space is non-degenerate: it is |1〉 for ε < 0 and |2〉 for ε > 0. So from ε < 0 to

ε > 0, we also see sudden changes of both the measurement results and the ground

states.

In the above three examples, the first one is the most interesting and exhibits

smooth change in measurement results and discontinuity of the maximum entropy

inference ρ∗. The second and third behave in a similar classical way where a small

change in the Hamiltonian will induce a sudden change of measurement results and

there is no discontinuity of ρ∗. We summarize our observations from the three examples
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(a) (b)

Figure 3: (a) The convex set of DF in R2. The horizontal axis corresponds to the value

of tr(ρF1) and the vertical axis corresponds to tr(ρF2); (b) The supporting hyperplanes

of DF in R2 (i.e. the straight lines on the figure which are tangent to DF), which

corresponds to the Hamiltonians H = θ1F1 + θ2F2.

in this subsection as below. Although the examples involve two observables only, we

state the observation in the more general setting of arbitrarily many observables.

Observation 1. Given a set of measurements F = (F1, F2, . . . , Fr), and a family

of related Hamiltonians H of the form H =
∑

i θiFi with θi changing with certain

parameter. The Hamiltonian H has two types of ground state level crossing:

• Type I (local type): level-crossing that can be detected by a sudden change of the

measurement results.

• Type II (non-local type): level-crossing that cannot be detected by a sudden change

of the measurement results.

More importantly, only Type II corresponds to discontinuity of the maximum inference

ρ∗(α).

3.2. The Example of Local Measurements

We now give a simple example showing the discontinuity of ρ∗ in a three-qubit system

with 2-local interactions.

Example 4. The three-qubit GHZ state given by

|GHZ3〉 =
1√
2

(|000〉+ |111〉) (11)

is known to be the ground state of a two-body Hamiltonian

H = −Z1Z2 − Z2Z3 (12)
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with Zi the Pauli Z operator acting on the i-th qubit. The ground-state space of H is

two-fold degenerate and is spanned by {|000〉, |111〉}. Now consider the 2-RDMs of the

GHZ state

ρ(2) = {ρ{1,2}, ρ{2,3}, ρ{1,3}}, (13)

with ρ{i,j} = 1
2
(|00〉〈00| + |11〉〈11|) being the 2-RDM of qubits i and j. We claim that

there is discontinuity at ρ(2).

To see this, consider a family of perturbations H + ε
∑3

i=1Xi of the Hamiltonian

H. For any ε 6= 0, the ground space is non-degenerate and the unique ground state

converges to |GHZ3〉 when ε → 0− and to (|000〉 − |111〉)/
√

2 when ε → 0+. As the

ground state is unique when ε 6= 0 and the Hamiltonian is 2-local, the 2-RDMs of the

ground state determines the state. This means that ρ∗ is pure and coincide with the

ground state for all ε 6= 0. However, at ε = 0, ρ∗ is

ρ∗(ρ(2)) =
1

2
(|000〉〈000|+ |111〉〈111|), (14)

and the discontinuity of ρ∗ follows.

It is worth pointing out the similarity in the structure of the above example and

Example 1, despite their totally different specific form. First notice that 1√
2
|000〉±|111〉

are two eigenstates of Z1Z2 + Z2Z3 of the same eigenvalue 1. If we complete
1√
2
|000〉 ± |111〉 to a basis, Z1Z2 + Z2Z3 will have a 2-by-2 identity block with zero

entries to the right and bottom. In that basis, the
∑3

i=1Xi also has such a 2-by-2

block proportional to identity and has some non-zero off diagonal entries. In other

words, Z1Z2 + Z2Z3 and
∑3

i=1Xi has a rather similar block structure as F1 and F2 in

Example 1.

We generalize the Observation 1 in terms of local measurements as follows.

Observation 1′. For an n-particle system, consider the set of all k-local measurements

F , which then corresponds to a local Hamiltonian H =
∑

j cjFj with Fj ∈ F acting

nontrivially on at most k particles. There are two kinds of ground state level crossing:

• Type I: level-crossing that can be detected by a sudden change of the k-RDMs ρ(k).

• Type II: level-crossing that cannot be detected by a sudden change of the local k-

RDMs ρ(k).

Only Type II corresponds to discontinuity of the maximum entropy inference ρ∗(ρ(k)).

3.3. The Example of Transverse Quantum Ising Model

Our next example is an n-qubit generalization of Example 4 and is known as the

transverse quantum Ising model.

Example 5. The Ising Hamiltonian is given by

H(λ) = −J(
n−1∑
i=1

ZiZi+1 + λ
n∑
i=1

Xi), (15)
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for J > 0. For any finite n the discontinuity of ρ∗ determined by the 2-RDMs happen

at λ = 0. For infinite n, the discontinuity of ρ∗ happen at λ = 1.

The Hamiltonian H(λ) has a Z2 symmetry, which is given by X⊗n, i.e.

[X⊗n, H(λ)] = 0. In the limit of λ = 0, the ground state of H(0) is two-fold degenerate

and spanned by {|0〉⊗n, |1〉⊗n}. And in the limit of λ = ∞, the ground state of H(∞)

is non-degenerate and is given by 1√
2
(|0〉+ |1〉)⊗n.

In the case of finite n, the ground space of H(λ) for any λ > 0 is non-degenerate.

Based on a similar discussion of Example 4, we have

lim
λ→0+

ρ∗(λ) = |GHZn〉〈GHZn|, (16)

where |GHZn〉 is the n-qubit GHZ state 1√
2
(|0〉⊗n+ |1〉⊗n). On the other hand, at λ = 0,

ρ∗(0) has rank 2. When the 2-RDMs of ρ∗(0) is approached by the 2-RDMs of the ground

states ρ∗(λ) of H(λ), the local RDMs of ρ∗(λ) change smoothly, and discontinuity of

ρ∗(λ) happens at λ = 0.

In the thermodynamic limit of n → ∞, it is well-known that when λ increases

from 0 to ∞, quantum phase transition happens at the point λ = 1 [17]. For λ → 1+,

λ = 1 is exactly the point where the ground space of H(λ) undergoes the transition

from non-degenerate to degenerate. A discontinuity of ρ∗(λ) happens at λ = 1 when

λ → 1+, which is a sudden jump of rank from 1 to 2, while the local RDMs of ρ∗(λ)

change smoothly.

For 0 < λ ≤ 1, the two-fold degenerate ground states, although not exactly the

same as those two at λ = 0, are qualitatively similar. For the range of 0 ≤ λ ≤ 1,

the ground states are all two-fold degenerate. For finite n, however, in the region of

0 < λ ≤ 1, an (exponentially) small gap exists between two near degenerate states, and

the true ground state does not break the Z2 symmetry of the Hamiltonian H(λ).

This example demonstrates the dramatic difference between the case of finite n

and the case of the thermodynamic limit of infinite n. It also foretells the difficulty

of signaling phase transitions by computing the discontinuity of ρ∗ of finite systems

directly. We will propose a solution to this problem in Sec. 4.

4. Signaling Discontinuity by Quantum Conditional Mutual Information

4.1. Irreducible Correlation and Quantum Conditional Mutual Information

We have mentioned the relation between the maximum entropy inference and the theory

of irreducible many-body correlations [26]. For an n-particle quantum state ρ, denote

its k-RDMs by ρ(k). Then its k-particle irreducible correlation is given by [14, 26]

C(k)(ρ) = S(ρ∗(ρ(k−1)))− S(ρ∗(ρ(k))). (17)

What C(k) measures is the amount of correlation contained in ρ(k) but not contained in

ρ(k−1).
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Consider a partition A,B,C of the n particles so that A and C are far apart. Define

ρ∗ABC = argmax
σAB = ρAB
σBC = ρBC

S(σABC). (18)

Then the three-body irreducible correlation of ρABC is given by

CABC = S(ρ∗ABC)− S(ρABC). (19)

Note that we do not include the constraint σAC = ρAC in the definition of ρ∗ABC . The

reason for this is that the region of A and C are chosen to be far apart and, therefore,

there will be no k-local terms in the Hamiltonian that act non-trivially on both A and

C.

In the discussion on the example of quantum Ising chain, we have observed the

difficulty of signaling the discontinuity of ρ∗ in the thermodynamic limit by computations

of finite systems. In the following, we propose a quantity that can reveal the physics in

the thermodynamic limit by investigating relatively small finite systems.

The quantity we will use is the quantum conditional mutual information

I(A :C|B)ρ = S(ρAB) + S(ρBC)− S(ρB)− S(ρABC). (20)

We will also omit the subscript ρ when there is no ambiguity. Usually, the state ρ will

be chosen to be a reduced state of the ground state of the Hamiltonian. It is known

that the quantum conditional mutual information is an upper bound of CABC [12, 15].

Namely, we have

CABC(ρ) ≤ I(A :C|B)ρ, (21)

which is equivalent to the strong subadditivity [13] for the state ρ∗ABC . The equality

holds when the state ρ∗ABC satisfies I(A :C|B) = 0, or is a so-called quantum Markovian

state.

We will use the quantum conditional mutual information I(A :C|B) of the ground

state, instead of 3-body irreducible correlation CABC , to signal the discontinuity and

phase transitions in the system. We do this for two reasons. First, it is conjectured that

the equality in Eq. (21) always holds in the thermodynamic limit for gapped systems. In

other words, the corresponding ρ∗ABC of the ground state is always a quantum Markovian

state (there are reasons to believe this, see e.g. [15, 7]). Assuming this conjecture,

I(A :C|B) is indeed a good quantity to signal the discontinuity and phase transition

in the thermodynamic limit. Second, as it turns out, quantum conditional mutual

information performs much better as in indicator when we do computations in systems

of small system sizes. Most importantly, it doesn’t seem to suffer from the problem

CABC has in finite systems. For more discussion on the physical aspects of I(A :C|B),

we refer to [24].
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4.2. The Transverse Ising Model

We now illustrate the mutual information approach in one-dimensional systems. First,

consider a one-dimensional system with periodic boundary conditions. As we need A

and C to be large regions far away from each other, the partition A,B,C can be chosen

as in Fig. 4.

A C
B1

B2

Figure 4: Each dot represents a particle. The partition of a chain to three parts ABC,

where A,C are disconnected and B = B1 ∪B2.

Following the discussions in Sec. 4.1, one can use the quantity I(A :C|B) to

indirectly detect the existence of the discontinuity of ρ∗ and the corresponding phase

transition. We have computed I(A :C|B) for the ground state of the transverse quantum

Ising chain H(λ), with total 4, 8, 12, 16, 20 particles of the system. The results are shown

in Fig. 5, in which I(A :C|B)’s clearly indicate a phase transition at λ = 1 (where the

curves intersect). This is consistent with our discussions for the quantum Ising chain

with transverse field in Sec. 3.3.

However, the phase transition of the Hamiltonian with a Z direction magnetic field,

given by

H(λz) = −J(
∑
i

ZiZi+1 + λz
∑
i

Zi), (22)

is a local transition without discontinuity of ρ∗(λz). That is, when approached on the

boundary of D(k), from the direction corresponding to λz → 0, the local RDMs of ρ∗(λz)

has a sudden change at the point λz = 0 (and significantly different for any two points

each corresponding to λz < 0 and λz > 0). If we plot the diagram of I(A :C|B) for this

model, we won’t see any transition in the system.

We emphasize that the above approach employs calculations of extremely small

systems yet still precisely signals the transition point of the corresponding system in

the thermodynamic limit. For a simple comparison, the fidelity approach [4] for the
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Figure 5: I(A :C|B) of the Ising model with open periodic boundary condition and the

A,B,C regions as chosen in Fig. 4. A similar result is presented in [24], from a different

viewpoint.

same model involves system size of about a thousand and requires the knowledge of the

analytic solutions of the system.

4.3. The Choice of Regions A,B,C

It is important to note that the choice of the regions A,B,C should respect the locality

of the system. If we consider one-dimensional system with open boundary condition, we

can choose the A,B,C regions as in Fig. 6. For the transverse Ising model with open

boundary condition, this choice will give a similar diagram of I(A:C|B) as in Fig. 5,

which is given in Fig. 7. This clearly shows a discontinuity of ρ∗ and a quantum phase

transition at λ = 1.

Figure 6: A,B,C cutting on a 1D chain.

However, if the partition in Fig. 6 is used for the Ising model with periodical

boundary condition, as given in Fig 8, the behaviour of I(A :C|B) will be very different.

In fact, in this case I(A :C|B) reflects nothing but the 1D area law of entanglement,

which will diverge at the critical point λ = 1 in the thermodynamic limit. For a

finite system as illustrated in Fig. 9, I(A :C|B) does no clearly signal the two different

quantum phases and the phase transition.
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Figure 7: I(A :C|B) of the Ising model with open boundary condition and the A,B,C

regions as chosen in Fig. 6.

Figure 8: A,B,C cutting on a 1D ring.

4.4. I(A:C|B) as a Universal Indicator

From our previous discussions, we observe that to use I(A:C|B) to detect quantum

phase and phase transitions, it is crucial to choose the areas A,C that are far from each

other. Here ‘far’ is determined by the locality of the system. For instance, on an 1D

chain, the areas A,C in Fig. 6 are far from each other, but in Fig. 8 are not.

If such an areas A,C are chosen, then for a gapped system, a nonzero I(A:C|B) of a

ground state will then indicates non-trial quantum order. We have already demonstrated

it using the transverse Ising model, where for 0 < λ < 1, the system exhibits the

‘symmetry-breaking’ order. In fact, we can also use I(A:C|B) to detect other kind of

non-trivial quantum orders.

For instance, I(A:C|B) was recently applied to study the quantum phase transitions
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Figure 9: I(A :C|B) of the Ising model with periodical boundary condition and the

A,B,C regions as chosen in Fig. 8.

related to the so-called ‘symmetry-protected topological (SPT) order’, which also has

a ‘nonlocal’ nature despite that the corresponding ground states are only short-range

entangled (in the usual sense as discussed in this paper) [25].

It was shown that for a 1D gapped system on an open chain, a non-zero I(A:C|B)

for the choice of the regions A,B,C as in Fig. 6 also detects non-trivial SPT order.

However, it does not distinguish SPT order from the symmetry-breaking order. In

stead, one can use a cutting as given in Fig. 10, where the whole system is divided

into four parts A,B,C,D, and I(A:C|B) the detects the non-trivial correlation in the

reduced density matrix of the state of ABC. Under this cutting, I(A:C|B) is zero for a

symmetry-breaking ground state, but has non-zero value for an SPT ground state.

Figure 10: A,B,C,D cutting on a 1D chain

A similar idea also applies to 2D systems. For instance, for a 2D system on a disk

with boundary, we can consider three different kinds of cuttings [12, 25, 24], as shown

in Fig. 11. For each of these cuttings, a non-trivial I(A:C|B) detects different orders of

the system. For Fig. 11(a), I(A:C|B) detects both symmetry-breaking order and SPT

order and topological phase transitions [15]. Fig. 11(b) is nothing but the choices of

A,B,C to define the topological entanglement entropy by Levin and Wen [12], which

detects topological order. And similarly as the 1D case, Fig. 11(c) detects SPT order,

which distinguishes it from symmetry-breaking order (in this case I(A:C|B) = 0 for

symmetry-breaking order) [25].



Discontinuity of Maximum Entropy Inference and Quantum Phase Transitions 18

Figure 11: Cuttings on a 2D disk

In this sense, by choosing proper areas A,B,C with A,C far from each other,

a non-zero I(A:C|B) universally indicates a non-trivial quantum order in the system.

Furthermore, by analyzing the choices of A,B,C, it also tells which order the system

exhibits (symmetry-breaking, SPT, topological, or a mixture of them).

We remark that, for a pure state, the cuttings of Fig. 4 and Fig. 6 give that

I(A:C|B) = I(A:C). However, this is not the case for a mixed state. Therefore,

although one may be able to detect nontrivial quantum order simply using I(A:C), in

the most general case, I(A:C|B) is a universal indicator of a non-trivial quantum order

but I(A:C) is not. For instance, the equal-weight mixture of the all |0〉 and all |1〉 states

does not exhibit non-trivial order (i.e. contains no irreducible many-body correlation),

hence I(A:C|B) = 0 for the cuttings of Fig. 4 and Fig. 6, but I(A:C) 6= 0, which in fact

indicates the classical correlation in the system.

5. Further Properties of the Discontinuity

In this section, we further explore the structure associated with the discontinuity of the

maximum entropy inference.

5.1. Path Dependence of Discontinuity

We continue our discussion of Examples 1 to 3 in dimension 3, but with more than two

observables. The following example illustrates that one may need to choose the right

path in order to see the discontinuity of ρ∗. It is an example that combines Examples 1

and 2 together.

Example 6. We consider the tuple F of 3 operators, with F1, F2 the same as given in

Example 1 and

F3 =

1 0 1

0 0 1

1 1 −1

 . (23)
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In this example, DF is a compact convex set in R3. Consider the point α =

(1, 1, 0.5). If α is approached along the line [(1, 1, 0), (1, 1, 1)], there is no discontinuity

of ρ∗(α), similar as the discussion in Example 2.

However, if α is approached from ε→ 0 in a Hamiltonian −F1 + εF2, then there is

discontinuity of ρ∗(α), similar as the discussion in Example 1.

The convex set of DF for F = (F1, F2, F3) in R3 is shown in Fig. 12. This shows

that if one approaches the yellow line (corresponding to (1, 1, x)) from a line inside

the red area of the surface, then discontinuity of ρ∗(α) happens. But along the line

[(1, 1, 0), (1, 1, 1)], there is no discontinuity of ρ∗(α).

Figure 12: The convex set of DF for F = (F1, F2, F3) of Example 6 in R3. For the

normalized ground state ρ(α, φ) of cosαF1 + sinα cosφF2 + sinα sinφF3 for any given

α ∈ [0, π], φ ∈ [0, 2π], a point is plotted for (tr(ρ(α, φ)F1, tr(ρ(α, φ)F2, tr(ρ(α, φ)F3).

Gray lines correspond to α ∈ [0, π/2], and red lines correspond to α ∈ [π/2, π]. The

yellow line corresponds to (1, 1, x), where the discontinuity happens.

This example shows that, in general for k measurements, whether there is

discontinuity of ρ∗(α) at the point α ∈ DF depends on the direction on the boundary

of DF along which α is approached. If there is a sequence αs approaching α but

ρ∗(αs) 6→ ρ∗(α), (24)

then there is discontinuity of ρ∗(α).

The same situation can happen in Example 4. If we approach the 2-RDM ρ(2) of

the GHZ state using the ground states of H + ε
∑3

i=1 Zi instead of H + ε
∑3

i=1Xi as

in Example 4, there will be no discontinuity. And furthermore, for the Hamiltonian
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H + ε1
∑3

i=1Xi + ε2
∑3

i=1 Zi, the convex set of DF for F = (F1, F2, F3) with F1 =

Z1Z2 + Z2Z3, F2 =
∑3

i=1Xi, F3 =
∑3

i=1 Zi has a similar structure as that in Fig. 12,

as given in Fig.1c of [23]. Now consider the situation of the thermodynamic limit,

corresponding to the transverse Ising model with also a magnetic field in the Z direction,

i.e. the Hamiltonian

H(λx, λz) = −J(
n−1∑
i=1

ZiZi+1 + λx

n∑
i=1

Xi + λz

n∑
i=1

Zi), (25)

with J > 0. The corresponding convex set of DF for F = (F1, F2, F3) with F1 =
1

n−1
∑n−1

i=1 ZiZi+1, F2 = 1
n

∑n
i=1Xi, F3 = 1

n

∑n
i=1 Zi is quite different, as the line of

discontinuity (similar as the line (1, 1, x) in Fig. 12) will expand to become a ‘ruled

surface’ (see Fig.1b of [23]), which is nothing but the symmetry-breaking phase [23]

(this corresponds to the phase transition at λ = 1).

Another interesting thing of Example 6 is that the discontinuities of ρ∗(α) do not

only happen at the point α = (1, 1, 0.5). In fact they can happen at any point (1, 1, s)

with (0 < s < 1). This can be done by engineering the Hamiltonian

H = −F1 + εF2 + f(ε)F3, (26)

with lim
ε→0

f(ε)
ε

= 0 for some function f(ε). We remark that however, this does not happen

in a similar situation of thermodynamic limit. For instance, the Hamiltonian H(λx, λz)

discussed above only has one phase transition (discontinuity) point for λ > 0 at (λ = 1)

that corresponds to zero magnetic filed in the Z direction (see Fig.1b of [23]).

5.2. A Necessary Condition

Suppose ρ∗(αs)→ ρ̃ when αs → α, then we must have ρ̃ ∈  L(α). That is, ρ̃ returns the

measurement results α. If discontinuity happens at α, state ρ̃ is different from ρ∗(α).

As the maximal entropy inference ρ∗ has the largest range, the range of ρ̃ is contained

in that of ρ∗. We can then choose a linear combination of ρ∗ and ρ̃ in  L(α) that has

strictly smaller range than ρ∗. This then gives us a necessary condition for discontinuity

of ρ∗(α) in finite dimensions. We emphasize, however, that the same claim may not

hold in infinite systems.

Observation 2. A necessary condition for the discontinuity of ρ∗(α) at the point α is

that there exists a state ρ̃ ∈  L(α) whose range is strictly contained in that of ρ∗(α).

In particular, for local measurements, we have

Observation 2′. A necessary condition for the discontinuity of ρ∗(ρ(k)) at the point

ρ(k) is that there exists a state ρ̃ ∈  L(ρ(k)) whose range is strictly contained in that of

ρ∗(ρ(k)).

To better understand Observation 2′, we would like to examine an example where

the condition is not satisfied.
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Example 7. Consider again a three-qubit system, and the Hamiltonian

H = H12 +H23 (27)

as discussed in [3], where Hij acting nontrivially on qubits i, j with the matrix form
2
9

0 0 −4
9

0 2
3

0 0

0 0 2
3

0

−4
9

0 0 2
9

 . (28)

The ground-state space of the Hamiltonian H is two-fold degenerate and is spanned

by

|ψ0〉 =
1√
6

(2|000〉+ |101〉+ |110〉) ,

|ψ1〉 =
1√
6

(2|111〉+ |010〉+ |001〉) .

Now take the maximally mixed state

ρ∗ =
1

2
(|ψ0〉〈ψ0|+ |ψ1〉〈ψ1|), (29)

and its 2-RDMs be ρ(2).

It is straightforward to check that there does not exist any rank 1 state in the ground-

state space with the form α|ψ0〉 + β|ψ1〉 that has the same 2-RDMs as ρ(2). Therefore,

for ρ∗(ρ(2)), the condition in Observation 2′ is not satisfied, hence no discontinuity at

the point ρ(2).

In the previous subsection, we see that discontinuity of ρ∗(α) at the point α ∈ DF
depends on the direction approaching α. The next example tells us that one cannot

conclude the existence of discontinuity by looking at the low dimensional projections of

DF .

Example 8. Consider the measurement of 4 operators, with F1, F2, F3 the same as given

in Example 6 and

F4 =

1 1 0

1 1 0

0 0 −1

 . (30)

And let F = (F1, F2, F3, F4).

Note that the projection of DF to the plane spanned by (F1, F2) is nothing

but Fig. 1a, whose maximum entropy inference has discontinuity at the point (1, 1).

However, for the measurements F , one cannot conclude the existence of points

of discontinuity by solely examining the discontinuity at its projections (e.g. the

discontinuity for measuring (F1, F2) only). The existence of (F3, F4) does matter.

To see why, for the point α = (1, 1, 0.5, 1), the maximum entropy inference is

ρ∗(α) = 1
2
(|0〉〈0| + |1〉〈1|). However, there is no rank one state of the form α|0〉 + β|1〉

with |α|2 + |β|2 = 1 that can return the measurement result α. Then according to

Observation 2, there is in fact no discontinuity at α.
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5.3. A Sufficient Condition

Notice that the condition in Observation 2 is not sufficient. Example 2 provides a

counterexample. By studying the examples that do have discontinuity, we find a

sufficient condition for the discontinuity of ρ∗.

Observation 3. For a set of observables F = (F1, . . . , Fr), if:

• the ground state space V0 of some Hamiltonian H0 =
∑r

i=1 ciFi is degenerate with

the maximally mixed state supported on V0 be ρ∗, which corresponds to measurement

results αi = tr(ρ∗Fi);

• there exists a basis |ψa〉 of V0 such that

〈ψa|Fi|ψb〉 = δab (31)

for any a 6= b and Fi ∈ F ;

• there exists a sequence of

ε = (ε1, . . . , εr)→ (0, . . . , 0), (32)

such that the Hamiltonian H = H0 +
∑r

i=1 εiFi has unique ground states |ψ(ε)〉 at

any nonzero ε, and

lim
ε→(0,...,0)

|ψ(ε)〉 = |ψ〉, (33)

where |ψ〉 = 1√
m

∑m
a=1 |ψa〉 and m is the ground state degeneracy of H0 (m > 1);

then ρ∗(α) is discontinuous at the point α.

This condition guarantees that the state |ψ〉 and the maximally mixed state ρ∗

have the same local density matrices. The discontinuity of maximum entropy inference

therefore follows when considering the sequence of reduced density matrices of |ψ(ε)〉.
Notice that Eq. (31) is the quantum error-detecting condition for the error set F but

without the coherence condition of 〈ψa|Fj|ψa〉 = cj for a = b [9], where cj is a constant

that is independent of a. We will refer to this condition as the partial error-detecting

condition.

For example, for the observables F = (F1, F2, F3) discussed in Example 6, consider

the ground-state space of H0 = −F1, which is degenerate and is spanned by {|0〉, |1〉}.
It is straightforward to check that 〈0|Fi|1〉 = 0 for all i = 1, 2, 3. Furthermore, the

Hamiltonian H = −F1 + ε1F2 + ε2F3 has a unique ground state |ψ(ε)〉 at any nonzero

ε = (ε1, ε2) 6= 0. And for the sequence that ε2 = 0 and ε1 → 0, lim
ε1→0
|ψ(ε1, 0)〉 =

1√
2
(|0〉+ |1〉).

Similarly for local measurements, we have

Observation 3′. For a set of k-local observables F = (F1, . . . , Fr), if:

• the ground state space V0 of some Hamiltonian H0 =
∑r

i=1 ciFi is degenerate with

the maximally mixed state supported on V0 be ρ∗, which corresponds to k-RDMs

ρ(k);
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• there exists a basis |ψa〉 of V0 such that

〈ψa|Fi|ψb〉 = δab (34)

for any a 6= b and Fi ∈ F ;

• there exists a sequence of

ε = (ε1, . . . , εr)→ (0, . . . , 0), (35)

such that the Hamiltonian H = H0 +
∑r

i=1 εiFi has unique ground states |ψ(ε)〉 at

any nonzero ε, and

lim
ε→(0,...,0)

|ψ(ε)〉 = |ψ〉, (36)

where |ψ〉 = 1√
m

∑m
a=1 |ψa〉 and m is the ground state degeneracy of H0 (m > 1);

then ρ∗(ρ(k)) is discontinuous at the point ρ(k).

For example, for the observables F = (F1, F2, F3) with F1 = Z1Z2 + Z2Z3, F2 =∑3
i=1Xi, F3 =

∑3
i=1 Zi discussed in Example 4, consider the ground-state space of

H0 = −F1, which is degenerate and is spanned by {|000〉, |111〉}. It is straightforward

to check that 〈000|Fi|111〉 = 0 for all i = 1, 2, 3. Furthermore, the Hamiltonian

H = −F1 + ε1F2 + ε2F3 has a unique ground state |ψ(ε)〉 at any nonzero ε = (ε1, ε2) 6= 0.

And for the sequence that ε2 = 0 and ε1 → 0, lim
ε1→0
|ψ(ε1, 0)〉 = 1√

2
(|000〉+ |111〉).

These demonstrate an intimate connection between the discontinuity of ρ∗(ρ(k))

and the (partial) quantum error-detecting condition.

6. Summary and Discussion

We now summarize the main results this paper in Table 1. We start from introducing

two natural types of quantum phase transitions: a local type that can be detected by

a non-smooth change of local observable measurements, and a non-local type which

cannot. We then further show that the discontinuity the maximum entropy inference

ρ∗(ρ(k)) detects the non-local type of transitions. We have done this by examining the

convex set D(k) of the local reduced density matrices ρ(k), where the discontinuity of

ρ∗(ρ(k)) only happens on the boundary of the convex set, hence is directly related to the

ground states of local Hamiltonians (hence zero temperature physics). And essentially,

the discontinuity only happens at the transition points.

We further show that the discontinuity of ρ∗(ρ(k)) is in fact related to the

existence of irreducible many-body correlations. This allows us to propose a practical

method for detecting the non-local type of transitions by the quantum conditional

mutual information of two disconnected parts, which is an analogy of the Levin-Wen

topological entanglement entropy [12]. We have demonstrated how the conditional

mutual information detects the phase transition in the transverse Ising model and the

toric code model, which are both continuous quantum phase transitions.
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Types of Quantum Phase

Transitions

Local Non-Local

Discontinuity of ρ∗(ρ(k)) No Yes

Irreducible Many-Body

Correlations

No Yes

Conditional Mutual Infor-

mation

Zero Nonzero

Table 1: Summary of the relationship between the main concepts discussed in this paper.

Based on the connection between irreducible many-body correlation and the

quantum conditional mutual information I(A:C|B), we have proposed that I(A:C|B) as

a universal indicator of non-trivial quantum order of gapped systems. The crucial part

is to chose that the areas A,C that are far from each other, based on the locality of the

system. By choosing proper regions to compute I(A :C|B), one can indeed further tell

the type of the phase transition (symmetry-breaking, topological, SPT, or a mixture of

them). We summarize these different indicators in Table 2.

Fig. 4 or 6 or 11(a) Fig. 11(b) Fig. 10 or 11(c)

symmetry-breaking order Yes No No

topological order No Yes No

SPT order Yes No Yes

Table 2: Summary of the choices of the areas of A,B,C (in different figures) and the

non-trivial indicator I(A:C|B) for different quantum order. Here ‘Yes’ means a non-zero

value of I(A:C|B).

We remark that a non-zero I(A:C|B) even contains information for a gapless

system. By choosing different ratios of the lengths (areas) of A,B,C, the value I(A:C|B)

of a gapless system could vary, and the dependance of I(A:C|B) with that ratios is

closely related to universal quantities of the system, such as the central charge [24].

We hope that our discussions brings new links between quantum information theory

and condensed matter physics.
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