IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received June 5, 2016, accepted June 21, 2016, date of publication June 27, 2016, date of current version July 22, 2016.

Digital Object Identifier 10.1109/ACCESS.2016.2585185

Automated Policy Combination for Secure Data
Sharing in Cross-Organizational Collaborations

LI DUAN'2, YANG ZHANG!, SHIPING CHENZ2, SHUAI ZHAO', SHIYAO WANG!', DONGXI LIUZ,
REN PING LIU%3, (Senior Member, IEEE), BO CHENG', AND JUNLIANG CHEN'

IState Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China
2Data61, Commonwealth Scientific and Industrial Research Organization, Marsfield, NSW 2122, Australia
3University of Technology Sydney, Ultimo, NSW 2007, Australia

Corresponding author: L. Duan (duanli@bupt.edu.cn)
This work was supported in part by the National Natural Science Foundation of China under Grant 61372115, Grant 61132001, and

Grant 61501048, in part by the China Postdoctoral Science Foundation funded project under Grant 2016T90067 and Grant 2015M570060,
and in part by the National Grand Fundamental Research 973 Program of China under Grant 2013CB329102.

ABSTRACT During business collaborations, multiple participating organizations often need to share data
for common interests. In such cases, it is necessary to combine local policies from different organizations
into a global one in order to manage access to the shared data. However, local policies of organizations may
be different or even conflicting, due to diverse rules and rule combining algorithms chosen. Few existing
methods for policy combination are able to automatically combine multiple local policies into a global one.
In this paper, we propose a bottom—up approach to address the issues of multiple policy combinations. The
key idea is to first classify the rules based on attribute constraints in each policy, and then reduce the rules
of the corresponding classes to one with the same attribute constraints. The reduced rules are then combined
into a new global policy by choosing the appropriate rule combining algorithm in XACML. The latter ensures
compliance with each of the local policies at syntax and semantic levels. To validate our approach, we develop
a proof-of-concept implementation of the automated policy combination. Experimental results demonstrate

that our approach is highly scalable and supports a number of attribute constraints in each local policy.

INDEX TERMS XACML, collaboration, data sharing, policy combination, access control policy.

I. INTRODUCTION
A. MOTIVATION
Organizations often collaborate with each other in order to
provide better services to customers [1]. Service oriented
computing (SOC) provides a promising paradigm for busi-
ness collaborations. The main objectives in such collabora-
tions are data sharing, where the shared data may be sensitive,
such as patient’s medical record in healthcare information
system (HIS) [2], [3]. Hence, the focus on protecting data pri-
vacy and security is becoming a crucial requirement [4], [5].
Access control is one of the most important parts of data
privacy and security. Its goal is to prevent unauthorized access
to the protected data [6]. However, realizing access control
for shared data [7] is challenging due to the multiple col-
laborative organizations involved. In order to address this
challenge, it is necessary for the participating organizations to
establish a common access control policy, which is a global
access control policy that can be accepted by all collabora-
tive organizations. Creating such a policy is usually carried

out through certain principles (e.g., compromise, negotia-
tion [8]) among all the participating organizations. Taking
service combination for example, the policy of combined
service is generated by integrating all the component service
policies [9]. Thus, the key of deciding access control policy
for shared data is to combine local policies from different
participating organizations into a global one.

Generally speaking, there are two levels of policies for
data sharing [10]: one is coarse-grained data level, that is
organizational level, where data can be files or database as
well as other information; the other is fine-grained data level
related to data structure. In this paper, we mainly focus on the
coarse-grained organizational data level. In the environment
of cross-organizational collaborations, the shared data is usu-
ally owned and managed by various organizations. To protect
their data, different participating organizations may choose
different elements and access control constraints to indepen-
dently specify policy rules to regulate how their data can
be used. Such differences may result in misunderstandings

2169-3536 © 2016 IEEE. Translations and content mining are permitted for academic research only.

3454 Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 4, 2016

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

L. Duan et al.: Automated Policy Combination for Secure Data Sharing

IEEE Access

among organizations. Furthermore, these organizations may
define different or even conflicting policy rules for shared
data [11]. For example, one rule allows to carry out certain
operations on data, but other one does not allow to carry out
the same operations on it. As such, how to model and integrate
policy rules as well as how to resolve the conflicts among
these rules are key challenges in policy combination.

To address the above mentioned challenges of policy com-
bination, the first task is to specify access control policy
requirements of each participating organization. Policy lan-
guages play an important role in expressing these require-
ments. Various types of policy languages have emerged,
such as XACL [12], EPAL [13] and the eXtensible Access
Control Mark-up Language (XACML) [14]. They have pro-
vided certain approaches to combine policies. However, they
mainly focus on supporting the pre-specified policy combin-
ing algorithms, such as permit-override, deny-override and
so on. These policy languages are insufficient to support the
complex semantics of policy combination for data sharing.
For example, they do not specify more restrictive policy
combining algorithms, e.g., the combined policy permits a
request when all the policies permit it, and denies a request
when any one of policies denies it, which will be the new
principles used to combine policies in this paper.

Among these existing policy languages, XACML is the
most popular one. It provides the most flexible approach
to manage all the elements of each policy. XACML sup-
ports attribute-based access control model [15], which makes
attribute-based constraint rules become one of the popular
access control methods in a distributed collaboration environ-
ment. Thus, we focus on attribute-based policy combination.
Additionally, XACML allows one policy consist of more
than one attribute-based constraint rules. To combine these
rules, XACML specifies some rules and policy combining
algorithms, which contain permit-override, deny-override,
permit-unless-deny and deny-unless-permit and so on. How-
ever, if one organization utilizes different XACML rule com-
bining algorithms to combine its rules, it will obtain different
policy. For example, if organization A adopts permit-override
to combine its rules, the result is to permit a request if any rule
permits it. Whereas, if organization A adopts deny-override
to combine its rules, the result is to deny a request if any rule
denies it. Thus, it is necessary to consider rule combining
algorithm used in each policy during policy combination.

The attribute constraint is to put restricts on an attribute.
The process of policy combination is very complex, because
of many attribute constraints existed in a policy. It is helpful
to construct a policy scheme by means of algebraic the-
ory [17], which can be used to describe the behaviors of
policy rule combination, and to verify the correctness of
rule combination [19], [20]. Recently, there have been many
policy combination algebraic systems, such as policy combi-
nation language (PCL) based on automata theory presented
in [16], fine-grained integration algebra (FIA) based on log-
ical expressions [21], access control system based on propo-
sitional algebra [29] and so on. These algebra systems can

VOLUME 4, 2016

deal with limited attribute constraints and provide theoretical
support for our research.

Determining the global policy for the shared data from
multiple organizations is a challenging problem. From a
request point of view, in order to determine whether a request
is allowed to access the shared data, it should determine
whether the request matches the global policy of the collab-
orating organizations. That requires combining local policies
from different organizations into a global one. The combined
policy not only needs to be in full compliance with the poli-
cies from all these organizations, but also must be accepted by
all organizations. The access control policy for shared data is
usually established through negotiations or reconciliation [8]
among various participating organizations. It is important
to select an adequate XACML rule combining algorithm in
the new global policy. Moreover, when receiving a number
of various local policies, few automated policy combination
tools exist that can automatically generate a global policy in
XACML, other than a policy decision.

Local Policy 1
/ RCA1 /
Rule11

Rulelp
P

Automated
Policy Combiner

Local Policy 2 Global Policy
/ RCA2 / YT
RCA
Rule21 l /—/
Rule2m
,,/// B

Local Policy n
/ RCANn /
Rulenl

Rulent
> o

FIGURE 1. Multiple policy combination architecture.

In this paper, we present a policy combination architecture
shown in Fig.1. We adopt a rule reduction approach and
develop an automated tool, which can be used to generate
a global policy by combining various policies from differ-
ent organizations. Based on XACML standard specification,
we extend the FIA algebraic operator system [23], [24] by
defining reducing operators to formally specify each policy
rule to support a wide range of attribute values in a policy.
In the Policy Combination Architecture of Fig. 1, for mul-
tiple policies Py, P>, ..., Py, each policy P; (1 < i < n)
consists of a set of policy rules (Rji, ..., Riy), and also
has a rule combining algorithm RCA;. In this architecture,
we first classify the rules based on the attribute constraints.
We then reduce the rules of the corresponding classes to one
with the same constraints. After the reduction, the compari-
son of the conditional attributes (e.g., the attributes defined
in the conditions of each rule) is carried out by means of pre-
defined reducing operations in the first step. The decision of

3455

IEEE Access

L. Duan et al.: Automated Policy Combination for Secure Data Sharing

a policy applied to a request relies on the decisions of its
composing rules [25]. Thus, a new global policy is created
by combining the reduced rules, and selecting an appropriate
rule combining algorithm RCA, which is chosen according to
the algorithms used in all the participating organizations. The
rule-reduction-based approach makes the combined policy
more restrictive, that is, the combined global policy permits a
request only when all the policies permit it, denies a request
when any one of policies denies it. The creation of a global
policy is conducted in the Automated Policy Combiner as
shown in the central part of Fig. 1.

Compared to the idea of policy decomposition approach
in [24], which adopts a top-down approach to decompose a
global policy into local rules, we adopt a bottom-up approach
to decompose the rules included in a policy into different
classes according to their attribute constraints. The rules in
each class have the same attribute constraints, and we use
attribute-based combination approach to combine these rules.
For the permitting rules, our tool creates the logical inter-
section of these rules as a reduced rule with permit effect
in the global policy. For the denying rules, our tool creates
the logical union of these rules as a reduced rule with deny
effect in the global policy. For the conflicting rules, our tool
first transforms them into ones with the same effects, and then
reduces these rules by choosing proper reducing operators.

Finally, the combined global policy is obtained by travers-
ing all the attribute constraints and combining the reduced
rules by choosing an appropriate rule combining algorithm
specified in XACML. The generated policy ensures compli-
ance with each of the local policies at syntax and semantic
levels.

Our previous work on policy combination was reported
earlier in SCC2015 research track [39], where we assumed
that all collaborating organizations adopted the same rule
combining algorithms to specify their policies. This paper
expands that work by considering different rule combining
algorithms in different local policies, as well as adding the
following contents. First of all, we discuss how to combine
policies that have conflicting rules and different rule com-
bining algorithms. Secondly, we describe the related work
in more detailed. Thirdly, we improve our multiple pol-
icy combining algorithms and provide its proof-of-concept
implementation. Beyond that, we carry out an experimental
evaluation of our policy combination tool.

Our contributions in this paper are as follows: (1) We adopt
bottom-up approach to decompose the rules of a policy into
different classes based on the attribute constraints. The rules
in a class have the same constraints. Condition-based attribute
combination is used to combine these rules in a class. (2) We
present a rule-reduction approach to combine rules with the
same attribute constraints. The reduced rules are combined
in a global policy by choosing a rule combining algorithm
in XACML. (3) We develop a proof-of-concept implementa-
tion for our policy combination algorithm, which is applied
in a practical case study. (4) Finally, we have carried out
an experimental evaluation of the policy combination tool.

3456

Experimental results validate our approach, and demon-
strate the scalability of our automated policy combination
algorithm.

B. ORGANIZATION OF THE PAPER

The rest of the paper is organized as follows. Section 2
firstly presents related work on policy combination, and then
reviews the principal concepts of XACML policy. Section 3
introduces basic definitions and rule combination operators
that will be used in this paper, as well as the logical expres-
sions of rule combining algorithms in XACML policy spec-
ification. Section 4 introduces policy expression. Section 5
presents our policy combination approaches, mainly consist
of the detailed procedures and related algorithms of generat-
ing a global policy. Section 6 presents our implementations.
Section 7 concludes this paper.

Il. RELATED WORK AND XACML OVERVIEW

In this section, we firstly survey related work on policy com-
bination, and then present the principal concepts in XACML
policy.

A. RELATED WORK

Recently, there have been much work on the issues of policy
combination [21], [22], [28], [30]. Existing policy combina-
tion approaches usually carried out in the aspects of policy
specification languages, policy combination algebra theory
and data sharing-based policy negotiation. Thus, we will
carry out literature reviews from the above three aspects.

We first discuss work related to policy languages. Exist-
ing policy specification languages consisting of XACL [12],
EPAL [13], XACML [14] have provided some approaches
to combine policies. However, they only support the pre-
specified policy combining algorithms, such as permit-
override, deny-override and so on, which are insufficient to
support the complex semantics of policy combination for
data sharing. Compared to these specification languages, we
have presented a new policy combination principle that is not
specified in XACML. However, we have formally expressed
some definitions based on the semantics of XACML policy.

We then review work related to policy combination alge-
bra. The algebra theory is the most expressive approach for
describing the behaviors of policy combination. The earli-
est work was by Mclean [27] introduced grid-based pol-
icy combination framework of mandatory access control.
Bonatti et al. [28] proposed set theory-based access control
policy combination algebra, in which a set of subject, object
and action attribute tuples are used to define access con-
trol policies, and logic operations (e.g., addition, conjunc-
tion, subtraction) are used to express policy combination.
This work provides the foundation for the following policy
combination research. Wijesekera and Jajodia [29] proposed
a propositional algebra approach for combining policy, in
which policy is formally expressed as a nondeterministic
transformers set of assignment permission. They described
authorization rules and combinational logics by means of

VOLUME 4, 2016

L. Duan et al.: Automated Policy Combination for Secure Data Sharing

IEEE Access

propositional operations. Mazzoleni et al. [30] presented
an algebra system for combining fine-grained authorization
policies for different participating organizations. The com-
mon limitation of above work is that only the simple and
limited attribute constraints can be dealt with in these policy
combination algorithm. Compared to these work, we have
presented one policy combination algebra system, which not
only supports complex computation of attribute values, but
also supports a number of attribute constraints defined in each
policy.

Additionally, there are also some other approaches to
combine policies. Ferraiol et al. [16] proposed policy com-
bination approach based on policy machine, but they did
not present policy combination logics. Backes et al. [17]
introduced a 3-valued algebra for combining policies, that
replies to the requests either with “Permit”, “Deny”, or
“Not Applicable’. They also introduced algebraic operations
(e.g., addition, conjunction, subtraction, negation, constraint)
and their properties. Their works was based on EPAL policy
specification. Li et al. [31] introduced a policy combina-
tion language (PCL) to model each policy. Few of these
work generate XACML policies as result of policy com-
bination. Negotiation-based policy combination has been
suggested for multiple policies combination [8], [32], [33],
[34], [35]. In [8], similarity-based policy adaptation approach
was proposed to avoid conflicts in authorization rules, and
negotiation-based approach was adopted to combine policies.
However, if some organizations are unwilling to negotiate
with others, their approach cannot be applied.

Rao et al. [21], [22] proposed a fine-grained integration
algebraic system and presented an approach of generating
the actual combination XACML policy. In their approach, a
policy is defined by the set of requests that the policy applies
to, that is, a policy can be expressed as the set of requests that
are permitted by the policy, the set of requests that are denied
by the policy and the set of requests that are Notapplicable.
Second, they presented a series of policy combination opera-
tors, and described the combination semantics by requests set.
Later, the generated policy is translated into an XACML pol-
icy by using a multi-terminal binary decision diagram. This
method supports the complex policy combination semantics
such as policy jumps. This work have complete algebra theory
and experimental results. Among these policy combination
works, to the best of our knowledge, this is the only one that
focuses on generating the actual policy. Compared with their
work, we extended the fine-grained integration algebraic with
reducing operators, and our work also focuses on generating
an XACML policy. Unlike their work that they do not con-
sider rule combining algorithms in the combined policy, our
work focus on discussing the results of policy combination
with different rule combination algorithms in XACML. What
is more, their works focus on formal specification of the
policy combination, and there is no proper tool to support the
automatic combination of multiple policies to a global policy
in XACML. In this paper, we define the mapping operators
between various kinds of attribute constraints to support more

VOLUME 4, 2016

attribute variables in each policy. Moreover, we develop an
automated policy combination tool.

B. XACML POLICY OVERVIEW

XACML is an OASIS standard language for specifying
access control policies. It can not only express the proper-
ties of subjects, actions, objects and environments, but also
make an evaluation on the request. When dealing with pol-
icy combination, the first task is to construct unified policy
model, which is based on security requirements of each orga-
nization. XACML defines some rule combining algorithms,
which are used to resolve conflicts and redundancy in a
policy. In this part, we firstly review XACML policy model,
then introduce the definitions used in this paper as well as
the rule combining algorithms in XACML and their logical
expressions [14], [36].

In XACML there are the PEP (Policy Enforcement Point),
PDP (Policy Decision Point) and PIP (Policy Information
Point), which can dynamically evaluate an access request and
make a decision according to resources, requested informa-
tion and condition constraints. In general, a subject requests
an action to be executed on a resource through PEP, and the
policy decides whether the request is denied or permitted to
execute that action in PDP.

The elements in an XACML policy mainly contain a policy
target, a set of rules, a rule combining algorithm and obli-
gations. The policy target specifies a set of requests that the
policy is applicable to. It defines a set of attribute constraints
characterizing subjects, objects and actions and environment
that the policy apply to. A rule, as the smallest element in
policy, consists of the target, a condition and an effect. It can
be applied to define authorization constraints. The rule target
has the same structure as the policy target. It identifies a
group of requests that the rule is applicable to. The condition
specifies restrictions on the attributes in the target, which
supports attribute-based access control. In the constraints,
access policies can be expressed as the conditions against
the properties and actions. The effect specifies whether the
request actions should be “permitted” or “denied”. A rule is
specified by only one effect. If an access request matches the
rule target and satisfies the conditions, the rule is applicable
to the request and yields the decision specified by the effect
element. The rule combining algorithm is applied to resolve
conflicts and avoid redundancy among applicable rules in a
policy. It specifies how to combine the rules with different
effects to generate one policy with one effect, that is, a policy
is generated by integrating different rules. Here, we con-
sider four kinds of popular rule combining algorithms, that
are permit-override, deny-override, permit-unless-deny and
deny-unless-permit. For example, permit-override combining
algorithm shows that a policy permits a request in case at least
one of its rules permits it. Obligations represent actions to be
executed in conjunction with the enforcement of an autho-
rization decision. The policy set is a set of XACML policies.
In this paper, the obligations are out of our considerations.
In the following, we motivate our work by an example of

3457

IEEE Access

L. Duan et al.: Automated Policy Combination for Secure Data Sharing

XACML policies in a Health Information System (HIS), that
will be used throughout the paper.

HIS Example: in a medical database, a large sum of the
dispersed medical data is recorded by different organizations.
In order to protect patient’s privacy, each organization has
its policy for its recorded data. However, some treatments
require data sharing across multiple organizations. Taking
Organization A (OrgA), Organization B (OrgB), Organiza-
tion C (OrgC) and Organization D (OrgD) as examples. For
the medical data, assume that the policies of four Organiza-
tions are Pq, Py, P3 and P4 respectively. The detailed policy
descriptions are as follows:

o P states that doctors are allowed to write medical data
if their trust level is greater than or equal to 8.

e P; states that doctors and nurses are allowed to write
medical data if their trust level is greater than or equal to
6. However, any doctors are not allowed to write medical
data if their seniority is less than or equal to 10.

o Pj3 states that doctors can read and write medical data
if their seniority is greater than or equal to 7, and any
doctors with trust level greater than or equal to 4 are
authorized to write medical data. However, nurses are
not allowed to write medical data if their trust level is
less than or equal to 6.

e P, states that doctors and nurses can read and write
medical data if their trust level is greater than or equal
to 3, and any doctors with seniority less than or equal
to 5 are not authorized to write medical data.

Each local policy used in our example can be writ-
ten in an XACML framework as shown in Policyl.xml
(Fig.2), where (policypolicyld** ...”) is the policy identi-
fier, (RuleCombiningAlgld = *...”") specifies the rule
combining algorithm. The policy P; has one rule Ryp, the
effect Permit, the target (Target) and the condition constaints
(Condition).

Ill. POLICY COMBINATION OPERATORS

To facilitate the combination of their policies, all orga-
nizations should specify their policies by using the same
language, like XACML. XACML supports attribute-based
access control policy, in which attributes are used to specify
the constraints on subjects, actions, objects and environments.
In this section, we firstly present some definitions related
to a policy, and then construct a policy combination alge-
braic framework by introducing rule combination operators.
Table 1 lists the notations to be used.

A. BASIC DEFINITIONS

In order to specify policy, we present the following defini-
tions related to policy specification. In a policy, the attributes
are a set of constraints characterizing subjects, objects,
actions, and environments that the policy applies to. A sub-
ject is a requestor who requests to carry out operations on
objects. An object is a resource (e.g., files, data) to be pro-
tected from unauthorized access. An action is an operation.

3458

Policyl.xml
<Policy PolicyId="Policyl" RuleCombiningAlgId="...">
<Target>
<Subjects>
<Subject>
<SubjectMatch MatchId="..function:rfc822Name-match">
<AttributeValue DataType="..#string">
Doctor
</AttributeValue>
<SubjectAttributeDesignator AttributeId="..:subject-id"/>
</SubjectMatch>
</Subject>
</Subjects>
<Resources>
<Resource>
<ResourceMatch MatchId="..:anyURI-equal">
<AttributeValue DataType=".. #anyURI">
http://datashare.org/orgA/data/
</AttributevValue>
<ResourceAttributeDesignator AttributeId="resource-id"/>
</ResourceMatch>
</Resource>
</Resources>
</Target>
<Rule RuleId="CommitRule" Effect="Permit">
<Target>
<Actions>
<Action>
<ActionMatch MatchId="..:string-equal">
<AttributeValue DataType=".. #string">
Write
</AttributeValue>
<ActionAttributeDesignator AttributeId="..:action-id"/>
</ActionMatch>
</Action>
</Actions>
</Target>
<Condition FunctionId="..:integer-greater-than-or-equal">
<Apply FunctionId="..:integer-one-and-only">
<EnvorinmentAttributeDesignator Attributeld=../>
</RApply>
<AttributeValue DataType=".. #integer">8</AttributeValue>
</Condition>
</Rule>
<Rule RuleId="FinalRule" Effect="Deny"/>
</Policy>

FIGURE 2. Policy P;.

TABLE 1. Notations.

s,a,0 subject-id, action-id, object-id
att attribute name

x€ {=,#,>,>=,<,<=,€} | attribute operation
ec{Y,N} the effect of a rule

V(att) the domain of the attribute att
v(att) one value of the attribute att
r = ((att,v(att)) an access control request

S = (S1,52,...,5K) a tuple of subject attributes

A ={act1,...,actm} a set of actions

E = (E1,Es,...,Er) a tuple of environment attributes
C={C,Co,...,Cs} condition attribute constraints
P={P,Ps,...,P,} a set of policies

R; ={Ri1,Ri2,...,Rim} a set of rules

RCA rule combining algorithm

PO Deny Overrides

DO Deny Override

PD Permit-unless-Deny

DP Deny-unless-Permit

The environment (e.g., security level, trust level) is the con-
dition within which a requestor is to be evaluated.

Definition 1 (Attributes): A subject attribute Sy, is denoted
by S = (s, Vi(s)), an action attribute denoted by Ay =
(a, Vi(a)), an object attribute denoted by O,, = (0, Viy(0))
and an environment attribute denoted by E; = (att;
V(att;)), s, a and o are attribute subject-id, action-id and
object-id, V(s), V(a) and V(o) are the domain of subjects,
actions and objects, att is the attribute name, is the
attribute operation, V (att) is the attribute value.

VOLUME 4, 2016

L. Duan et al.: Automated Policy Combination for Secure Data Sharing

IEEE Access

In the above definition, the attributes of action act are
enumerated values, such as read, write. The attribute value
domains V can be constant, numerical interval (closed inter-
val or open interval) and set. When it is a constant, the
operation € {=, #, >, <}, where > expresses partial order,
such as priority. When an attribute value is an interval,
xe {=, #, >, >, <, <, €}, and it is used for numerical com-
parison. When the attribute value is a set, xe {=, #, €}. Each
operation has the inverse operation, notated as — o. For
example, when an operation x= * <”’, its inverse operation
is = x= “ >". In XACML, the conditions in a rule show
the constraints that a request subject should satisfy to carry
out the corresponding actions on objects. Based on this, the
policy rule is defined as follows.

Definition 2 (Policy Rule): An attribute-based policy rule
is formally defined as R(e) = (Sx N Ap A Oy A C), where
e is rule effect, either “permit (Y)” or “deny (N)”, that is to
say, e e {Y,N}, C = (Cy, Ca, ..., Cy) are the set of attribute
constraints, each C; = (att; V(att;)). This rule means that
the subjects from Vi (s) are permitted or denied to carry out
the actions Vy(a) on objects V,,(0) when its attribute values
satisfy the corresponding attribute predicates.

In HIS Example, for simplicity, we use the notations
“doc”, “nur”, “re”, “wr’”, “sen” , “secl” and ‘“‘trul” to
replace “doctor”, “nurse”, “read”, “write” , “seniority” ,
“security level”” and ‘“‘trust level” respectively. In this paper,
we assume that the default access object is medical data,
so we remove the object in the definitions. From the above
definition, the first rule in P, can be notated as R(N) =
((s, doc) A (a, wr) A (sen < 10)), other elements defined in
P;, i €{1,2,3, 4} are shown in Table 2.

TABLE 2. Policy example.

policy | rule subject action object condition effect
Py R11 doc wWr med trul > 8 permit
P> Ry doc wr med sen < 10 deny
Rss docnur wr med trul > 6 permit
Ps3 R31 doc re, wr med sen > T permit
R32 doc Wr med trul > 4 permit
R33 nur wr med secl <6 deny
Py R41 doc Wr med sen <5 deny
R42 docnur re, wr med trul > 3 permit

A request contains all the attribute information required to
access data, consisting of subject attributes, action attributes,
environment attributes and other information such as the
trust level, the current time. A request is denoted by
r = {(s, v(s)), (a, act), (att, v(att)}.

Definition 3 (Request Matching): For a request r =
{(s, v(s)), (a, act), (att, v(att))} and a rule R(e) = {(s, V(s))A
(a, V(a)) A (att o« V(att))), the request r matches the rule
R(e) if and only if v(s) € V(s) and act € V(a) as well as
v(att) o V(att).

For the rules with the same attribute constraints, there are
two kinds of relations between them: compatible and conflict-
ing. If two rules have the same effect, they are compatible,
otherwise, they are conflicting.

VOLUME 4, 2016

Definition 4 (Conflicting Rules): Let R; and R; be two
rules, Ri(e;) = ((s, Vi(s)) A (a, Vi(@)) A (att; o Vi(atty))),
and Rj(ej) = ((s, Vi(s)) A (a, Vi(a)) A (att; o Vi(atty))).
R; and R; are conflicting rules if and only if att; = att), e; # e;
and Xj= (—') ;.

In HIS example, R in P; and Ry in P, have the common
trust level constraint trul and the same effect permit, so Ry
and Ry are compatible rules. On the contrary, R in P> and
R31 in P3 have the common seniority constraint sen, but they
have different effects, so Ry and R3] are conflicting rules.

The 3 —valued algebra presented in [22] supports attribute-
based policy rules, when a request applies to a XACML
policy, the decision is one of Permit (Y), Deny (N) or NotAp-
plicable (NA). The symbol notations in [22] are adopted in
order to describe a policy.

Definition 5 (Policy): A policy P is a triple (R’;, RZ,
RZA) éfRCA(Rl(e), Ro(e), ..., Ry(e)), frca denotes the com-
bination operators of (Ri(e), Ra(e), ..., Ryy(e)) under RCA.
RI;, RZ, RZA denotes respectively the set of requests permit-
ted, requests denied, and not applicable by the policy P,
where Ry, = Ry URE URY, RENRY, =0, RS NRY, =0,
RUNRY, =0

With the above concepts, we present below the algebraic
operations to support rule combination in a policy.

B. RULE COMBINATION OPERATOR

Policy combination could be carried out by combining all the
policy rules. In this section, we extend FIA policy combi-
nation algebra system PCA with reducing operator §, which
is denoted as PCA = (P, &5, D, 6, ®, 0, ¢), where P is
the set of policies, each policy includes a set of rules, & is
the operators of rule and policy combinations, § is a rule
reduce operator, ¢ is an condition constraint. “®, &, ®” are
binary operators, ““—" is a unary operator. In order to build the
policy combination framework, formal operational semantics
are introduced as follows:

Definition 6 (“®” Operator): Ri(e) ® Ra(e) represents a
new policy rule R(e), which means that if a request matches
either Ri(e) or Ry(e), then the request matches R(e) ® R;(e).
The formal definition is:

R(e) = Ri(e) @ Ra(e) & R(e) = {r|r € Ri(e), or r € Ra(e)}

For example, for Py, R11(Y) = {(s,doc) A (a,wr) A
(trul > 8)}, for P3, R32(Y) = {(s, doc) A(a, wr)A(trul > 4)},
then the composition rule R(Y) = R;1(Y) & R3(Y) =
{(s, doc) N (a, wr) A (trul > 4)}.

Definition 7 (“—” Operator): —R(e1) represents a new
policy rule R(e), which means that if a request satisfies R(ey),
then the request does not satisfy —R(e1). The formal formula
as follows:

R(e) = —R(e1) & R(e) = {r|r ¢ R(e1)}

For example, for P, Ry(N) = {(s, doc) N~
(a, wr) A (sen < 10)}, then the negation of Ry1(Y)is R(Y) =
{(s, doc) A (a, wr) A (sen > 10)}.

Definition 8 (“©” Operator): Ri(e1) © Rx(ep) represents
a new rule R(e), which means that if a request matches Ry(eq)

3459

IEEE Access

L. Duan et al.: Automated Policy Combination for Secure Data Sharing

and R>(ey), then the request matches Ri(e1) © Ro(ez). The
formal formula as follows:

R(e) = Ri(e1) © Ry(e2) & {r|r € Ri(e1) and r € Ra(e2)}

For example, for P, R (Y) = {(s, (doc, nur)) A (a, wr) A
(trul > 6)}, for P3, R3p(Y) = {(s,doc) N (a,wr) A
(trul > 4)}, then the composition rule R(Y) = R (Y) ©
R3(Y) = {(s, doc) A (a, wr) A (trul > 6)}.

Definition 9 (“©” Operator): Ri(e1) © Ra(er) represents
a new policy rule R(e), which means that if a request matches
Ri(e1), but does not match Ry(e>), then the request matches
Ri(e1) © Ry(en). The formal formula as follows:

R(e) = Ri(e1) © Rae2) < {r|r € Ri(e1), r ¢ Ra(e2)}

For example, for P>, Ry1(N) = {(s, doc) A (a, wr) A(sen <
10)}, for P3, R31(Y) = {(s, doc) A (a, (re, wr)) A (sen > T)},
then the permitted part in combined rule R(Y) = R31(Y) ©
Ry1(N) = {(s, doc) A (a, wr) A (sen > 10)}, the denied part
in combined rule R(N) = {(s, doc) A (a, wr) A (sen < T7)}.

Definition 10 (Condition Constraint): ¢ is a condition
constraint of a rule R, R|z(e) = S|z AN Alg A Cls, where
SAAANC CR(e)and S AN A A C satisfy constraints c.

Intuitively, the rule constraint is to put some restricts on a
rule R, and to delete the parts that do not satisfy c, the size
of rule R is narrowed down. In a policy rule, one subject may
have several attribute constraints. When imposing restrictions
on subjects, we can view it as subject constraints in a policy
rule. Rule combination based on subject constraints can be
reduced to a condition attribute-based values computation.
For example, for Py, Ry (Y) = {(s, (doc, nur)) A (a, wr) A
(trul > 6)}, for P3, R3p(Y) = {(s, doc) A(a, wr)A(trul > 4)},
when computing the combined rule of Ry>(Y) and R3»2(Y), we
put the restrictions on the common subject domains, that is to
say, ¢ is s = doc.

Form the above definitions, we can see that the operations
@, ©, © have the semantics of set-union, set-difference and
set-intersection, which support resolving the most common
issues of policy combination. However, these operators only
support the limited attribute constraints. Thus, we define a
reduce operator as follows.

Definition 11 (“&|s” Operator): P1&|sP> represents a
new policy, § is used to reduce two value domains of the same
attributes into one as the reducing results of two attribute
values under “8” operator.

The operator ““6” can be used between the sets, constants,
numerical interval. For example, for the condition constraints
trul > 6inRy(Y), and trul > 4 in R3,(Y), the reducing result
of the attribute frul in two rules under “§” operator notated
as én(trul > 6, trul > 4) = (trul > 6).

Assuming that the value ranges of a condition attribute
att in P, P>, ..., P, are (att, Vi(atr)), (att, Vo(att)), ...,
(att, Vy(atr)) respectively, the intersection and union of these
condition attribute values can be expressed formally as 6y =
Ui_ Vk(art) and 8n = N}_,Vi(att) , © expresses no any
attribute is considered, so we can regard ® as dom(c).

3460

C. RULE COMBINING ALGORITHMS

XACML has four basic rule combining algorithms. They
are “Deny Overrides (DO)”, “Permit Overrides (PO)”,
“Deny-unless-Permit (DP)”, ‘Permit-unless-Deny(PD)”.
Rule combining algorithms are used to resolve conflicts
among applicable rules. For example, if a policy P contains
two rules, R; permitting a doctor to access the medical data
when his seniority is more than 8, R, allowing a doctor to
access the medical data when his seniority is less than 10.
For an access request » with seniority 9, if it applies to Ry, the
request is permitted, whereas if it applies to R;, the request
is denied, thus R and R; are conflicting rules in P. If P
chooses PO principle to combine rules, then P = R; &
R> = Ryp; if P chooses DO principle to combine rules, then
P=R ® R, =R».

The combination problem of multiple policies Pq,
Py, ..., P, can be expressed formally as P1&Pr& . .. &P,,.
Taking P1 &P, for example, in last paper [39], we discussed
multiple policy combination when all collaborative organi-
zations adopt the same rule combining algorithms, that is
diagonal parts in Table 3. In this paper, we further allow each
collaborative organization to have different rule combining
algorithms as shown by ““x” parts in Table 3.

TABLE 3. Policy combination matrix.

P & Ps PO | DO | DP | PD
PO PO B3 * *

DO * DO * 3
DP * * DP *
PD % * * PD

Assume that P = (R(Y),...,Ri(Y), Ri(N)...,Ri(N)),
i +j = n, where the set of permitted rules in P is notated
as R(Y) = (R1(Y), ..., Ri(Y)), the set of denied rules in P is
notated as R(N) = (Ri(N), ..., Ri(N)).

The rules in a policy can be evaluated according to rule
combining algorithms. In order to describe policy expres-
sions, we present the semantics and the formal logical expres-
sions of these algorithms as follows.

1) PERMIT OVERRIDE (PO)

The result is “permit” if any rule evaluates to “Permit”, the
combined result is “Deny”” if no rule evaluates to ‘“‘Permit”
and at least one policy evaluates to “Deny’’. Otherwise, the
result is “NotApplicable™. Its logical expression is

RE ={rlr e & R/(Y))
=1
J i
Fro @ ARG = trlr € 108 RV © (& RV
RE, = {rlr ¢ R, and r ¢ RY}.
In the same manner, we present the logical expressions of

other three kinds of rule combining algorithms in a policy,
which is shown in Table 4.

VOLUME 4, 2016

L. Duan et al.: Automated Policy Combination for Secure Data Sharing

IEEE Access

TABLE 4. Logical expression of rule combining algorithms (RCA).

RCA
Effect PO DO PD DP
Permit 3r € RY -Ire REAS e RT [3re REVRE, Ir € RY
Deny -3r € RE AT € RY 3r € RE, 3r € RY 3r € REVRE,
NA —3r e REA-3r e R, [-3r e REA-3r € R} - -

2) DENY OVERRIDE (DO)

Deny overrides is the opposite of permit overrides. The
result is “Deny” if any rule is encountered that evaluates to
“Deny”’. The combined result is “Permit” if no rule evaluates
to “Deny” as well as at least one rule evaluates to “Permit”.
Otherwise, the result is “NotApplicable”.

Ry ={rlr € él R(Y)© (ﬁa1 R(N))}

j
Ppo @\ RE = (rir ¢ & RV))
t=1
RE, = {rlr ¢ RV, and r ¢ RY}.

3) DENY-UNLESS-PERMIT (DP)

The result is ““Permit” if any policy evaluates to “‘Permit”,
otherwise, the resultis “Deny”. “NotApplicable” must never
be the result.

RE ={rlr e & R/(Y)}
PDP & t:il
Ry = (rlr € © (GR(Y)).

4) PERMIT-UNLESS-DENY (PD)

The result is “Deny” if any policy evaluates to “Deny”,
otherwise, the result is “Permit”. “NotApplicable” must
never be the result.

J
RY ={rlr € & (—R(N))}
Ppp & ’71
R ={rlr e ® Ri(N))
1=

IV. POLICY OPERATORS

Assuming that each organization adopts attribute-based pol-
icy, the attributes mainly focus on subject, action and condi-
tion. All organizations have the condition attributes and all
the condition attribute values are characterized by the same
set.

Definition 12 (“&” Operator): P1&Py represents a new
access control policy P, which states that if a request satisfies
the permitted rules of both Py and P, , then the request
satisfies the permitted rules in P1&P;, if a request satisfies
the denied rules of both P1 and P; , then the request satisfies
the denied rules in P1&P», i.e., the request satisfy the denied
rules in either P or P>. The formal formula is as follows:

P _ pP P
RY =R} NR}?
P=Pi&P; & { Ry = (RV\RY) U (RIZ\RLY).
RﬁA = others

VOLUME 4, 2016

From the rule combining algorithms, we can see that each
policy could formally describe the combined results of rules.
Thus, each policy could be shown by using rules and rule
combination algebraic operators. What is more, a policy is
also used to validate whether the combined policy satisfy
individual policy of collaborative organizations. The com-
bined policy has the following properties:

Property 1: Let Py, Pa, ..., P, be set of policies, then
P1&Py& . .. &P, is also a policy.

This result is intuitive, so we omit the related derivation
here.

If policies Py, Ps, ..., P, have same subject constraints,
then we have the following properties.

Property 2: Let P(x1le, X215, - - -, Xnle) = (x1le N x2le N
...Nx,lz) be a policy. If a request r satisfies multiple access
rules Ry, Ry, ..., R, and a policy constraint ¢, then we have
r € P(Rile, R2le, - - -, Rule)-

Proof =: for any request r, r € Ry, ..
satisfies constraint ¢, so r € Rjle, ..
r € P(Rile, Ra2le, - - ., Rule);

«: for any r € P(R] |g, R2|E, ey Rnlg), r e (R] |EOR2|EQ
...NRyl¢), thenr € Rz, ..., r € Ry|e, sor satisfies each of
R{, Ry, ..., R, and the constraint c.

Property 3: Let P(—x1|z, X2l - . ., Xnle) = (—x1le Nx2lz N
...Nx,z) be a policy. If a request r satisfies multiple access
rules Ry, ..., R, and a policy constraint ¢, but does not satisfy
Ry, then we have r € P(—R1|z, R2lz, - - . » Rule)-

Proof =: for any request r, r ¢ R|,r € Ry,...,r € R,
and r satisfies constraint ¢, sor € (—R|z),r € Ry|z, ..., F €
Rplz, thus r € P(=Rilz, Role, - - -, Rule)s

«<: for any r € P(—Rilz, Rale, ..., Rule), ¥ € (—=R1le N
p2le N ... N Ryle), then r € (=R1lg),..., 7 € Ryls sor
satisfies each of =R, Ry, ..., R, and the constraint c.

Any two policy combination results are always obtained
by combining the reduced rules under the appropriate rule
combining algorithm chosen in XACML.

Theorem 13: Let P1 and P> be two policies, Py chooses
RCA| and P> chooses RCA; as their rule combining algo-
rithms respectively. There exists a rule combining algorithm
RCA such that RCA|.P1&RCA,.Py =~ RCA.(P1&P>), where
RCA1, RCA,, RCA € {PO, DO, PD, DP}.

The rule combining algorithms RCA| and RCA; are included
in the set {PO, DO, PD, DP}. There are two cases:

Proof: (1) If both P and P; use the same rule combining
algorithms, the conclusion is obvious, that is, RCA; = RCA>,
then RCA = RCA| = RCA; such that RCA1.P1&RCA;.Py =
RCA.(P1&P3). For example, we assume that RCA1 = PO,
RCA> = PO, from the logical expression of a policy

.,y € R, and r
.,¥ € Ryls thus

3461

IEEE Access

L. Duan et al.: Automated Policy Combination for Secure Data Sharing

with different rule combining algorithms, we can see that

P Pi -
R, = @R,(Y),R = {(@RI(N))G(GB Ri(Y))},

Ry = ee R(Y). R} {(ea R(N)) & (@IR(Y”} Thus,
RCA = PO Similarly, other results could be conduced, that
is, when RCA; = CA, € {DO, PD,DP}, RCA = RCA| =
RCA, € {DO, PD, DP}.

(2) If both Py and P, use different rule combining algo-
rithms, that is, RCA1 # RCA3, then we try to find an appro-
priate RCA such that RCA|.P1&RCA,.Py ~ RCA.(P1&P3).
Assume that RCA; = PO, RCA; = DO, from the log-
ical expression of a policy with different rule combining

1
algorithms, we can see that Rl;l = @ Ri,(V), Rzl =
t=1

(Ieialth(N))e(tG_lBlth(Y)), Riz = 2:(Y)9(EJB Ry (N)),

Ru(Y) N 69 Ry (Y) ©

H D~ ﬂ‘@~

J
RY = ® Rou(N), RV NRY =
t=
J
(@ Ry;(N)). When P1&P; chooses DO as its rule combining
t=1

P1&P>

i J
algorithm, R, = é}(R]t(Y) N Rx(Y)) © (EBI(Rlz(N) N
t= 1=

Ry (N))) C RY N Rl;z. Thus, we can choose the more appro-
priate algorithm RCA = DO such that PO.P1&DO.P; ~
DO.P1&P;. Similarly, other results could be conduced. [

V. POLICY COMBINING APPROACH

In this section, we present our approach to combining multi-
ple policies. The major goal of this approach is to automati-
cally generate a new global policy on the strength of a set of
attribute-based access control policies, which are specified by
multiple collaborative organizations, respectively.

Since our approach can ensure to comply to each policy
from different organizations, the generated policy would be
acceptable for each collaborative organization. The overview
of our approach is shown in Fig. 3 and it mainly consists of
the following three steps:

o Step 1 (Policy rule specification): all the collaborative
organizations should adopt an unified scheme and indi-
vidually specify their local policies.

« Step 2 (Rule classification and reduction): classifying all
the rules from different policies according to the same
attribute constraints, and then reducing the rules in each
class into a new one as a rule in the global policy.

« Step 3 (New policy generation): choosing an appropriate
rule combining algorithm to combine the rules in a
global policy.

A. THE PROCEDURE OF POLICY COMBINATION

Our automated multiple policy combination starts with
receiving a set of access control policies Py, P», ..., Py, and
end up with returning a new global policy P, rather than
with returning a policy decision. The detailed description of
Step 1 and Step 2 is presented in a pseudo-code algorithm for
computing P = P1&P>& . . . &Py, as shown in Algorithm 1.

3462

OrgA OrgN
Local Policy 1 Local Policy 2 Local Policy n

Rule(e, Att1)

Rule(e, Attl1) Rule(e, Attli
Rule(;Attk) Rule(e Attk) Rule(e Attk)
_ _

Classify Rules by the Attributes

Reduced Rules

Reduce Rules in each Class
Rule(e, Att2)

Combine Reduced Rules by using Selected RCA

v

New Global Policy

Rule(e, Att1)

FIGURE 3. Approach overview for multiple policies combination.

The detailed description of Step 3 is presented in the other
pseudo-code algorithm for choosing an appropriate rule com-
bining algorithm in XACML shown in Algorithm 2. Next, we
present the details step by step, and take HIS as an example
to illustrate the above algorithms. The detailed procedure of
policy combination is as follows:

Step 1 (Policy Rule Specification): The first step is to
present all the rule expressions in policy of each collaborative
organization, which should adopt the unified specification
for the shared data to individually specify their local policy
requirements through the algebraic operators we presented
in Section 3. The rules with effect in a local policy can
be defined by attribute-based authorization rules, notated as
Re) = {(s,V(s)) A (a,V(a)) A (att,V(att))}. This step
corresponds to the top layer of our framework as shown
in Fig 3.

Step 2 (Rule Classification and Integration): We first clas-
sify all the rules according to the some condition constraints,
i.e., the rules included in each class have the same condition
constraints. Then we compare the effects of the rules in a
class, there are three cases: (1) all the rules have the same
“Permit” effects, (2) all the rules have the same “Deny”
effects, (3) some rules have the “Permit” effects and others
have the “Deny” effects. Later, we transfer the rules with
different effects to the rules with the same effects, and adopt
a mapping operator in our presented algebraic system to
reduce the rules into a set of new rules in a global policy.
This step is formalized as computing P = P1 &Pr& ... &Py,
(Algorithm 1). We compute the values of subject attribute
and action attribute in the rules with the same condition
constraints and the same effects. The detailed procedure of
this step is as follows.

VOLUME 4, 2016

L. Duan et al.: Automated Policy Combination for Secure Data Sharing

IEEE Access

Algorithm 1 Algorithm for Computing P1 &Pr& . .. &P,

Require: n policies Py, P, ..., P,
Ensure: P = P &Pr& ... &P,
1: For any rule R; € P; do
2: Begin
3: {Noted R; as visited;
4: if R;.art defined into P; (1 <j # i < n) then
5: let Ry.att € Pj be the rule such that Ry .att = R;.att
6: Noted Ry.att as visited
/[*Next step to compute the value of R.att in P*//
7: Do case
8: case Rj.e =Y

9: let S = S§; N S and A = A; N Ay; be non-empty
10: if Ryj.e = Y then
11: AddR(e) = S AN A A (att, Vi(att) N Vi(att)) to P(Y)
12: else
13: AddR(e) = S A A A (att, Vi(att) N (—Vi(att))) to P(Y)
14: endif
15: case Rj.e =N
16: if Ry .e; =Y then
17: AddR(e) = S A A A (att, Vi(att) N (—=Vj(att))) to P(Y)
18: else
19: Add Ri(e) = Si A A; A (att, Vi(att)) to R(N)
20: Add R (e) = Sx A Ax A (att, Vi(att)) to R(N)
21: endif
22: endcase
23: else
24: //*R;.att not defined into P *//
25: if R;.e = N then
26: Add Ri(e) = S; AN A; A (att, Vi(att)) to R(N)
27: end if;
28: }
29: endfor;
30: return P = (R(Y), R(N));
31: END

For any condition constraint aff in a policy P;, we first find
all the rules with the constraint a#t (Lines 2-6 in Algorithm 1).
The combination results of the rules contains the following
four cases according to the effects of rules.

Case (1): The effects of all the rules included in a class
are “‘Permit”, these rules have the condition constraints
(att, Vi(att))(1 < k < n). We compute the values of subject
attribute and the action attributes. For example, for a subject
attribute s, we find all the attribute domains in each rule.
Assume ((s, V1(5)), (@, Vi(@))) € Ry, (s, V2(5), (a, V3(a))) €
Ry, ..., ((s, Vu(s)), (a, Vu(a))) € R,, we compute kﬂl Vi (s)

n
and kﬂ Vi(a) as the values of the subject s and the action
a sepz;rately. For each (att, Vi(att)) € Ri(Y), we compute
n
(att, kml Vi(att)) as a condition constraint of the subject s in

a combined rule R, which is shown in Lines 7-10. Then the
combination results in a class with the condition constraint
¢ = att are added to R(Y), so we have

R(Y)le=an = {(s, Mgy V() A (@, N Vi(a)

Alatt, ,ﬁ] Vi(ait))).

Case (2): The effects of some rules included in a class
are “Permit”, and the effects of other rules are “Deny”.

VOLUME 4, 2016

Without loss of generality, we can assume that (att, Vi (att)) €
Pr(Y),k = 1,...,n — 1 and (att, V,(att)) € R,(N), if
the subject attribute (s, mzzlvk (s)) and the action attribute

n—1
(a,N}_,Vk(a)) are existing, we compute (att, kﬁl Vi(att) N

—V,(att)) as the condition constraints in the rzduced rule
R(Y), as shown in Lines 11-17. So we have

R(Y)le=an = (s, Mgy V() A (@, N Vi(a)

Alatt, :r:wi Vi(att) N (=V,(att))).

Case (3): The effects of all the rules with attribute con-
straint (att, Vi(att)) (1 < i < n) in a class are “Deny”. All
rues should be reduced to the new rule set in the global policy
as shown in Lines 18-25.

Case (4): For the condition constraint (att, V(att)) in a pol-
icy P;, we can not find the same condition constraints in other
policies. We add the rule with the constraint (atf, V (att)) into
the rule set in the global policy (Lines 2-6 in Algorithm 1).

When traversing all the condition constraints defined in
the rules from each organization, we obtain the reduced rules
concluded in the global policy.

Algorithm 2 Choosing RCA in P

Require: A set of RCAs {PO, DO, PD, DP}
Ensure: Rule combining algorithm RCA in P

1: For any rule combining RCA| in P and RCA; in P»;
2: if RCA| # RCA; then
3: if RCA| = PO and RCA, € {DO, PD, DP} then
4: RCA = RCAy;
5: if RCA| = PD and RCA; € {DO, DP} then
6: RCA = DO;
7: if RCA| = DO and RCA; = DP then
8: Error;
9: else
10: RCA = RCA| = RCAy;
11: end if
12: endFor
13: return Rule combining algorithm RCA in P.

Step 3 (New Policy Generation): Choosing the appropri-
ate rule combination algorithm RCA to address combination
issues of the new rule set as shown in Algorithm 2. RCA is
chosen according to the rule combining algorithms used in
each organization. Each organization can choose four kinds of
rule combining algorithms, so there are 16 cases of algorithm
choices for any two policies P; and P;. If two policies have
the same rule combining algorithms, the global policy has the
same algorithm as shown in Lines 9-11. If two policies have
different rule combining algorithms RCA| and RCA,, RCA in
the global policy is the same to either RCA| or RCA>, shown
in Lines 2-8. There is a special case, if one policy uses rule
combining algorithm DO, and the other uses rule combining
algorithm DP, the two policies cannot be combined due to
the conflict logics. What is more, the chosen RCA can be
identified by existing rule combining algorithms in XACML
policy specification. This step is processed by the bottom
component in our framework. Here, we only present choosing

3463

IEEE Access

L. Duan et al.: Automated Policy Combination for Secure Data Sharing

algorithm of RCA for two policies, for multiple policies, RCA
can be obtained through multiple iterations.

B. CASE STUDY

In HIS example, the global policy of OrgA, OrgB, OrgC and
OrgD is obtained by combining each local policy from these
organizations. Based on our presented fine-grained policy
combination algorithm, we first formally express all the rules
in each local policy, that is Step 1 as follows.

Step 1: Specifying all the rules in each policy Pi, P2, P3
and P4. In policy Py, there is one rule R11. Its effect is permit,
thus, Rq1 can be formally expressed as

R11(Y) = {(s, doc) A (a, wr) A (trul > 8)}.

In policy P;, there are two rules R; and Ry,. The effect of
rule Ry is deny, and the effect of rule Ry; is permit, thus, Ry
and Ry, can be formally expressed as

Ry1(N) = {(s, doc) A (a, wr) A (sen < 10)};

R (Y) = {(s, (doc, nur) A (a, wr) A (trul > 6)}.

Analogously, in policy P3, R31, R3> and R33 can be for-
mally expressed as

R31(Y) = {(s, doc) A (a, (re, wr)) A (sen > T)};

R3(Y) = {(s, doc) A (a, wr) A (trul > 4)};

R33(N) = {(s, nur) A (a, re) A (secl < 6)}.

In policy P4, Ra1 and R4; can be formally expressed as

R41(N) = {(s, doc) A (a, wr) A (sen < 5)}.

Ry (Y) = {(s, (doc, nur) A (a, (re, wr)) A (trul > 3)}.

Step 2: Reducing all the rules into a new rule set in the
global policy.

For the above rule expressions, we can see that the rules Ry
in Py, Ry in P>, R3p in P3 and R4 in P4 have the common
trust level constraint trul and the same effect permit, so
R11, R22, R3p and R4y are compatible rules. Thus, §-operator
should be the interaction of the attribute values of Vi (trul),
Vao(trul), V3o (trul) and Vao(trul). These four rules Ry, Ry,
R35 and R4, could be reduced into Ry (Y') as arule in the global
policy, that is

Ri(Y) = R11&R»&R3&R4y = {(s,doc) A (a, wr) A
(trul > 8)}&s,{(s, (doc,nur) A (a,wr) A (trul >
6)}&s,{(s, doc) A (a, wr) A (trul > 4)}&s.{(s, (doc, nur) A
(a, (re, wr)) A (trul > 3)} = {(s, doc) A (a, wr) A (trul > 8)}.

For the condition attribute sen, there is no constraint sen
in Py, the rules Ry in P, R3; in P3 and R4; in P4 have
the common seniority attribute constraint sen, but they have
different effects, so R3; are conflicting with R>; and Ry;.
These rules could be reduced into R>(Y) (or Rp(N)) as arule
included in the global policy. We consider R»(Y) here. Thus,
§-operator should be the subtraction of the attribute values of
V31(sen) and V,(sen) and V4 (sen), that is

Ry(Y) = {(s, doc)\(a, (re, wr))A(sen > T)}&s_{(s, doc)A
(a,wr) A (sen < 5)}&s_{(s, doc) A (a, wr) A (sen < 10)} =
{(s, doc) A (a, wr) A (sen > 10)}.

There is a special case that for the attribute constraint sec/
in rule R33 with the effect “Deny’’, we cannot find the same
constraint in other policies. In this case, R33 could be reduced
into R3(N). That is,

R3(N) = R33(N) = {(s, nur) A (a, re) A (secl < 6)}.

3464

Policy2.xml
<Policy Policyld="Policyl" RuleCombiningAlgId="...">
<Rule RuleId="Rulell" Effect="deny">
<Target>
<Subjects>
<Subject>
<SubjectMatch MatchId="..function:rfc822Name-match">
<AttributeValue DataType="..#string">
Doctor
</AttributeValue>
<SubjectAttributeDesignator AttributeId="..:subject-id"/>
</SubjectMatch>
</Subject>
</Subjects>
<Resources>
<Resource>

<ResourceMatch MatchId="..:anyURI-equal">
<AttributeValue DataType=".. #anyURI">
http://datashare.org/orgB/data/
</AttributeValue>
<ResourceAttributeDesignator Attributeld="resource-id"/>
</ResourceMatch>
</Resource>
</Resources>
<Actions>
<Action>
<ActionMatch MatchId="..:string-equal">
<AttributeValue DataType=".. #string">
Write
</AttributeValue>
<ActionAttributeDesignator AttributeId="..:action-id"/>
</ActionMatch>
</Action>
</Actions>
</Target>
<Condition FunctionId="..: integer-less-than-or-equal ">
<BApply FunctionId="..:integer-one-and-only">
<EnvorinmentAttributeDesignator AttributeId= doctor-sen />
</Rpply>
<AttributeValue DataType=".. #integer">10</AttributeValue>
</Condition>
</Rule>
<Rule RuleId="Rulel2" Effect="Permit"/>
<Target>
<Subject AttributeValue =" Doctor " and “Nurse” >
<Resource AttributeValue ="http://datashare.org/orgB/data/" >
<Action AttributeValue =" Write ">
</Target>
<Condition FunctionId="..: integer-greater-than-or-equal ">
<Apply FunctionId="..:integer-one-and-only">
<EnvorinmentAttributeDesignator Attributeld= trul />
</Rpply>
<AttributeValue DataType=".. #integer">6</AttributeValue>
</Condition>
</Rule>
</Policy>

FIGURE 4. Policy P,.

Thus, the global policy P = {R{(Y), R2(Y), R3(N)}.

Step 3: Choosing the optimum algorithm to combine the
reduced rules.

For Py, P, P3 and P4, assume that P, P, and P4 are gener-
ated by using PO rule combining algorithm to combine their
own rules, and P3 is generated by using DO rule combining
algorithm to combine R31, R3; and R33. Thatis, RCA| = PO,
RCA, = PO, RCA3 = DO and RCA; = PO. From the
aspect of requests, a policy can be the set of all the permitted
requests, all the denied requests and all the NotApplicable
requests. Thus, for each policy P; (1 < i < 4), we have
P = (RI;’, RJI\J,", Rzk), we compute the intersection of subjects
from Py, P;, P3, Py.

In HIS Example, policy P; = (RI;' , R]}\),1 , Rf,i‘), in which
RI;] = {(s,doc) A (a,wr) A (trul > 8)}. Policy P, =
(Ri;z, R;z, R;&), where R};Z = {(s, (doc, nur)) A (a, wr) A
(trul > 6)}, Rz}f = {(s, doc) A (a, wr) A (sen < 10)}. Policy
Py = (RV*, RV, RE), where RY? = {((s, doc) A (a, wr) A
((sen > 7) A (trul > 4))}, 1;’;3 = {(s.nur) A (a,re) A
(secl < 6)}. Policy P4 = (R, Rf\);‘, Rf:,z), where Ri“ =
{(s, (doc, nur)A(a, (re, wr)) A(trul > ?a)},RZ2 = {((s, doc) A
(a, wr) A (sen < 5)) S ((s, (doc, nur) A (a, (re, wr)) A (trul >
3))}, the common subject is doctor in Py and P;.

VOLUME 4, 2016

L. Duan et al.: Automated Policy Combination for Secure Data Sharing

IEEE Access

B Ch\Windows\system32\CMD.exe

create JAXBContext.newlnstance
create an Unmarshaller...

create JAXBContext.newInstance

create an Unmarshaller...

To create JAXBContext.newlnstance
To create an Unmarshaller...

To create JAXBContext.newInstance
To create an Unmarshallewr...

FIGURE 5. Policy Combiner.

DO is chosen as an algorithm for combining new rules in
a global policy.

From the above discussion, the policy combination result
is a new policy P,

R =Ri(Y)® R:(Y) © R3(N),

RY = R3(N)

where

R((Y) = {(s, doc) A (a,wr) A (trul > 8)};

R>(Y) = {(s, doc) A (a,wr) A (sen > 10)};

R3(N) = {(s, nur) A (a, re) A (secl < 6)}

That is to say, doctors are allowed to write medical data
if their seniority is more than 10 years, and their trust level
is greater than or equal to 8. However, any nurses are not
allowed to write data when their security level is less than
or equal to 6.

C. COMPLEXITY ANALYSIS

The generation of a global policy mainly involves two parts,
one is to compute P = P1&P>&...&P, (Algorithm 1)
and the other is to choose rule combining algorithm used
in P (Algorithm 2).

We first consider the policy combination algorithm (Algo-
rithm 1), where n is the number of policies. Let N, denote
the number of rules in all the policies, and N, denote the
number of attribute constraints in all the policies. Let N,;
denote the number of the rules in a policy P; (1 < i < n)
and the number of all the rules is N, = X! | Ny, so Lines
1-3 can be executed in time O(N,; - Ny1). Let N,; denote the
number of the attribute constraints on the rules in a policy
P; (1 < i < n),soforeach P; (2 < j < n), Lines 4- 6
can be executed in time O(N; - (Z]’.LZNU-)). Thus, Lines 1- 6
can be executed in time N, - N,;. Let Ng; denote the number
of all the subjects in a policy P; (1 < i < n), according to

VOLUME 4, 2016

C:slsersswsysDesktopsxacmlsxacml3. java — 2816—4-5>java PolicyCombiner Policuyl .xm
1 Policy2.xml Policy3d.xml Policy4.xml MewPolicy.xml

instance an obhject from a xml file: Policyl.xml

instance an object from a xml file: Policy2._xml
The new policy is written to the MewPolicy.xml

To instance an object from a xml file: Policwy3.xml
The new policy is written to the MewPolicy.xml

To instance an object from a xml file: Policy4.xml
The new policy is written to the MewPolicy.xml
C:slserswsysDesktop xacmlsxcacmld. java — 201686 -81>_

===

idea of hash-based approach to computing intersection set,
time complexity of computing intersection set of the subjects
is linear, so in Line 8, S = §; N S; can be executed in
time O(ELINS,-) £ O(N,), where Ny denotes the number
of common subjects defined in all policies. Similarly, A =
A; N Ay can be executed in time O(N,), where N, denotes the
number of common actions defined in all policies. So Lines
7-27 can be executed in time O(N;) - O(N,). One policy has
only one rule combining algorithm, so the executed time of
RCA choosing algorithm in a global policy (i.e., Algorithm
2)is O(1). Hence, the overall complexity of policy combining
algorithm procedure is O(N; Ny -Ng-N,). Complexity results
show that our policy combination approach is efficient.

VI. IMPLEMENTATION

To demonstrate the concept, we implemented the above algo-
rithms in Java as a simple policy combination tool. We also
carried out experiments to evaluate the performance of gen-
erating a common policy in terms of the number of policies,
as well as the number of rules in each policy.

A. POLICY COMBINATION TOOL
We adopted the built-in Java Architecture for XML Bind-
ing (JAXB) [37] tool (i.e. xjc) of Oracle JDK 7.0_79 to gener-
ate a set of xacml java code from XACML v3.0 schema [38],
i.e. xacml-core-v3-schema-wd-17.xsd. Then we used the
generated xacml java code to implement the policy combi-
nation tool. The current implementation can take multiple
policies in XACML as inputs, e.g. Policyl.xml is shown in
Fig. 1, it states that doctors are allowed to write medical data
if their seniority is greater than or equal to 8.

Policy2.xml is shown in Fig. 4, which states that doctors
and nurses are allowed to write medical data if their trust level

3465

IEEE Access

—

. Duan et al.: Automated Policy Combination for Secure Data Sharing

NewPolicy.xml|

<Policy Policyld="Policyl" RuleCombiningAlgld="deny-override">
<Rule Ruleld="Rulecl" Effect="permit">
<Target>

<Subject Attributevalue ="
<Resource AttributeValue ="http://datashare.org/orgaA/data/" >
<Resource AttributeValue ="http://datashare.org/orgB/data/" >
>
>

Doctor ">

<Resource AttributeValue ="http://datashare.org/orgC/data/"
<Resource AttributeValue ="http://datashare.org/orgD/data/"

<Action AttributeValue =" Write ">
</Target>
<Condition FunctionId="..: integer-greater-than-or-equal ">
<Apply FunctionId="..:integer-one-and-only">
<EnvorinmentAttributeDesignator Attributeld= doctor-trul />
</Rpply>
<AttributeValue DataType=".. #integer">8</AttributeValue>
</Condition>
</Rule>
<Rule RuleId="Rulec2" Effect="Permit"/>
<Target>
<Subject AttributeValue =" Doctor ">

<Resource AttributeValue ="http://datashare.org/orgA/data/" >
<Resource AttributeValue ="http://datashare.org/orgB/data/" >
<Resource AttributeValue ="http://datashare.org/orgC/data/" >
<Resource AttributeValue ="http://datashare.org/orgD/data/" >
<Action AttributeValue =" Write ">

</Target>

<Condition FunctionId integer-greater-than ">
<Apply FunctionId="..:integer-one-and-only">
<EnvorinmentAttributeDesignator AttributeId= doctor-sen />

</Apply>
<AttributeValue DataType=".. #integer">10</AttributeValue>
</Condition>
</Rule>
<Rule RuleId="Rulec3" Effect="deny"/>
<Target>
<Subject AttributeValue =" Nurse ">
<Resource AttributeValue ="http://datashare.org/orgA/data/" >
<Resource AttributeValue ="http://datashare.org/orgB/data/" >
<Resource AttributeValue ="http://datashare.org/orgC/data/" >
<Resource AttributeValue ="http://datashare.org/orgD/data/" >
<Action AttributeValue =" Read ">
</Target>
<Condition FunctionId="..: integer-less-than-or-equal ">
<Apply FunctionId="..:integer-one-and-only">
<EnvorinmentAttributeDesignator AttributeId= nurse-secl />
</Rpply>
<AttributeValue DataType=".. #integer">6</AttributevValue>
</Condition>
</Rule>
</Policy>

FIGURE 6. Combined Policy of P;, P,, P5 and P,.

is greater than or equal to 6. However, any doctors are not
allowed to write medical data if their seniority is less than
or equal to 10. For space limitation, we omit Policy3.xml and
Policy4.xml. Policy Combiner can automatically combine the
four policies into a new policy, i.e. NewPolicy.xml as shown
in Fig. 6, which shows the combined result is that doctors
are allowed to write medical data if their seniority is greater
than 10 and their trust level is greater than or equal to 8.
However, any nurses are not allowed to write data when their
security level less than or equal to 6. Fig. 5 shows the process
of the automatic process of combining four policies Policyl,
Policy2, Policy3 and Policy4 into one NewPolicy. Optimiz-
ing this tool to support more rule combining algorithms for
combining multiple policies is one of our future works.

B. POLICY GENERATION PERFORMANCE
In order to evaluate our policy combination tool and the
performance of our algorithms, we measured the average
processing time of generating a local policy with different
number of rules, as well as generating a new global policy
with different number of policies. All the experiments were
carried out on a Pentium(R) Dual-Core CPU 3.20GHZ PC
with 4G RAM.

Each local policy is generated by the different rule com-
bining algorithms PO, DO, PD, DP. Fig.7 shows the average

3466

0.25 T - .
—e— PO

0.241 —8—D0|]
—+— PD

0.23r —46—DP| 4

o
N
N

Avg. local policy generation time (s)
)
o [N}
o N

°
<8

o
®
L

0.17 L L
2

Number of rules

FIGURE 7. Local policy generation.

processing time of generating one local policy by combining
the random numbers of policy rules, which are specified by
using the attribute constraints and some logical expressions.
We can observe in Fig.7 that different rule combining algo-
rithms have little affects on the time of local policy genera-
tion. What is more, as the number of rules are increased, the
curves of processing time maintain stable, which show each
local policy can deal with a random number of rules and has
strong extensibility.

Avg. global policy generation time (s)

8
Number of policies

FIGURE 8. Global policy generation.

Fig.8 shows the average processing time of generating
one global policy from multiple local policies. The number
of policies rose to 64, each local policy is generated by
some rules range among one, two and four. The test results
reported in Fig.8 show that our policy combination approach
can handle a large number of attribute constraints in each
collaborative policy.

VIl. CONCLUSIONS

In this paper, in order to combine XACML policies for
data sharing among multiple organizations, we proposed a
rule reducing approach and developed a proof-of-concept
implementation of the automated policy combination. The
rules with different condition attribute constraints have dif-
ferent effects. For the rules with the common attribute con-
straints, we compared the attribute values and the effects of

VOLUME 4, 2016

L. Duan et al.: Automated Policy Combination for Secure Data Sharing

IEEE Access

these rules. Under this comparison, rule combination was
reduced to the attribute-based combination. The final reduced
rule set was obtained after the attribute constraints traversed
through all attributes involved in the rules. Then, the reduced
rules were combined into a new global policy by choosing
the appropriate rule combining algorithm in XACML. We
considered the scenarios that organizations were defined by
four kinds of rule combining algorithms. Our approach main-
tained various policies compliance in both of syntax level
and semantic level, and also supported a number of attribute
constraints in each local policy.

Our future work will focus on comparing the effectiveness
and extensibility of existing policy combination approaches,
and find the most efficient approach with low cost to combine
policies of cross-organization collaborations.

REFERENCES

(1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

H. Tong, J. Cao, S. Zhang, and M. Li, “A distributed algorithm for Web
service composition based on service agent model,” IEEE Trans. Parallel
Distrib. Syst., vol. 22, no. 12, pp. 2008-2021, Dec. 2011.

B. Alhagbani and C. Fidge, “Access control requirements for processing
electronic health records,” in Proc. Bus. Process Manage. Workshops,
2008, pp. 371-382.

C. Clifton et al., “Privacy-preserving data integration and sharing,” in
Proc. 9th ACM SIGMOD Workshop Res. Issues Data Mining Knowl.
Discovery, 2004, pp. 19-26.

Y.-J. Hu and J.-J. Yang, “A semantic privacy-preserving model for data
sharing and integration,” in Proc. Int. Conf. Web Intell., Mining Semantics,
2011, Art. no. 9.

OCareCloudS. (2014). OCareCloudS—Overview Projects—iMinds.
[Online]. Available: http://www.iminds.be/en/research/overview-
projects/p/detail/ocareclouds-2

D. D. He and J. Yang, “Authorization control in collaborative healthcare
systems,” J. Theoretical Appl. Electron. Commerce Res., vol. 4, no. 2,
pp. 88-109, 2009.

M. Decat, D. Van Landuyt, B. Lagaisse, and W. Joosen, “On the need
for federated authorization in cross-organizational e-health platforms,” in
Proc. 8th Int. Conf. Health Informat., vol. 8, pp. 540-546, Jan. 2015.

S. S. Yau and Z. Chen, “Security policy integration and conflict recon-
ciliation for collaborations among organizations in ubiquitous computing
environments,” in Proc. 5th Int. Conf. UIC, 2008, pp. 3—19.

B. Carminati, E. Ferrari, and P. C. K. Hung, “Security conscious Web
service composition,” in Proc. IEEE Int. Conf. Web Services (ICWS),
Sep. 2006, pp. 489—496.

F. Liang, H. Guo, S. Yi, and S. Ma, “‘A multiple-policy supported attribute-
based access control architecture within large-scale device collaboration
systems,” J. Netw., vol. 7, no. 3, pp. 524-531, 2012.

L. Iliadis, M. Papazoglou, and K. Pohl, Eds. ‘“Resolving policy conflicts—
Integrating policies from multiple authors,” in Advanced Information
Systems Engineering Workshops (Lecture Notes in Business Information
Processing), vol. 178. Cham, Switzerland: Springer, 2014, pp. 310-321.
S. Hada and M. Kudo. XML Access Control Language:
Provisional Authorization for XML Documents. [Online]. Available:
http://xml.coverpages.org/xaclspec200102.html

P. Ashley, S. Hada, G. Karjoth, C. Powers, and M. Schunter, (2003).
Enterprise Privacy Authorization Language (EPAL 1.2), Submission to
W3C. [Online]. Available: http://www.w3.0rg/2003/p3p-ws/pp/ibm3.html
OASIS XACML TC. (Jan. 2013). eXtensible Access Control Markup
Language (XACML) Version 3.0. [Online]. Available: https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=xacml

X. Zhang, Y. Li, and D. Nalla “An attribute-based access matrix model,”
in Proc. ACM Symp. Appl. Comput., 2005, pp. 359-363.

D. FE Ferraiolo, S. Gavrila, V. Hu, and D. R. Kuhn, “Composing and
combining policies under the policy machine,” in Proc. 10th ACM Symp.
Access Control Models Technol. (SACMAT), New York, NY, USA, 2005,
pp. 11-20.

VOLUME 4, 2016

(17]

(18]

[19]

[20]

(21]

[22]

(23]

(24]

[25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]
(38]

(391

M. Backes, M. Diirmuth, and R. Steinwandt, “An algebra for compos-
ing enterprise privacy policies,” in Proc. 9th Eur. Symp. Res. Comput.
Secur. (ESORICS), vol. 3193. 2004, pp. 33-52.

L. Y. Wang, D. Wijesekera, and S. Jajodia, “A logic-based frame-
work for attribute based access control,” in Proc. ACM Workshop
Formal Methods Secur. Eng. (FMSE), New York, NY, USA, 2004,
pp. 45-55.

K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C. Tschantz,
“Verification and change-impact analysis of access-control policies,” in
Proc. 27th ICSE, 2005, pp. 196-205.

F. Turkmen, J. den Hartog, S. Ranise, and N. Zannone, “Analysis of
XACML policies with SMT,” in Principles of Security and Trust. Berlin,
Germany: Springer, 2015, pp. 115-134.

P.Rao, D. Lin, E. Bertino, N. Li, and J. Lobo, “An algebra for fine-grained
integration of XACML policies,” in Proc. ACM Symp. Access Control
Models Technol., 2009, pp. 63-72.

P. Rao, D. Lin, E. Bertino, N. Li, and J. Lobo, “Fine-grained integration
of access control policies,” Comput. Secur., vol. 30, nos. 2-3, pp. 91-107,
Mar./May 2011.

M. Siponen and A. Vance, ‘“‘Neutralization: New insights into the problem
of employee information systems security policy violations,” MIS Quart.,
vol. 34, no. 3, pp. 487-502, Sep. 2010.

D. Lin, P. Rao, E. Bertino, N. Li, and J. Lobo, “Policy decomposition for
collaborative access control,” in Proc. ACM Symp. Access Control Models
Technol., 2008, pp. 103-112.

K. Brown, M. Hayes, D. Allison, M. A. M. Capretz, M. Sazio, and
R. Mann, “Fine-grained filtering to provide access control for data pro-
viding services within collaborative environments,” Concurrency Com-
put., Pract. Exper, vol. 27, no. 6, pp. 1445-1466, Apr. 2015, doi:
10.1002/cpe.3167.2013.

S. Walraven, B. Lagaisse, E. Truyen, and W. Joosen, “Dynamic compo-
sition of cross-organizational features in distributed software systems,”
in Distributed Applications and Interoperable Systems. Berlin, Germany:
Springer, 2010, pp. 183-197.

J. Mclean, “The algebra of security,” in Proc. IEEE Symp. Secur. Privacy,
Apr. 1988, pp. 2-7.

P. Bonatti, S. D. C. di Vimercati, and P. Samarati, “An algebra for com-
posing access control policies,” ACM Trans. Inf. Syst. Secur., vol. 5, no. 1,
pp. 1-35, Feb. 2002.

D. Wijesekera and S. Jajodia, “A propositional policy algebra for access
control,” ACM Trans. Inf. Syst. Secur., vol. 6, no. 2, pp. 286-325,
May 2003.

P. Mazzoleni, B. Crispo, S. Sivasubramanian, and E. Bertino, “XACML
policy integration algorithms,” ACM Trans. Inf. Syst. Secur., vol. 11, no. 1,
pp. 852-869, Feb. 2008.

N. Li et al., “Access control policy combining: Theory meets practice,” in
Proc. ACM SACMAT, 2009, pp. 135-144.

V. D. Gligor, H. Khurana, R. K. Koleva, V. G. Bharadwaj, and J. S. Baras,
“On the negotiation of access control policies,” in Proc. 9th Int. Workshop
Secur. Protocols, 2001, pp. 188-201.

P. McDaniel and A. Prakash, “Methods and limitations of security policy
reconciliation,” ACM Trans. Inf. Syst. Secur., vol. 9, no. 3, pp. 259-291,
Aug. 2006.

H. Wang, S. Jhat, M. Livny, and P. D. McDaniel, “Security policy
reconciliation in distributed computing environments,” in Proc. 5th
IEEE Int. Workshop Policies Distrib. Syst. Netw. (POLICY), Jun. 2004,
pp. 137-146.

H. Gimpel, H. Ludwig, A. Dan, and B. Kearney, “PANDA: Spec-
ifying policies for automated negotiations of service contracts,” in
Service-Oriented Computing—ICSOC. Berlin, Germany: Springer, 2003,
pp. 287-302.

C. D. P. K. Ramli, H. R. Nielson, and F. Nielson, ‘“The logic of XACML,”
in Formal Aspects of Component Software. Berlin, Germany: Springer,
2012, pp. 205-222.

Java Architecture for XML Binding (JAXB). [Online]. Available:
http://www.oracle.com/technetwork/articles/javase/index-140168.html
xacmlcorev3schemawdl7.xsd. [Online]. Available: http://docs.oasis-
open.org/xacml/3.0/xacml-core-v3-schema-wd-17.xsd

L. Duan et al., “Automated policy combination for data sharing across
multiple organizations,” in Proc. IEEE Int. Conf. Services Comput. (SCC),
Jun./Jul. 2015, pp. 226-233.

3467

IEEE Access

L. Duan et al.: Automated Policy Combination for Secure Data Sharing

LI DUAN received the M.Sc. degree from
the Mathematical School, Zhengzhou University,
Zhengzhou, China. She is currently pursuing the
Ph.D. degree with the State Key Laboratory of
Networking and Switching Technology, Beijing
University of Posts and Telecommunications,
Beijing, China. She is also pursuing the Joint-
Training Ph.D. degree with Data6l, CSIRO,
Australia. Her main research interests include ser-
vices computing, services security and privacy of
distribution system, and policy combination.

YANG ZHANG received the Ph.D. degree in
computer applied technology from the Institute of
Software, Chinese Academy of Sciences, in 2007.
He is currently with the State Key Laboratory of
Networking and Switching Technology, Beijing
University of Posts and Telecommunications,
China. His team makes scientific research on
mobile service platform. He has authored papers
concern anonymous routing protocols, anonymous
authentication protocols, design and implementa-
tion of anonymous systems, and pseudonym systems. His research interests
include security and privacy of anonymous systems.

SHIPING CHEN received the Ph.D. degree
in computer science from the University of
New South Wales, Sydney, NSW, Australia. From
1990 to 1999, he worked on real-time control,
parallel computing, and CORBA-based Internet
gaming systems in research institutes and the
IT industry. Since joining CSIRO in 1999, he
has worked on a number of middleware-related
research and consultant projects, including soft-
ware architecture, software testing, software per-
formance modeling, and trust computing. He is currently a Research
Scientist with Digital Productivity Flagship, CSIRO, Australia, and also an
IT Professional with over 20 years of research experience and combined
R&D skills.

SHUAI ZHAO is a Post-Doctoral Fellow
the State Key Laboratory of Networking and
Switching Technology, Beijing University of Posts
and Telecommunications. His current research
interests include Internet of Things and service
computing.

SHIYAO WANG is currently pursuing the
M.S. degree with the State Key Laboratory of
Networking and Switching Technology, Beijing
University of Posts and Telecommunications,
Beijing, China. She is majoring in computer
science and technology. Her research interests
include service computing and mobile service
platform.

3468

DONGXI LIU was a Researcher with the Uni-
versity of Tokyo from 2004 to 2008. He joined
CSIRO in 2008. His current research focuses on
the processing of encrypted data with the fully
homomorphic encryption (FHE) scheme invented
by him. His FHE scheme shows that the noise man-
agement techniques essential for the existing FHE
J schemes are not necessary. His FHE scheme is
l practically efficient and simple to understand and

implement. The aim of his current research is to
support secure outsourced computations on untrusted computing platforms,
such as a public cloud.

REN PING LIU (M’09-SM’14) received the
B.E. (Hons.) and M.E. degrees from the
Beijing University of Posts and Telecommuni-
cations, China, and the Ph.D. degree from the
University of Newcastle, Australia. He was a Prin-
cipal Scientist with CSIRO, where he led wireless
networking research activities. He is currently a
Professor with the School of Computing and Com-
munications, University of Technology Sydney,

o where he leads the Network Security Laboratory,
Global Big Data Technologles Centre. He has authored over 100 research
publications. His research interests include Markov analysis and QoS
scheduling of wireless networks. He received the Australian Engineering
Innovation Award and the CSIRO Chairman’s Medal. He has supervised
over 30 Ph.D. students. He is the Founding Chair of the IEEE NSW VTS
Chapter. He served as the TPC Chair for BodyNets2015, ISCIT2015, and
WPMC2014, and the OC Co-Chair for VTC2017-Spring, BodyNets2014,
ICUWB2013, ISCIT2012, and SenSys2007, and on the Technical Program
Committee in a number of IEEE conferences. He specializes in protocol
design and modeling, and has delivered networking solutions to a number of
government agencies and industry customers.

BO CHENG received the Ph.D. degree in com-
puter science from the University of Electronics
Science and Technology, China, in 2006. He is
currently a Professor with the State Key Labo-
ratory of Networking and Switching Technology,
Beijing University of Posts and Telecommuni-
cations. His research interests include service
computing, Internet of Things, and multimedia
communications.

JUNLIANG CHEN is currently a Professor with
the Beijing University of Posts and Telecommu-
nications. His research interests are in the area
of service creation technology. He was selected
as a member of the Chinese Academy of Science
in 1991, and a member of the Chinese Academy of
Engineering in 1994.

VOLUME 4, 2016

