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Abstract. Consider a bipartite system, of which one subsystem, A, undergoes
a physical evolution separated from the other subsystem, R. One may ask under
which conditions this evolution destroys all initial correlations between the
subsystems A and R, i.e. decouples the subsystems. A quantitative answer to
this question is provided by decoupling theorems, which have been developed
recently in the area of quantum information theory. This paper builds on
preceding work, which shows that decoupling is achieved if the evolution on A
consists of a typical unitary, chosen with respect to the Haar measure, followed
by a process that adds sufficient decoherence. Here, we prove a generalized
decoupling theorem for the case where the unitary is chosen from an approximate
two-design. A main implication of this result is that decoupling is physical, in the
sense that it occurs already for short sequences of random two-body interactions,
which can be modeled as efficient circuits. Our decoupling result is independent
of the dimension of the R system, which shows that approximate two-designs
are appropriate for decoupling even if the dimension of this system is large.
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1. Introduction

Consider a joint quantum system, consisting of subsystems A and R. We say that A is
decoupled from R if the joint state τAR has product form τA ⊗ τR. Operationally, this means
that the probability distributions obtained upon measuring the A and R systems are statistically
independent. In this work, we are interested in processes acting locally on system A, which may
initially be correlated to R, such that A ends up being decoupled from R.

Processes that decouple a system A from R play an important role in various information
theoretic applications. Examples abound in the area of quantum Shannon theory: state
merging [23] and state transfer [20]. Other important theorems, such as the best known
achievable rates for sending quantum information through a quantum channel [21], can be
proven concisely via decoupling. Moreover, arguments referring to decoupling have been used
in a physical context and, for example, deepened our insight into the black hole information
paradox [22] and the role of negative conditional entropies in thermodynamics [10].

In [13], a decoupling theorem has been derived that generalizes the previous decoupling
theorems used in the aforementioned work. There one considers a situation where a subsystem
A of a joint system AR undergoes an evolution while R is left unchanged. The mapping
describing the evolution of A is conceptually split into two parts: a unitary followed by an
arbitrary trace-preserving and completely positive map T = TA→B . The decoupling theorem
of [13] (see also [14]) states that if an initial state ρAR and a process T are fixed and the unitary
is taken either from the Haar measure or from a two-design [9], then the expected distance of
the resulting state from a decoupled state is bounded in terms of entropic quantities

E
U

‖T ((UA⊗1R)ρAR(UA⊗1R)†) − ωB ⊗ ρR‖1 6 2−
1
2 Hmin(A′

|B)ω−
1
2 Hmin(A|R)ρ .

Here the operator ω only depends on the map TA→B and, in particular, is independent of
the chosen input state, ρAR. The min-entropy, Hmin(A|R)ρ (cf definition 1 below), quantifies
the uncertainty an observer with access to R has about the A subsystem prior to the
decoupling operation. The quantity Hmin(A′

|B)ω measures how well the mapping TA→B

conserves correlations. It quantifies the uncertainty of an observer with access to the output
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subsystem B about a copy A′ of the input state space, after the map TA→B is applied to a
maximally entangled state on AA′. The min-entropy can be seen as a generalization of the well-
known von Neumann entropy in the following sense. If a smoothed version of the min-entropy
(cf definition 2) is evaluated for n identical copies of the same state then in the asymptotic limit
of large n it reduces to the von Neumann entropy (cf equation (2)). Thus an important special
case of the above relation arises when we consider the limit of a large number of identical
copies of states, ρAR, and channels, TA→B , applied to them. In this scenario the subsystems
decouple if

H(A′
|B)ω + H(A|R)ρ > 0

holds for the conditional von Neumann entropies of ω and ρ. Roughly, this inequality establishes
a condition on the correlation in the initial state ρAR and the ‘decoupling power’ of the map
TA→B , which is sufficient for decoupling. Suppose, for instance, that ρAR contains strong
quantum correlations such that H(A|R)ρ is negative, then decoupling occurs if TA→B can
destroy this correlation, that is H(A′

|B)ω is large enough for the above to hold. (See [29]
for a general introduction of negative conditional entropies and [10] for their meaning in
thermodynamics. A detailed discussion of sufficiency and necessity of the above condition for
decoupling can be found in [14].)

Often TA→B is chosen in a specific way. For example, in order to obtain the fully quantum
Slepian–Wolf (FQSW) theorem [20], it suffices to consider the case where TA→B is the partial
trace. Another special case is state merging [23], where TA→B represents a measurement of the
A system. In the FQSW scenario, the above inequality is known to be tight [20].

In this paper, we analyze whether decoupling occurs in a typical physical process. For this
purpose, we generalize the decoupling theorem above to the case when the random unitary is
taken from an approximate two-design instead of a two-design. Our discussion of approximate
two-designs is motivated by the fact that as opposed to exact two-designs, such as the Clifford
group [12, 15, 18], approximate two-designs emerge in various realistic models of physical
systems. In particular, approximate two-designs can be used to model a typical quantum
mechanical evolution of an A subsystem that is governed by two-particle interactions. More
precisely, we follow the lines of [19] and model the internal dynamics of the A subsystem
in terms of a random quantum circuit and address the question of how well these dynamics
decouple. We show that the quality of decoupling does not depend on the dimensions of the
channel output B and the reference system R and prove that decoupling is physical, in the
sense that it occurs already for short sequences of random two-body interactions even if R
is large6. Moreover, our decoupling results open the door to a more efficient implementation
of operational tasks such as state transfer and state merging, since one might expect good
approximate two-designs to outperform exact two-designs in terms of circuit complexity7.

We note that the result achieved here has a (semi-) classical analogue, which is used, for
instance, in quantum cryptography for a task called privacy amplification. Here the system A is
a classical random variable that is correlated with a quantum memory, R, held by an adversary.

6 Note that it follows straight from continuity that approximate two-designs can be used for decoupling with an
error depending on the approximation and the dimension of the physical system. However, in a physical scenario
the dimensions of the channel output B and the reference system R can be large or unknown, which motivates the
more elaborate analysis we provide in this paper.
7 Note that the circuit complexity of the exact two-design given by the Clifford group is quadratic, as shown
in [18].
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The goal is to extract randomness from A which is private, i.e. uncorrelated to the adversary’s
data R. This can be achieved by two-universal hash functions [5], which replace the unitary
two-design used in the decoupling theorem [33]. An extension to almost two-universal hash
functions is already known in this classical scenario [36]. Our work can be seen as a fully
quantum version of this result.

In this paper, we consider finite-dimensional systems only. However, the analogous task
of privacy amplification described above has recently been extended to the case where the
adversary holds an infinite-dimensional system [16] or a general von Neumann algebra of
observables [2]. The fact that our decoupling results do not involve the dimension of the
system held by the adversary (and the dimension of the channel output) suggests that a similar
generalization is also possible for decoupling.

The remainder of the paper is organized as follows. In section 2, we introduce the
mathematical framework used to derive our main technical results, which are presented in
section 3. Finally, in section 4, we apply our results to analyze decoupling in a physical context.

2. Preliminaries

2.1. Notation

Let H be a finite-dimensional, complex Hilbert space. The set of linear operators on H will be
denoted by L(H), the set of Hermitian operators by L†(H) and the set of positive-semidefinite
operators is given by P(H). The set of quantum states is given by S=(H) := {ρ ∈ P(H) | tr ρ =

1} and the set of subnormalized quantum states is S6(H) := {ρ ∈ P(H) | tr ρ 6 1}. For the Lie
group of unitary matrices, we write U. A subscript letter following some mathematical object
denotes the physical system to which it belongs. However, when it is clear which systems are
described we might drop the subscripts to shorten the notation.

Bipartite systems AB are represented by a tensor product space HA ⊗HB =:HAB . We
will denote by 1A the identity operator on HA and by πA := 1A/dA the completely mixed
state on A, where dA = dimHA. Linear maps from L(HA) to L(HB) will be denoted by
calligraphic letters, e.g. TA→B . Quantum operations are in one-to-one correspondence with
the trace preserving completely positive maps (TPCPMs). The TPCPM we will encounter most
often is the partial trace (over the system B), denoted trB (·), which is defined to be the adjoint
mapping of TA→AB(ξA) = ξA ⊗1B for ξA ∈ L†(HA) with respect to the Schmidt scalar product
〈A, B〉 := tr(A† B). This means tr((ξA ⊗1B)ζAB) = tr(ξA trB (ζAB)) for any ζAB ∈ L†(HAB).
Given a multipartite state ξAB , we write ξA := trB ξAB for the reduced density operator on A
and ξB := trA ξAB , respectively, on B.

For isomorphic HA and HA′ , we denote by 8AA′ the completely entangled state on
AA′, i.e. 8AA′ := |8〉〈8|AA′ , where |8〉AA′ :=

∑
i |i〉A ⊗ |i〉A′/

√
dA and {|i〉A} and {|i〉A′} form

orthonormal bases. The swap operator F on the bipartite space HAA′ is defined as F :=∑
i, j |i〉〈 j |A ⊗ | j〉〈i |A′ . It is not difficult to verify [1, 4] that this operator satisfies tr(M N ) =

tr((M ⊗ N )F) for any M , N ∈ L(HA). We refer to this observation as the swap trick. The
Choi–Jamiołkowski representation [6, 25] of TA→B ∈ Hom(L(HA),L(HB)) is given by the
operator ωA′ B := (TA→B ⊗ IA′)(8AA′). Here, IA′ denotes the operator identity on A′, which we
will only write explicitly if it is not clear from the context.

For any operator in ξ ∈ L(H), we denote by ‖ξ‖1, ‖ξ‖2 and ‖ξ‖∞ the Schatten one-, two-
and ∞-norms of ξ , respectively. These norms are invariant under conjugation with unitaries
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and satisfy ‖ξ‖∞ 6 ‖ξ‖2 6 ‖ξ‖1. We will furthermore use that, for any A, B, C ∈ L(H) and
any Schatten norm ‖ · ‖, it holds that ‖ABC‖ 6 ‖A‖∞‖B‖‖C‖∞ (see e.g. [3]).

The metric induced on L(H) via the Schatten one-norm is D(ρ, σ ) := ‖ρ − σ‖1. Another
measure of distance on P(H) is the fidelity, F(ρ, σ ) := ‖

√
ρ
√

σ‖1. We also require a norm for
linear maps TA→B from L(HA) to L(HB). Given such a map, its diamond norm is defined to
be [26]

||TA→B||� := sup
HR

max
ρAR∈L(HAR)

||TA→B(ρAR)||1

||ρAR||1
.

Note that the diamond norm is the dual of the well-known norm of complete boundedness [30].

2.2. Smooth entropies

Entropies are used to quantify the uncertainty an observer has about a quantum state. Moreover,
conditional entropies quantify the uncertainty of an observer about one subsystem of a bipartite
state when he has access to another subsystem. The most commonly used quantity is the von
Neumann entropy. Given a state ρAB ∈ S=(HAB), we denote by H(A|B)ρ := H(ρAB) − H(ρB)

the von Neumann entropy of A conditioned on B.
While the von Neumann entropy is appropriate for analyzing processes involving a large

number of copies of an identical system, the smooth min-entropy is the relevant quantity when
a single system is considered [32]. Its definition is based on the following quantity.

Definition 1 (Min-entropy [32]). Let ρAB ∈ S6(HAB), then the min-entropy of A conditioned
on B of ρAB is defined as

Hmin(A|B)ρ := max
σB∈S=(HB)

sup{λ ∈ R | ρAB 6 2−λ1A ⊗ σB}.

More precisely, the smooth conditional min-entropy is defined as the largest conditional min-
entropy one can obtain within a distance of at most ε from ρ. Here closeness is measured with
respect to the purified distance, P(ρ, σ ), which is defined to be

P(ρ, σ ) :=
√

1 − F̄(ρ, σ )2,

where F̄(ρ, σ ) is the generalized fidelity; F̄(ρ, σ ) := F(ρ, σ ) +
√

(1 − tr ρ)(1 − tr σ) for
ρ, σ ∈ S6(H). In [34], it is shown that P constitutes a metric on S6(H) and the following
inequalities are derived:

1
2 ‖ρ − σ‖1 + 1

2 |tr ρ − tr σ |6 P(ρ, σ )6
√

‖ρ − σ‖1 + |tr ρ − tr σ |. (1)

We say that ρ is ε-close to ρ̃, denoted by ρ̃ ≈ε ρ if P(ρ, ρ̃)6 ε.

Definition 2 (Smooth min-entropy [32, 34]). Let ε > 0 and let ρAB ∈ S6(HAB) with
√

trρ > ε,
then the ε-smooth min-entropy of A conditioned on B of ρAB is defined as

H ε
min(A|B)ρ = max

ρ̃
Hmin(A|B)ρ̃,

where we maximize over all ρ̃ ≈ε ρ.

The fully quantum asymptotic equipartition property (QAEP) states that in the limit of
an infinite number of identical states the smooth min-entropy converges to the von Neumann
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entropy [35]: let ρAB ∈ S=(HAB), then

lim
ε→0

lim
n→∞

1

n
H ε

min(An
|Bn)ρ⊗n = H (A|B)ρ. (2)

In that sense, the smooth conditional min-entropy can be seen as a one-shot generalization of
the von Neumann entropy.

2.3. Approximate two-designs and quantum circuits

Heuristically, a unitary two-design is a finite subset D of U that has the property that averaging
any polynomial of degree 2 over D gives the same result as integrating this polynomial over U
with respect to the Haar measure, dU .

Definition 3 (Unitary δ-approximate two-design [8, 9, 19]). Let D = {(pi , Ui)}i=1,...,n be a set
of pairs, where the Ui are unitary matrices on a Hilbert space H and the pi > 0 with

∑
i pi = 1

are probabilities. We define the maps

GW (ρ) :=
∑

i

piU
⊗2
i ρ(U †

i )⊗2 and GH (ρ) :=
∫
U

U⊗2ρ(U †)⊗2 dU

for ρ ∈ L(H⊗2). The set D is called a unitary two-design if GW = GH . Furthermore, D is called
a δ-approximate unitary two-design if ||GW −GH ||� 6 δ.

We will denote an integral over the unitary group with respect to the normalized Haar
measure by EU(·) and an average over a unitary approximate two-design by ED(·) for notational
convenience.

For the applications that we are interested in, the most relevant approximate designs are
generated by random quantum circuits [19]. A quantum circuit is a set of wires on which gates
are applied. Each wire corresponds to a qubit evolving in time, and each gate on the wire
corresponds to some unitary operation being applied to the qubit. A k-qubit gate is given by
an element of U(2k). For us it will be sufficient to think of the circuit as a sequence of unitaries
that are applied in a certain order: W = Wt · . . . · W2 · W1, where we call t the time of the circuit.
We call a set of gates universal for n qubits if any operation that can be performed on n qubits
can be approximated to arbitrary precision using operations from the universal gate set only.

3. Decoupling with δ-approximate unitary two-designs

We prove a decoupling theorem which applies to the general case where the evolution is
described by a unitary chosen from a δ-approximate two-design followed by an arbitrary
physical process.

Theorem 1 (Decoupling with δ-approximate unitary two-designs). Let ρAR ∈ S6(HAR) be a
subnormalized density operator and let TA→B be a linear map with Choi–Jamiołkowski
representation ωA′ B ∈ S6(HB A′), then

E
D
||T ((UA ⊗1R) ρAR (U †

A ⊗1R)) − ωB ⊗ ρR||1 6
√

1 + 4δd4
A2−

1
2 (Hmin(A′

|B)ω+ Hmin(A|R)ρ),

where D constitutes a δ-approximate two-design.
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Remark 1. It should be noted that the factor d4
A in the above formula can be compensated for

by making δ accordingly small. See section 4 for a specific example, where the approximate
two-design is created by a random circuit.

Remark 2. Since the above decoupling formula does not involve the dimension factors dB and
dR a δ-approximate two-design (with fixed δ) yields decoupling even if one of these factors is
intractably large.

Note that theorem 1 does not follow straight from a simple argument based on continuity.
If exact two-designs work in the sense of decoupling, one expects that δ-approximate two-
designs should work approximately. The error due to approximation depends on δ and, due to
norm equivalence (compare also lemma 2.2.14 in [28]), the dimension of the expression in the
norm above. However, the upper bound of theorem 1 does not involve the dimensions of the
systems B and R. Hence, it allows for the conclusion that decoupling can occur in a physical
scenario, where the evolution of the A subsystem is modeled as a (short) quantum circuit and the
reference system R potentially is large (see section 4). We also remark that in the particular case
of a perfect two-design, the proof of theorem 1 includes a shorter derivation of the decoupling
theorem for perfect two-designs as opposed to the original proof in [13, 14] (see section 3.2).

The rest of this section is structured in four subsections. First, we prove a lemma that
quantifies decoupling in terms of Schatten two-norms. Then, in section 3.2, we derive the
decoupling formula for perfect two-designs using that lemma (see theorem 2). Section 3.3 is
devoted to the derivation and analysis of the decoupling formula for general δ-approximate
two-designs (see theorem 1). And lastly, in section 3.4 we reformulate the upper bound given
by the decoupling formula for δ-approximate two-designs in terms of smooth conditional min-
entropies (see theorem 3). This enables us to make statements about independent, identically
distributed states via the QAEP, equation (2).

3.1. Decoupling with Schatten two-norms

For a map T ∈ Hom(L(HA),L(HB)) with Choi–Jamiołkowski representation ωA′ B ∈ L†(HB A′)

and an operator ρAR ∈ L†(HAR), we prove that

E
U

∥∥∥T ((UA ⊗1R) ρAR (U †
A ⊗1R)) − ωB ⊗ ρR

∥∥∥2

2

=
d2

A

d2
A − 1

‖ρAR − πA ⊗ ρR‖
2
2 ‖ωA′ B − πA′ ⊗ ωB‖

2
2. (3)

For our application and the proof of (3) it is convenient to reformulate the argument of the
expectation value in a more symmetric way. We introduce the map E Ã→R, which we define to
be the unique Choi–Jamiołkowski preimage of the state ρAR, i.e. E Ã→R(8AÃ) = ρAR, where
Ã is just a copy of A. Note that E is not trace preserving in general. We can write for any
unitary UA:

T ((UA ⊗1R) ρAR (U †
A ⊗1R)) − ωB ⊗ ρR

= (T ⊗ E)((UA ⊗1 Ã) 8AÃ (U †
A ⊗1 Ã)) − (T ⊗ E)(πA ⊗ π Ã) (4)

= (T ⊗ E)((UA ⊗1 Ã) ξAÃ (U †
A ⊗1 Ã)), (5)
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where we have introduced the decoupling operator ξAÃ := 8AÃ − πA ⊗ π Ã. Equation (4) uses
the fact that an arbitrary map acting exclusively on the A subsystem of 8AÃ commutes with any
map that only acts on Ã. In equation (5), the linearity of the maps is used. Analogously, one has
that

E(ξAÃ) = ρAR − πA ⊗ ρR, T (ξAÃ) = ω ÃB − π Ã ⊗ ωB .

Thus the stated result, equation (3), can be rewritten equivalently in terms of the decoupling
operator.

Lemma 1. Let ξAÃ = 8AÃ − πA ⊗ π Ã and let TA→B ∈ Hom(L(HA),L(HB)) and E Ã→R ∈

Hom(L(H Ã),L(HR)) be linear maps that preserve hermiticity, then

E
U

∣∣∣∣∣∣(T ⊗ E)((UA ⊗1 Ã) ξAÃ (U †
A ⊗1 Ã))

∣∣∣∣∣∣2

2
=

d2
A

d2
A − 1

∥∥E(ξAÃ)
∥∥2

2

∥∥T (ξAÃ)
∥∥2

2
.

Proof. We have that

E
U

∣∣∣∣∣∣(T ⊗ E)((UA ⊗1 Ã) ξAÃ (U †
A ⊗1 Ã))

∣∣∣∣∣∣2

2
= E
U

tr
(
(T ⊗ E)((UA ⊗1 Ã) ξAÃ (U †

A ⊗1 Ã))2
)

= E
U

tr
(
(T ⊗ E)⊗2

(
(UA ⊗1 Ã)⊗2(ξAÃ)⊗2(U †

A ⊗1 Ã)⊗2
)
FB R

)
(6)

= E
U

tr
((

(UA ⊗1 Ã)⊗2(ξAÃ)⊗2(U †
A ⊗1 Ã)⊗2

)
(T †)⊗2[FB] ⊗ (E†)⊗2[FR]

)
. (7)

We introduced two further copies A′ and Ã
′

of A when using the swap trick in equation
(6), i.e. (ξAÃ)⊗2

= ξAÃ ⊗ ξA′ Ã′ . In equation (7), we used the definition of the adjoint of the
mapping (T ⊗ E)⊗2 with respect to the Schmidt scalar product. We have from [13, lemma 3.4]
that

E
U

(
(UA)†⊗2(T †)⊗2(FB)(UA)⊗2

)
= α1AA′ + βFA

with the coefficients α and β satisfying

α = tr(ω2
B)

d2
A −

dA tr(ω2
A′ B)

tr(ω2
B)

d2
A − 1

 and β = tr(ω2
A′ B)

d2
A −

dA tr(ω2
B)

tr(ω2
A′ B)

d2
A − 1

 .

Similar integrals were evaluated in the context of decoupling already in [23]. Using the above
we obtain

E
U

∣∣∣∣∣∣(T ⊗ E)((UA ⊗1 Ã) ξAÃ (U †
A ⊗1 Ã))

∣∣∣∣∣∣2

2
= tr

(
(ξAÃ)⊗2

{α1AA′ + βFA} ⊗ (E†)⊗2[FR]
)

= β tr
(
(ξAÃ)⊗2 FA ⊗ (E†)⊗2[FR]

)
(8)

= β
∣∣∣∣E(ξAÃ)

∣∣∣∣2

2
. (9)
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In equation (8), we used that tracing out one of the subsystems A, Ã of ξAÃ gives the zero
state. The last line above makes use of the definition of the adjoint of E , the swap trick and the
definition of the Schatten two-norm. Rewriting β we find that

β = tr(ω2
A′ B)

d2
A −

dA tr(ω2
B)

tr(ω2
A′ B)

d2
A − 1


=

d2
A

d2
A − 1

∣∣∣∣T (ξAÃ)
∣∣∣∣2

2
. (10)

Substituting this into equation (9) yields

E
U

∣∣∣∣∣∣(T ⊗ E)((UA ⊗1 Ã) ξAÃ (U †
A ⊗1 Ã))

∣∣∣∣∣∣2

2
=

d2
A

d2
A − 1

∣∣∣∣T (ξAÃ)
∣∣∣∣2

2

∣∣∣∣E(ξAÃ)
∣∣∣∣2

2
,

which proves the lemma. ut

3.2. Decoupling with perfect two-designs

In this section, we show two additional lemmas that we require for the derivation of our
main result, theorem 1. Taking these lemmas together with lemma 1, we also obtain a concise
derivation of the decoupling theorem for the Haar measure (cf theorem 2).

Lemma 2. Let ξB R ∈ L†(HB R) and let λB R ∈ S=(HB R) be invertible. Then

||ξB R||1 6 ||λ
−

1
4

B R ξB R λ
−

1
4

B R||2.

Proof. The lemma follows from an application of the Hölder-type inequality ||ABC ||1 6∣∣∣∣|A|
4
∣∣∣∣ 1

4

1

∣∣∣∣|B|
2
∣∣∣∣ 1

2

1

∣∣∣∣|C |
4
∣∣∣∣ 1

4

1
(see, e.g. [3]), with A = C = (λB R)

1
4 and B = λ

−
1
4

B R ξB R λ
−

1
4

B R. ut

Lemma 3. For any ξAR ∈ S6(HAR) there is ζR ∈ S=(HR) with

1

tr[ξAR]
tr

(
((1A ⊗ ζ

−1/2
R )ξAR)2

)
6 2−Hmin(A|R)ξ .

Proof. Choose ζR such that it saturates the bound in the definition of the Hmin-entropy. Without
loss of generality ζR is invertible (otherwise, redefine R such that it corresponds to the support
of ρAR). Then

ξAR 6 2−Hmin(A|R)ξ1A ⊗ ζR

which implies that there is ζR with√
ξAR (1A ⊗ ζ

−
1
2

R )ξAR(1A ⊗ ζ
−

1
2

R )
√

ξAR 6 2−Hmin(A|R)ξ ξAR. (11)

Taking the trace on both sides of (11) proves lemma 3. ut
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Before proving our main theorem, it will be useful for the sake of completeness to first state and
prove the decoupling theorem of [13] in the formulation which is given in [14]:

Theorem 2 (Decoupling theorem [13].). Let ρAR ∈ S6(HAR) be a subnormalized density
operator and let TA→B be a linear map with Choi–Jamiołkowski representation ωA′ B ∈

S6(HB A′), then

E
U

||T ((UA ⊗1R) ρAR (U †
A ⊗1R)) − ωB ⊗ ρR||1 6 2−

1
2 Hmin(A′

|B)ω−
1
2 Hmin(A|R)ρ .

Proof. Note first that for a proof of theorem 2 it suffices to show that

E
U
||T ((UA ⊗1R) ρAR (U †

A ⊗1R)) − ωB ⊗ ρR||
2
1 6 2−Hmin(A′

|B)ω−Hmin(A|R)ρ (12)

holds and to apply the Jensen inequality. To prove equation (12), we work with the integrand in
terms of the decoupling operator (lemma 1). We use lemma 2 to bound the Schatten one-norm
of the integrand with the Schatten two-norm. Introducing the positive and normalized operators
σB and ζR, we have∣∣∣∣∣∣(T ⊗ E)((UA ⊗1 Ã) ξAÃ (U †

A ⊗1 Ã))

∣∣∣∣∣∣
1

6
∣∣∣∣∣∣(σB ⊗ ζR)−

1
4

(
(T ⊗ E)((UA ⊗1 Ã) ξAÃ (U †

A ⊗1 Ã))
)

(σB ⊗ ζR)−
1
4

∣∣∣∣∣∣
2
.

One can abbreviate the notation using the completely positive maps T̃A→B and Ẽ Ã→R defining

T̃ (τAÃ) := (σB ⊗1 Ã)−1/4T (τAÃ)(σB ⊗1 Ã)−1/4
∀ τAÃ ∈ L(HAÃ), (13)

Ẽ(τAÃ) := (1A ⊗ ζR)−1/4E(τAÃ)(1A ⊗ ζR)−1/4
∀ τAÃ ∈ L(HAÃ), (14)

and ω̃A′ B := T̃ (8AA′), ρ̃AR := Ẽ(8AÃ), which yields

E
U

∥∥∥(T ⊗ E)((UA ⊗1 Ã) ξAÃ (U †
A ⊗1 Ã))

∥∥∥2

1
6 E
U

∥∥∥(T̃ ⊗ Ẽ)((UA ⊗1 Ã) ξAÃ (U †
A ⊗1 Ã))

∥∥∥2

2

=
d2

A

d2
A − 1

∣∣∣∣∣∣T̃ (ξAÃ)

∣∣∣∣∣∣2

2

∣∣∣∣∣∣Ẽ(ξAÃ)

∣∣∣∣∣∣2

2
. (15)

By equation (10) we have that

d2
A

d2
A − 1

∣∣∣∣∣∣T̃ (ξAÃ)

∣∣∣∣∣∣2

2

∣∣∣∣∣∣Ẽ(ξAÃ)

∣∣∣∣∣∣2

2
=

(
1 −

1

d2
A

)
tr(ω̃2

A′ B) tr(ρ̃2
AR)

d2
A −

dA tr(ω̃2
B)

tr(ω̃2
A′ B)

d2
A − 1


d2

A −
dA tr(ρ̃2

R)
tr(ρ̃2

AR)

d2
A − 1


6

1

tr[ωA′ B]
tr(ω̃2

A′ B)
1

tr[ρAR]
tr(ρ̃2

AR). (16)

In equation (16) we used the Cauchy–Schwarz inequality (lemma 3.5 in [13]) to infer that both
bracket terms are smaller than one. The derivation is valid for any positive and normalized
operators σB and ζR, therefore one can choose σ̂B and ζ̂R such that they minimize the expression
in (16). An application of lemma 3 then shows that

E
U

∥∥∥T ((UA ⊗1R) ρAR (U †
A ⊗1R)) − ωB ⊗ ρR

∥∥∥2

1
6 2−Hmin(A′

|B)ω− Hmin(A|R)ρ .

ut
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3.3. Decoupling with δ-approximate two-designs

This section is devoted to a proof of the core theorem of this paper:

Proof of theorem 1. Due to the Jensen inequality it suffices to show that

E
D

||T ((UA ⊗1R) ρAR (U †
A ⊗1R)) − ωB ⊗ ρR||

2
1 6

(
1 + 4δd4

A

)
2−Hmin(A′

|B)ω−Hmin(A|R)ρ (17)

holds. To prove (17), we proceed in a similar fashion to our proof of theorem 2. As before, we
introduce the map E Ã→B which we define to be the unique Choi–Jamiołkowski preimage of ρAR

and the state ξAÃ = 8AÃ − πA ⊗ π Ã and write for any unitary:

T ((UA ⊗1R)ρAR(U †
A ⊗1R)) − ωB ⊗ ρR = (T ⊗ E)((UA ⊗1 Ã)ξAÃ(U †

A ⊗1 Ã)).

To upper bound the left-hand side of (17), we apply lemma 2. We introduce positive, normalized
operators σB and ζR and the maps T̃ and Ẽ as defined in equations (13) and (14), respectively,
and find

E
D

∥∥∥(T ⊗ E)((UA ⊗1 Ã) ξAÃ (U †
A ⊗1 Ã))

∥∥∥2

1
6 E
D

∥∥∥(T̃ ⊗ Ẽ)((UA ⊗1 Ã) ξAÃ (U †
A ⊗1 Ã))

∥∥∥2

2

= E
D

tr
(
(T̃ ⊗ Ẽ)((UA ⊗1 Ã) ξAÃ (U †

A ⊗1 Ã))
)
.

Applying the swap trick and using the definitions of the adjoint mappings of T̃ and Ẽ gives

E
D

tr
(
(T̃ ⊗ Ẽ)((UA ⊗1 Ã) ξAÃ (U †

A ⊗1 Ã))2
)

= E
D

tr
((

(UA ⊗1 Ã)⊗2 (ξAÃ)⊗2 (U †
A ⊗1 Ã)⊗2

)
(T̃ †)⊗2[FB] ⊗ (Ẽ†)⊗2[FR]

)
.

With the relations

E
D

(
(U⊗2

A ⊗1⊗2
Ã

) (ξAÃ)⊗2 ((U †
A)⊗2

⊗1⊗2
Ã

)
)

= (GW ⊗ I Ã Ã′)(ξ
⊗2
AÃ

),

E
U

(
(U⊗2

A ⊗1⊗2
Ã

) (ξAÃ)⊗2 ((U †
A)⊗2

⊗1⊗2
Ã

)
)

= (GH ⊗ I Ã Ã′)(ξ
⊗2
AÃ

),

we have

tr
(
E
D

(
(U⊗2

A ⊗1⊗2
Ã

) (ξAÃ)⊗2 ((U †
A)⊗2

⊗1⊗2
Ã

)
)

(T̃ †)⊗2[FB] ⊗ (Ẽ†)⊗2[FR]
)

= tr
((

(GW ⊗ I Ã Ã′)(ξ
⊗2
AÃ

) −
(
GH ⊗ I Ã Ã′

)
(ξ⊗2

AÃ
)
)

(T̃ †)⊗2[FB] ⊗ (Ẽ†)⊗2[FR]
)

+ tr
((
GH ⊗ I Ã Ã′

)
(ξ⊗2

AÃ
) (T̃ †)⊗2[FB] ⊗ (Ẽ†)⊗2[FR]

)
. (18)

For now we fix our attention on the first term of equation (18). Bounding this term gives∣∣∣∣∣∣((GW ⊗ I Ã Ã′)(ξ
⊗2
AÃ

) −
(
GH ⊗ I Ã Ã′

)
(ξ⊗2

AÃ
)
)

(T̃ †)⊗2[FB] ⊗ (Ẽ†)⊗2[FR]
∣∣∣∣∣∣

1

6
∣∣∣∣∣∣(GW ⊗ I Ã Ã′ −GH ⊗ I Ã Ã′

)
(ξ⊗2

AÃ
)

∣∣∣∣∣∣
1

∣∣∣∣∣∣(T̃ †)⊗2[FB]
∣∣∣∣∣∣

∞

∣∣∣∣∣∣(Ẽ†)⊗2[FR]
∣∣∣∣∣∣

∞

6 ||GW −GH ||�

∣∣∣∣∣∣ξ⊗2
AÃ

∣∣∣∣∣∣
1

∣∣∣∣∣∣(T̃ †)⊗2[FB]
∣∣∣∣∣∣

∞

∣∣∣∣∣∣(Ẽ†)⊗2[FR]
∣∣∣∣∣∣

∞

6 4δ

∣∣∣∣∣∣(T̃ †)⊗2[FB]
∣∣∣∣∣∣

∞

∣∣∣∣∣∣(Ẽ†)⊗2[FR]
∣∣∣∣∣∣

∞

, (19)
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where inequality (19) uses the explicit form of ξAÃ = 8AÃ − πA ⊗ π Ã and the definition of the
δ-approximate two-design. In the following steps, we upper bound the term ||(T̃ †)⊗2[FB]||∞.
Let P+

AA′ be the projector corresponding to the biggest absolute eigenvalue of (T̃ †)⊗2[FB]. The
∞-norm can then be rewritten as∣∣∣∣∣∣(T̃ †)⊗2[FB]

∣∣∣∣∣∣
∞

=

∣∣∣tr (
(T̃ )⊗2[P+

AA′]FB

)∣∣∣. (20)

To be able to apply the swap trick, we decompose P+
AA′ into some basis: P+

AA′ =
∑

i, j ci jσ
i
A ⊗ σ

j
A′ .

Without loss of generality, we choose the coefficients ci j to be real. This gives

tr
(
(T̃ )⊗2[P+

AA′]FB

)
=

∑
i, j

ci j tr
(
T̃ (σ i

A)T̃ (σ
j

A′)
)
. (21)

We rewrite T̃ (σ i
A) using the Choi–Jamiołkowski representation of T̃∑

i, j

ci j tr
(
(T̃ (σ i

A)T̃ (σ
j

A′))
)

= d2
A

∑
i, j

ci j tr
(

trA (ω̃AB (1B ⊗ (σ i
A)ᵀ)) trA′ (ω̃A′ B (1B ⊗ (σ

j
A′)
ᵀ))

)
= d2

Atr
(
(1A′ ⊗ ω̃AB) (1A ⊗ ω̃A′ B) (1B ⊗ (P+

AA′)
ᵀ)

)
. (22)

To obtain an upper bound for equation (22), we apply the following lemma 4. ut

Lemma 4. Let ωAB ∈ L†(HAB), ωA′ B ∈ L†(HA′ B) and let ρAA′ ∈ L†(HAA′), then

|tr ((1A′ ⊗ ωAB) (1A ⊗ ωA′ B) (1B ⊗ ρAA′))|6 tr
(
ω2

AB

)√
tr

(
ρ2

AA′

)
.

The proof of this lemma will be given after concluding the proof of theorem 1. We use the
fact that (P+

AA′)ᵀ is a rank one projector and obtain

tr
(
(1A′ ⊗ ω̃AB) (1A ⊗ ω̃A′ B) (1B ⊗ (P+

AA′)
ᵀ)

)
6 tr

(
ω̃2

A′ B

)
. (23)

This gives the bound∣∣∣∣∣∣(T̃ †)⊗2[FB]
∣∣∣∣∣∣

∞

6 d2
Atr

(
ω̃2

A′ B

)
.

And identically we find that∣∣∣∣∣∣(Ẽ†)⊗2[FR]
∣∣∣∣∣∣

∞

6 d2
Atr

(
ρ̃2

AR

)
.

Thus we obtain the desired bound for the first term of (18) using (19):∣∣∣∣∣∣((GW ⊗ I Ã Ã′)(ξ
⊗2
AÃ

) −
(
GH ⊗ I Ã Ã′

)
(ξ⊗2

AÃ
)
)

(T̃ †)⊗2[FB] ⊗ (Ẽ†)⊗2[FR]
∣∣∣∣∣∣

1

6 4δd4
A

1

tr[ωA′ B]
tr

(
ω̃2

A′ B

) 1

tr[ρAR]
tr

(
ρ̃2

AR

)
. (24)

The only thing left is to evaluate the second term of (18), but this term was already calculated as
a part of the proof of the decoupling theorem. It equals the term on the right-hand side of (15)
and can be bounded using (16):

tr
((
GH ⊗ I Ã Ã′

)
(ξ⊗2

AÃ
) (T̃ †)⊗2[FB] ⊗ (Ẽ†)⊗2[FR]

)
6

1

tr[ωA′ B]
tr

(
ω̃2

A′ B

) 1

tr[ρAR]
tr

(
ρ̃2

AR

)
. (25)
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An application of lemma 3 on (24) and (25) gives

E
D

||T ((UA ⊗1R) ρAR (U †
A ⊗1R)) − ωB ⊗ ρR||

2
1 6

(
1 + 4δd4

A

)
2−Hmin(A′

|B)ω−Hmin(A|R)ρ

which proves (17) and thus concludes the proof of the decoupling theorem with approximate
two-designs.

Proof of lemma 4. We introduce a basis {σ i
A}i for L†(HA) and a basis {σ i

B}i for L†(HB).
Moreover, we choose them to be orthonormal with respect to the Schmidt scalar product (i.e.
tr(σ i

Aσ
j

A) = δi j and likewise for the B system). Hence, the product operators {σ i
A ⊗ σ

j
B}i, j also

form an orthonormal basis for L†(HAB) with respect to the Schmidt scalar product:

tr
(
(σ i

A ⊗ σ
j

B) (σ k
A ⊗ σ l

B)
)

= tr
(
σ i

Aσ k
A

)
· tr

(
σ

j
Bσ l

B

)
= δikδ jl .

We write the operators ωAB , ωA′ B and ρAA′ in that basis:

ωAB :=
∑
i, j

ai jσ
i
A ⊗ σ

j
B, ai j := tr

(
(σ i

A ⊗ σ
j

B) ωAB

)
,

ωA′ B :=
∑
i, j

ai jσ
i
A′ ⊗ σ

j
B, ai j := tr

(
(σ i

A′ ⊗ σ
j

B) ωA′ B

)
,

ρAA′ :=
∑
i, j

ci jσ
i
A ⊗ σ

j
A′, ci j := tr

(
(σ i

A ⊗ σ
j

A′) ρAA′

)
.

Since all matrices in the above statements are Hermitian, the coefficients ai j and ci j are
real. Moreover, the coefficients in the expansion of ωAB and ωA′ B are the same, because the
corresponding matrices are the same. Substituting the expansions into the left-hand side of the
lemma gives

tr ((1A′ ⊗ ωAB) (1A ⊗ ωA′ B) (1B ⊗ ρAA′))

=

∑
i, j,k,l,m,n

ai jaklcmntr
(
(1A′ ⊗ σ i

A ⊗ σ
j

B) (1A ⊗ σ k
A′ ⊗ σ l

B) (1B ⊗ σ m
A ⊗ σ n

A′)
)

=

∑
i, j,k,l,m,n

ai jaklcmntr
(
σ i

Aσ m
A

)
tr

(
σ k

A′σ
n
A′

)
tr

(
σ

j
Bσ l

B

)
=

∑
i, j,k,l,m,n

ai jaklcmnδimδknδ jl

=

∑
i, j,k

ai jak j cik. (26)

We now introduce the matrices A := (ai j) and C := (ci j) and use equation (26) to find that

|tr ((1A′ ⊗ ωAB) (1A ⊗ ωA′ B) (1B ⊗ ρAA′))| =
∣∣tr (

A†C A
)∣∣

6
∣∣∣∣AA†

∣∣∣∣
1
||C ||∞

6 tr
(

AA†
)
||C ||2. (27)
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We calculate the Schatten two-norm of C using that ||C ||2
2
=

∑
i j |ci j |

2 ([3]) and the explicit
formula for the ci j :

||C ||2
2
=

∑
i j

|ci j |
2

=

∑
i j

tr
(
(σ i

A ⊗ σ
j

A′) ρAA′

)
tr

(
(σ i

A ⊗ σ
j

A′) ρAA′

)

= tr

∑
i j

tr
(
σ i

A ⊗ σ
j

A′ρAA′

)
σ i

A ⊗ σ
j

A′

 ρAA′


= tr

(
ρ2

AA′

)
. (28)

The trace term in (27) can be calculated similarly. We use the explicit formula for the
coefficients:

tr
(

AA†
)
=

∑
i j

ai jai j

=

∑
i j

tr
(
(σ i

A′ ⊗ σ
j

B) ωA′ B

)
tr

(
(σ i

A′ ⊗ σ
j

B) ωA′ B

)

= tr

∑
i j

tr
(
σ i

A′ ⊗ σ
j

BωA′ B

)
σ i

A′ ⊗ σ
j

B

 ωA′ B


= tr

(
ω2

A′ B

)
. (29)

Taking (28) together with (29) and substituting them into (27) concludes the proof of lemma 4.
ut

3.4. A smoothed decoupling formula for approximate two-designs

In order to achieve a tighter bound in the decoupling formula for approximate two-designs
(theorem 1), we now introduce a modified upper bound stated in terms of smooth conditional
min-entropies (see definition 2). We refer to [14] for a discussion of the optimality of decoupling
in terms of these quantities. The smooth conditional min-entropy has the additional advantage
that it reduces to the von Neumann entropy in the important special case where the state is a
tensor product of many identical states, as shown by the fully quantum asymptotic equipartition
theorem (see equation (2)).

Theorem 3 (Smoothed decoupling formula for δ-approximate two-designs). Let ρAR ∈

S6(HAR) be a subnormalized density operator and let TA→B be a linear map
with Choi–Jamiołkowski representation ωA′ B ∈ S6(HB A′) and let ε be such that
min{

√
tr(ρ),

√
tr(ω)} > ε > 0. Then

E
D

∥∥∥T ((UA ⊗1R)ρAR(U †
A ⊗1R)) − ωB ⊗ ρR

∥∥∥
1

6
√

1 + 4δd4
A 2−

1
2 H ε

min(A′
|B)ω−

1
2 H ε

min(A|R)ρ + 8dAδ ε + 12ε,

where D constitutes a δ-approximate two-design.
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Proof. Let ω̂A′ B ∈ S6(HA′ B) be the state that saturates the bound in the definition of H ε
min,

i.e. P(ωA′ B, ω̂A′ B)6 ε and Hmin(A′
|B)ω̂ = H ε

min(A′
|B)ω. Analogously ρ̂AR is defined to be an

operator with P(ρ̂AR, ρAR)6 ε and Hmin(A|R)ρ̂ = H ε
min(A|R)ρ .

Using inequality (1), we find that∥∥ωA′ B − ω̂A′ B

∥∥
1
6 2ε,

∥∥ρAR − ρ̂AR

∥∥
1
6 2ε. (30)

We decompose ω̂ − ω and ρ̂ − ρ into positive operators with orthogonal support writing

ω̂ − ω = 1+ − 1−, ρ̂ − ρ = 0+ − 0−

and conclude from (30) that

||1+||1 6 2ε, ||1−||1 6 2ε, ||0+||1 6 2ε, ||0−||1 6 2ε.

Let T̂ , D+ and D− be the unique Choi–Jamiołkowski preimages of ω̂A′ B , 1+ and 1−

respectively. We apply theorem 1 on ρ̂ and ω̂ to find√
1 + 4δd4

A 2−
1
2 H ε

min(A′
|B)ω−

1
2 H ε

min(A|R)ρ =

√
1 + 4δd4

A 2−
1
2 Hmin(A′

|B)ω̂−
1
2 Hmin(A|R)ρ̂

> E
D

∥∥∥T̂ ((UA ⊗1R) ρ̂AR (U †
A ⊗1R)) − ω̂B ⊗ ρ̂R

∥∥∥
1
.

For any unitary, we have with an application of the triangle inequality∥∥∥T̂ ((UA ⊗1R) ρ̂AR (U †
A ⊗1R)) − ω̂B ⊗ ρ̂R

∥∥∥
1

>
∥∥∥T̂ ((UA ⊗1R) ρ̂AR (U †

A ⊗1R)) − ωB ⊗ ρ̂R

∥∥∥
1
− 2ε.

In the same way ρ̂R is eliminated from the product term and we obtain in total∥∥∥T̂ ((UA ⊗1R)ρ̂AR(U †
A ⊗1R)) − ω̂B ⊗ ρ̂R

∥∥∥
1

>
∥∥∥T̂ ((UA ⊗1R)ρ̂AR(U †

A ⊗1R)) − ωB ⊗ ρR

∥∥∥
1
− 4ε

>
∥∥∥T ((UA ⊗1R)ρAR(U †

A ⊗1R)) − ωB ⊗ ρR

∥∥∥
1

−

∥∥∥T ((UA ⊗1R)ρAR(U †
A ⊗1R)) − T ((UA ⊗1R)ρ̂AR(U †

A ⊗1R))

∥∥∥
1

−

∥∥∥T̂ ((UA ⊗1R)ρ̂AR(U †
A ⊗1R)) − T ((UA ⊗1R)ρ̂AR(U †

A ⊗1R))

∥∥∥
1
− 4ε.

(31)

The first term of equation (31) corresponds to the unsmoothed decoupling formula. For the
remaining two terms

E
D

∥∥∥T ((UA ⊗1R)ρAR(U †
A ⊗1R)) − T ((UA ⊗1R)ρ̂AR(U †

A ⊗1R))

∥∥∥
1

(32)

and

E
D

∥∥∥T̂ ((UA ⊗1R)ρ̂AR(U †
A ⊗1R)) − T ((UA ⊗1R)ρ̂AR(U †

A ⊗1R))

∥∥∥
1
, (33)
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we need to find upper bounds. We treat them separately beginning with the first one. To perform
the calculation we write ρ̂ − ρ = 0+ − 0− and use the linearity of T . We obtain

E
D

∥∥∥T ((UA ⊗1R)ρAR(U †
A ⊗1R)) − T ((UA ⊗1R)ρ̂AR(U †

A ⊗1R))

∥∥∥
1

6
∑

a∈{+,−}

E
D

∥∥∥T ((UA ⊗1R)0a(U
†
A ⊗1R))

∥∥∥
1

=

∑
a∈{+,−}

tr
(
T

( (
E
D

−E
U

) (
(UA ⊗1R)0a(U

†
A ⊗1R)

) ))
+

∑
a∈{+,−}

tr
(
T

(
E
U

(
(UA ⊗1R)0a(U

†
A ⊗1R)

) ))
6

∑
a∈{+,−}

∣∣∣∣∣∣(E
D

−E
U

) (
(UA ⊗1R)0a(U

†
A ⊗1R)

)∣∣∣∣∣∣
1

∣∣∣∣T †(1B)
∣∣∣∣

∞

+
∑

a∈{+,−}

tr (T (πA) ⊗ trA 0a)

6
∑

a∈{+,−}

δ ‖0a‖1

∥∥T †(1B)
∥∥

∞
+

∑
a∈{+,−}

tr (ωA′ B)tr (0a) (34)

6 4dAδε + 4ε. (35)

Inequality (34) used that an approximate two-design constitutes an approximate one-design
automatically. This can be seen straight from the definition by considering states that are given
by the identity operator on one of the systems on which the unitaries act. The last inequality (35)
can be seen by choosing the eigenvalue of T †(1B) which is the biggest in absolute value and
defining PA to be the projector corresponding to this eigenvalue. One then has

∥∥T †(1B)
∥∥

∞
6 dA.

Bounding the term (33) is done similarly. We decompose T̂ − T = D+ −D− in accordance
with the decomposition ω̂ − ω = 1+ − 1−. We then obtain

E
D

∥∥∥T̂ ((UA ⊗1R)ρ̂AR(U †
A ⊗1R)) − T ((UA ⊗1R)ρ̂AR(U †

A ⊗1R))

∥∥∥
1

6
∑

a∈{+,−}

tr
(
Da

(
E
D

(UA ⊗1R) ρ̂AR (U †
A ⊗1R)

))
=

∑
a∈{+,−}

tr
(
Da

( (
E
D

−E
U

) (
(UA ⊗1R) ρ̂AR (U †

A ⊗1R)
) ))

+
∑

a∈{+,−}

tr
(
Da

(
E
U

(
(UA ⊗1R) ρ̂AR (U †

A ⊗1R)
) ))

6
∑

a∈{+,−}

∣∣∣∣∣∣(E
D

−E
U

) (
(UA ⊗1R) ρ̂AR (U †

A ⊗1R)
)∣∣∣∣∣∣

1

∣∣∣∣D†
a(1B)

∣∣∣∣
∞

+
∑

a∈{+,−}

tr
(
Da(πA ⊗ ρ̂R)

)
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6
∑

a∈{+,−}

δ ‖ρ̂AR‖1

∥∥D†
a(1B)

∥∥
∞

+
∑

a∈{+,−}

tr
(
1a ⊗ ρ̂R

)
6 4dAδε + 4ε. (36)

Combining the expressions (35) and (36) and substituting them into (31), we obtain

E
D

∥∥∥T̂ ((UA ⊗1R)ρ̂AR(U †
A ⊗1R)) − ω̂B ⊗ ρ̂R

∥∥∥
1

> E
D

∥∥∥T ((UA ⊗1R)ρAR(U †
A ⊗1R)) − ωB ⊗ ρR

∥∥∥
1
− 8dAδε − 12ε.

Finally this yields

E
D

∥∥∥T ((UA ⊗1R)ρAR(U †
A ⊗1R)) − ωB ⊗ ρR

∥∥∥
1

6
√

1 + 4δd4
A 2−

1
2 H ε

min(A′
|B)ω−

1
2 H ε

min(A|R)ρ + 8dAδ ε + 12ε

which proves the smoothed decoupling formula for δ-approximate two-designs. ut

4. Decoupling in physical systems

In this section, we explain how our result can be applied to study a typical evolution of a physical
system. Consider, as before, a joint system AR in an initial state ρAR and assume that the A
system consists of a large number of interacting particles. In a physical scenario A might be
correlated with a huge, diffuse subsystem of the universe such that R might be much larger than
A. The most common type of interaction in nature is a local two-particle interaction. It can be
modeled using a two-qubit unitary gate. More generally, one may describe the randomization
process induced by the evolution of a many-particle system using a quantum circuit. Such
approaches were considered earlier for instance in [7, 19]. The circuit is constructed in the
following way: at each step of the circuit, two qubits from A and an element of a universal gate
set for U(4) are chosen uniformly at random. The gate is applied to the qubits and the circuit
proceeds to the next step. For a given circuit time t , we consider the set of all possible unitaries
the circuit can produce together with the corresponding probabilities. If t goes to infinity this
yields the Haar distribution on the whole unitary group [19]. Unfortunately, it turns out that the
convergence rate of the random circuit toward the Haar distribution is exponentially slow in the
number of qubits of the underlying system [7, 19, 29]. Nevertheless, after a time t that grows
polynomially in the number of qubits and logarithmically in 1

δ
, the above circuit will constitute

a δ-approximate two-design.
More precisely, the authors of [19] (theorems 2.9 and 2.10) and [11] derive the following

pivotal theorem.

Theorem 4 (Random quantum circuits are approximate two-designs [11, 19]). Let µ be the
probability distribution corresponding to any universal gate set on U(4) and let W be a random
circuit on n qubits obtained by drawing t random unitaries according to µ and applying each
of them to a random pair of qubits. Then there exists C (and C = C(µ) only) such that for
any δ > 0 and any t > C(n2 + n log(1/δ)), the set of unitaries produced by W together with the
corresponding probabilities forms a δ-approximate unitary two-design.

Following the discussion in [7], we will assume that typical dynamics in nature are given
by (short) circuits of the type of theorem 4. We conclude that in our model the possible
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evolutions of a many qubit system are given by elements of a unitary approximate two-design.
Moreover, theorem 4 states that in order to reach a δ-approximate two-design a circuit time
t := C(n2 + n log 1

δ
) is sufficient, with C being some constant that only depends on the concrete

circuit used.
We can now apply our decoupling theorem for approximate two-designs to infer conditions

under which typical processes in nature result in decoupling. In this example, we shall assume
that the R system is correlated with a subsystem of A and we are interested in how this
correlation behaves under a typical evolution. Hence, we decompose A into two parts: AS,
which identifies the subsystem of interest; and AE, which corresponds to an environmental
system which is uncorrelated with R. Since we are interested in the state of AS we choose
T to be the partial trace on the environment system: T (ρ) = trAE[ρ]. Formally, this implies
that Hmin(A|R)ρ >−log dAS and Hmin(A′

|E)ω > log dAE − log dAS (see lemma 20 in [34]). An
application of Markov’s inequality to the decoupling formula for approximate two-designs
shows that, for any ε > 0, one has

PrW

{
||trAE ((WA ⊗1R) ρAR (W †

A ⊗1R)) − πAS ⊗ ρR||1 > ε
}

6
1

ε

dAS√
dAE

√
1 + 4δd4

A.

This implies that if the environment AE is chosen big enough, decoupling occurs except with
small probability. Note, moreover, that the factor d4

A does not increase the time that is required
until decoupling is reached in a significant way. To reach a δ̄-approximate two-design with
δ̄ := δ

d4
A

it is sufficient to have run the circuit for a time

t̄ := C

(
n2 + n log

(
24n

δ

))
= C

(
n2 + 4n2 + n log

(
1

δ

))
.

This means that once the circuit has reached a δ-approximate two-design, it suffices to wait only
approximately five times longer until it generates a δ̄-approximate two-design. This additional
time certainly does not affect our conclusions.

We summarize our discussion with a corollary and give an outlook for possible applications
of our results.

Corollary 1. Given a system A which consists of two subsystems AS and AE, assume that
AS is correlated with a reference system R. Furthermore, assume the A system to consist of
interacting particles, whose dynamics can be described with the above circuit model. Then if
AE is chosen large enough a typical process reaches decoupling after polynomial time except
with small probability.

In the context of black hole evaporation a result similar to theorem 1 occurs in [22,
inequality (5.1)]. However, the validity of this formula is restricted to the approximate two-
designs constructed in [9], which share strong additional properties [9, equation (16)]. In the
model of [22] it seems reasonable to assume that the approximate two-designs are generated via
a random quantum circuit as in corollary 1. Since in general such circuits will not produce the
two-designs of [9] our decoupling formula seems more appropriate for the application in [22]
than inequality (5.1).

Finally, note that related results concerning the thermalization of subsystems have been
derived in [17, 27, 31] and a generalization of these results using the decoupling approach has
recently been proposed in [24].
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