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Abstract: Grating writing in structured optical fibers is reviewed. Various laser sources have been 
used including UV and near IR nanosecond and femtosecond lasers, each enabling different material 
processing regimes. The issue of scattering is modeled through simulation and compared with 
experiment. Good agreement has been established. 
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1. Introduction 

Recent progress has been made in resolving 
some key issues with regards to grating writing in 
structured optical fibers including photonic crystal 
fibers [1], Fresnel fibers [2], and simple structured 
fibers [3] such as air clad fibers [4]. These issues are 
summarised as follows: 

1)Rotational variation in light reaching the core 
as a result of variations in scattering from the 
structure. 

2)Grating writing in non-photosensitive glasses. 
3)Application of femtosecond lasers. 
Each is examined separately. 

2. Rotationally variant scattering 

Scattering of the writing light from the 
structured cladding gives rise to a variation in light 
reaching the core. This is caused by scattered 

incoherent light and the constructive and destructive 
interference of coherent light scattered off all the 
various interfaces reaching the core. As a result the 
amplitude varies across the core. Such effects have 
been used to create filter devices based on side 
scattered light [5] and optical encryption [6]. 

Several approaches have been taken to overcome 
this problem for grating writing. For example, the 
holes can be filled with index-matching liquids for 
efficient coupling to the core [7–9] or the fiber can 
be hydrogen-loaded to increase photosensitivity and 
reduce the cumulative fluence [10–13]. In recent 
work we reported grating writing in a 12-ring 
nonlinear photonic crystal fiber with a highly 
photosensitive germanium-doped core [13, 14] 
shown in Fig. 1. Type IIa grating formation was 
observed with strengths of up to 17 dB in 
transmission. We have also carried out a detailed 
study of the dependence of grating writing on the 
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angular orientation of the fiber [15–17]. In other 
work, we reported how the control of rotational 
incidence can be used to tune an induced 
birefringence within this fiber [18]. This 
birefringence arises from both incoherent scattering 
and coherent constructive and destructive 
interference within the core. Birefringence in excess 
of 10−4 is demonstrated – Fig. 2 summarises the 
observed splitting in grating spectra obtained at 21.5º. 
The angular dependence of the writing process for 
this fiber was supported by simulation, including an 
expected asymmetric intensity profile in the 
photosensitive region at this angle. 

 
Fig. 1 (a) SEM of highly nonlinear PCF, (b) imaged mode 

after splicing, (c) simulated profile of the fundamental TEM00 

mode, and (d) simulated profile of the higher-order TEM01 mode. 

 

 

 

 

 

 

 

 

Fig. 2 Transmission spectrum for 21.5 ° grating for two 

orthogonal polarisation states. 

Overall, the angular dependence greatly affects 
the reproducibility of grating writing process within 
structured fibers. Therefore, good control is 
important to ensure reproducible access to the core 
by the applied optical fields – however, much more 
difficult to control is the sensitivity to the 
interference that can lead to asymmetric index 
changes in the core and as well affects the 
reproducibility of fringe contrast regardless of the 
total intensity in the field. 

When the writing intensity is very high, two 
photon processes can occur with a contribution 
different to that triggered through defect excitation, 
effectively complicating grating writing in 
germanosilicate core fibers. Indeed, the nonlinear 
relation between excitation energy and index change 
can be exploited to produce a grating with better 
fringe contrast than the single photon case. This 
coupling into the band edge of glass can be 
independent of dopants. Higher intensities partially 
address the problem of scattering from the structured 
cladding to enable conventional grating writing – 
with appropriate orientation focusing of light can 
occur to make up for the scattered light such that 
two or more photon processes are possible, 
discussed next.  

3. Grating writing in non-photosensitive 
glasses 

There are many reasons why one needs to write 
in non-photosensitive cores within structured optical 
fibers. Perhaps the most important thing is to ensure 
the value obtained by having a single material fiber 
for many applications available. This includes 
optimised mode field overlapped with the holes for 
sensing and laser applications, as well, for gratings 
that will not have a dependence on the properties of 
more than one material, such as the temperature 
insensitive properties of a birefringent photonic 
crystal fiber [19, 20]. This problem was firstly 
solved using two 193nm photon absorption directly 
into the band edge of the glass [21]. In 
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aluminosilicate optical fiber, the threshold was 
significantly reduced whilst the total change was 
increased enabling the first structured fiber lasers 
made with gratings [22–24]. The two photon nature 
was confirmed experimentally [25, 26]. It should be 
noted that the long cumulative fluences must ensure 
that these gratings are not type II damage gratings 
but instead densification gratings, as demonstrated 
in Fig. 3 and as well recent experiments based on 
freezing water within the holes where corrugations 
from densification prevent ice expansion along the 
channels [27]. 

 

0µm 600µm

–210nm 

200nm 

0µm

570µm
P1 P2 P3 

P4 

P5 

x
y 

z 

 
Fig. 3 Phase shift interferometric microscope image. 

Corrugated regions of densified glass can be seen. 

4. Application of femtosecond lasers  

Possible densification gratings have been 
recently reported using femtosecond gratings [28]. 
However the main region of interest justifying the 
use of these lasers is the Type II regime since 
changes in this regime are significantly more stable, 
up to 1000 ℃[29, 30]. Type II gratings written by 
using energies above T2 damage threshold [31] of 
the glass lead to very stable gratings. Normal Type I 
gratings are thermally annealed at low temperatures 
and have not been able to be incorporated within the 
active medium of fiber lasers for operation above 
14 W [8, 9, 32]. These results in an air clad 
structured fiber led to work on with femtosecond 
gratings within our group. By using liquid filling of 

the holes of an air clad fiber we were able to inscribe 
femtosecond grating directly into the core for intra 
cavity lasing [8, 9]. Without using the index 
matching gel several practical problems arose –  
1) alignment through an optical microscope was not 
possible to ensure accurate placement of the induced 
index changes within the core of the fiber; 2) the 
intensity diminished so that grating writing above 
the damage threshold was not reached (for a 
photosensitive fiber core type I gratings can be 
written this way but these do not offer any more 
benefits than using conventional UV writing 
source). 

Unlike the densification gratings, the key 
mechanism appears to be multiphoton absorption 
and cascaded impact ionisation triggered by Zener 
tunneling ionisation [33, 34]. 

5. Discussions and conclusions  

Gratings are now readily written into both 
photosensitive and non-photosensitive structured 
optical fibers of various sorts using a range of 
photosensitive mechanism — a specific review of 
these mechanisms can be found elsewhere [35]. 
Figure 4 shows the type of fibers into which gratings 
have been successfully written. Such is the progress 
that standard processes can be used for hydrogen 
loading, splicing, and writing [9, 10]. As well, 
access into the band edge has meant some of the 
advantages of single material fibers are not 
compromised by having to add dopants. Even 
femtosecond lasers have been successfully used to 
write gratings above the damage threshold. More 
recently, a particularly good review on novel 
holographic phase mask writing with femtosecond 
lasers has become available [36]. By opening up the 
structured fibers to gratings, a variety of unique 
applications spanning photonic devices, sensing, 
diagnostics and lasers has been made available. 
Much room remains for further understanding and 
improvements both from a mechanistic perspective 
and a practical writing perspective. 
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Fig. 4 Typical structured optical fibers into which gratings have been written: (a) low loss (<4dB/km) 4-ring all-silica photonic 

crystal optical fiber for sensing and components, (b) 12-ring photonic crystal fiber with triangular core and photosensitive, high NA 

step-index germanosilicate centre for nonlinear applications, (c) simple Fresnel fiber for biodiagnostics, (d) air-clad fiber with 

Yb3+-doped core for high power fiber lasers, and (e) single-material all silica hi-birefringent fiber for zero temperature dependence 

sensing applications. 
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