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ABSTRACT 

 

Studies have been made of the normal modes of a 20.7 cm diameter steel gamelan gong. 

A finite-element model has been constructed and its predictions for normal modes 

compared with experimental results obtained using electronic speckle pattern 

interferometry. Agreement was reasonable in view of the lack of precision in the 

manufacture of the instrument. The results agree with expectations for an axially 

symmetric system subject to small symmetry breaking. The extent to which the results 

obey Chladni’s law is discussed. Comparison with vibrational and acoustical spectra 

enabled the identification of the small number of modes responsible for the sound output 

when played normally. Evidence of non-linear behaviour was found, mainly in the form 

of subharmonics of true modes. Experiments using scanning laser Doppler vibrometry 

gave satisfactory agreement with the other methods.  

 

 

PACS numbers: 43.75.Kk, 43.40.At, 43.40.Le 
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I. INTRODUCTION 

 

 A gamelan is defined as an ensemble of traditional musical instruments from the 

general region of the Indonesian archipelago. While several different types of instruments 

are involved, the backbone of the gamelan consists of idiophones and gongs. The latter 

come in a wide range of sizes and are traditionally made of bronze, although steel is now 

sometimes used. The gamelan is central to the musical art of Indonesia
1
 where it 

commands huge respect and even reverence. 

 Compared to Western percussion instruments, there has been little attention paid 

to gamelan gongs in the scientific literature; a useful summary has, however, been given 

by Rossing
2
. There have been further studies on large gamelan gongs

3
, which are of 

particular interest because they show marked non-linear behaviour. Apart from a 

preliminary report on the present work
4
, there is only one further study on small gamelan 

gongs of which we are aware
5
. This used finite-element models and acoustic 

measurements (only) to investigate the influences of various aspects of gong geometry on 

tuning. 

 In the present paper the results of a study on a small steel gamelan gong from 

Sarawak are reported. These gongs are very similar in geometry to the Indonesian ones 

but, rather than being cast in bronze, are hammered into the desired shape starting from 

flat uniform circular metallic plates. Finite-element modelling (FEM) (Elford and 

Chalmers), electronic speckle pattern interferometry (ESPI) (Moore, Elford and 

Chalmers) and laser Doppler vibrometry (LDV) (Halkon, Hamden and Swallowe) have 
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been used together with group representation theory (Perrin) and some acoustical 

measurements (Halkon, Swallowe and Perrin). 

 

II. GONG GEOMETRY  

 

 Although gamelan gongs come in a wide range of sizes, they all have a similar 

general form. In Fig. 1 we show the experimentally measured half cross-section of the 

small gamelan gong used in the present study taken through its centre when placed on a 

horizontal surface. The gong consists of a central dome A on top of a roughly flat circular 

plate which is terminated by a shoulder BC and then a deep inward-sloping rim CD. It 

has a basic axial symmetry with axis AE. The diameter at the widest point was 20.7 cm 

and the thickness of the metal was nominally 1.5 mm. From the figure it can clearly be 

seen that the thickness is slightly less in regions of high bending due to its having been 

hammered out from a flat plate. In Fig. 2 we show a photograph of the gong in which the 

irregular nature of the surface can clearly be seen.  

 Gamelan gongs are normally rung by being struck on the central dome with a 

soft-headed mallet. Large gongs are suspended vertically by strings; smaller ones are 

often orientated horizontally by sitting them on parallel pairs of horizontal strings. 

 

III. THEORETICAL CONSIDERATIONS 

 Because of the gong’s basic axial symmetry it is convenient to describe it using 

cylindrical polar coordinates with the z-direction lying along AE. Displacements in the 

),,( zr  directions will be referred to as ),,( wvu . 
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A. The unperturbed gong  

 

 As with other three-dimensional systems, the normal modes of gamelan gongs 

will have few, if any, true nodes (points of zero displacement). However, the individual 

),,( zr  components of the motion may do so. Since acoustical radiation is produced 

primarily by motion normal to the surface it has become the convention to describe the 

modes of bells in terms of the nodal patterns of their r-components. Likewise for cymbals 

it is usual to use the z-components. In the present case it is convenient to use the  

z-component on the upper parts of the gong and the r-component for the rim. The nodal 

patterns for a given mode for these regions can be expected to marry together smoothly 

due to overall symmetry requirements. 

 

 A truly axially symmetric gong is subject to the same consequences for its normal 

modes as are other systems with the symmetry group C∞v such as bells
6
, cymbals

7
 and flat 

circular plates
8
. Since the modal functions form a complete orthonormal set giving bases 

for all the irreducible representations of the group, these must vary like )sin( m or 

)cos( m where ,...2,1,0m  giving degenerate pairs of modes. The case of 0m  is 

exceptional in having singlet axisymmetric modes. Thus the nodal patterns must consist 

of m equally spaced “diameters” and n circles parallel to the rim, the diameters of one 

doublet member lying mid-way between those of its partner. The number pair (m, n) can 

be used to specify a degenerate pair of modes of a particular physical type. If it is desired 

to specify a particular member of a doublet this can be done by adding a subscript outside 
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the bracket. It is possible to have modes of different physical types with the same (m, n) 

values, equally well permitted by symmetry considerations but very different in 

frequency, as will be discussed in section IIIB. All these arguments apply equally well to 

the ),,( zr   components of the motion individually. 

 If the gong were truly axially symmetric then the actual locations of the nodal 

diameters would be indeterminate until fixed by initial conditions. However, since the 

gongs are cast or formed, there are always imperfections both of geometry and of 

metallurgy. These imperfections result in the doublets being split and the locations of 

their nodal diameters being fixed. Beats can subsequently be expected to occur as in the 

case of bell “warble”.  The gong used in the present study deviated considerably from 

perfect axial symmetry, resulting also in significant distortions in some of the nodal 

patterns.  

 

B. Extensional and inextensional modes 

 

 The study of bells
9
 and other axially symmetric systems

10
, as well as the ideas of 

Rayleigh
11

, lead one to expect that the lowest frequency modes will always involve 

inextensional distortions of the system because this minimises the potential energy of 

displacement. In the present case this means that if one takes a section through the gong 

at fixed z the resulting ring will contain a neutral circle whose total length remains 

unchanged throughout the cycle. This requires that the radial and transverse components 

of the motion to be related by  

0







v
u                                                  (1) 
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Thus, using the parts of the modal functions introduced in section IIIA, one member of a 

degenerate pair may be written )sin( mmAu  and )cos( mAv  where A is an 

arbitrary constant. So the modes have radial components that become increasingly larger 

than the transverse ones as m increases. These inextensional modes will appear in an 

infinite series as one goes to higher frequencies. They will, however, eventually become 

supplemented by others, equally well-allowed by symmetry requirements, satisfying a 

complementary “extensibility” condition 

0







u
v                                                  (2) 

This results in modes whose transverse components are m times their radial ones. Thus 

for every inextensional (m, n) pair there is a corresponding extensional one which is an 

order of magnitude higher in frequency due to the increase in potential energy from the 

extension. These “extensional” modes are well-established as occurring in church bells
12

 

and Indian elephant bells
13

 but seem unlikely to appear in small gongs at frequencies low 

enough to be of interest.  

 

IV. FINITE-ELEMENT MODEL (FEM) 

 

A. Construction of the model 

 

  The structural mechanics module of Comsol Multiphysics was used to investigate 

the normal modes of the gong. The inner and outer profiles for the half cross-section of 

the gong from the centre of the dome A to the bottom of the rim D (see Fig. 1) were 

measured separately at a fixed value of θ using a metric coordinate measurement 
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machine. This was repeated for a number of different orientations. An average was then 

taken for the outer half profiles and another for the inner ones. These were fed into 

Comsol as geometric data and used to generate a three dimensional model with perfect 

axial symmetry. The facilities for automatic element selection and meshing were 

employed while the material properties were taken to be those of standard mild steel. A 

constraint was imposed on the top of the rim to mimic a clamp which proved necessary 

when making the ESPI measurements. This broke the axial symmetry slightly and so was 

expected to cause small splits in the model’s predictions for the degenerate pairs. 

 

B. FEM results and discussion 

 

 The Eigenfrequency analysis facility of the Comsol package was used to calculate 

the frequencies and display the modal forms of all modes it could find up to about 6 kHz. 

In most cases it was easy to identify a mode’s value of m by looking at the behaviour of 

the top plate. However, this became more difficult as m increased because a region of 

evanescence extended ever further away from the dome. A preliminary study suggested 

that the modes might be divided into “rim” and “plate” types. However, a comparison 

with results previously reported for cymbals
7
 made it clear that the “rim” modes are just 

0n  cases for the complete gong where evanescence has “forced” the observable 

motion for all modes with 3m  down onto the rim
14

. “Plate” modes are those with 1n  

where the evanescent region is relatively small. 

 The symmetry type of a mode is determined by its value of m. The FEM correctly 

predicted all modes with 0m  to be singlets and all others to be doublets (slightly split 
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as anticipated due to the point support). Some examples are given in Fig. 3 where a “rim” 

mode and an orthogonal pair of “plate” modes are shown in the top row. On the bottom 

row we show the three modes which proved to be the most important acoustically. 

 

V. EXPERIMENTAL INVESTIGATION AND DISCUSSION 

 

A. ESPI measurements 

 

 In order to compare the FEM predictions with experiment the operational 

deflection shapes were studied using ESPI
15

, a technique well-known for the visualization 

of vibrational modes of musical instruments
16,17

. The facility employed has been 

described in detail elsewhere
18

. The gong was mounted on a vibration-isolated optical 

table inside an anechoic chamber and excited by a loudspeaker placed about 50 cm 

behind it. The speaker was driven using a sinusoidal signal generated by a high-quality 

function generator /amplifier. The drive signal was carefully monitored in order to avoid 

introducing harmonic and subharmonic frequency content. Unfortunately the system did 

not permit the gong to be supported horizontally, as it would be during normal playing. 

Instead it was hung vertically, clamped to a stand along a small section near the centre of 

the rim. This would certainly have influenced some of the modes and had to be taken into 

account when constructing the FEM and when interpreting the results. The model 

included fixed boundary conditions at the same point on the rim where the gong was 

clamped in the experiments in order to make the modeling and experimental conditions 

equivalent. 



 10 

 

 The identification of modes from their ESPI images was much more difficult than 

those from FEM. Firstly the gong proved to have non-linear properties resulting in the 

appearance of both harmonics and subharmonics of many true modes as well as some 

mixed-symmetry types. There were also, as expected and especially for cases with 2n , 

some serious pattern distortions. This was no doubt due to the influence of the 

irregularities from hammering which were largely smoothed out in the FEM because of 

the way in which its precisely axially symmetric form was generated. As the wavelengths 

involved in the patterns became smaller so the modes were more sensitive to the 

irregularities. Experiments looking at the top of the gong along the symmetry axis were 

not sufficient because, for modes with 0n , no nodal patterns were observed on the top 

plate for 3m . However, looking from the side, modes with (m, 0) for m up to 10 were 

readily identified. Modes with 1n  were relatively easy to identify because their single 

nodal circle occurred at or near the inner edge of the shoulder. While a few modes with 

2n  were identified, this became increasingly problematic as n increased. We therefore 

paid them relatively little attention.  

 In Fig. 4 we show the ESPI images for the same modes displayed in Fig. 3. 

Clearly the modal forms are in good agreement. It should be noted that the doublet pairs 

are somewhat split in frequencies, as expected. We have included side-views for the (4,1) 

modes to show their lack of skirt motion. Higher frequency modes with n > 0 behaved 

similarly. The (8,0) shows considerable skirt motion but very little on the face. It, like 

other n=0 modes with 3m , could not be identified by ESPI measurements from the 

front. 
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 As an example of subharmonics appearing in the ESPI results we show in Fig. 5 

the parent modes for the orthogonal pair (6,1)A at 4469 Hz and (6,1)B at 4494 Hz  Also 

shown are their 1/3 subharmonics at 1489 Hz and 1498 Hz. The subharmonics have the 

same general appearance as their parents but, though the driving amplitudes were of 

equivalent level, the response was considerably lower. The existence of these, and other, 

subharmonics confirms the non-linear nature of the system.  

 

B. LDV and acoustic measurements  

 

 To complement the ESPI measurements a Polytec Compact Laser Vibrometer, 

which measures velocity in the direction of the incident laser beam, was used to 

investigate the vibratory motion at a number of sensibly selected places on the surface of 

the gong. The laser beam was tightly focused onto the surface to a spot with circa 1mm 

diameter so could be considered as taking “point” measurements. The vibrometer voltage 

output, directly proportional to the surface velocity, was captured via a data acquisition 

system on a PC and a Fourier transform, implemented using MATLAB, was performed 

to determine the frequencies present. The gong was excited by gentle impacts at carefully 

chosen places with a view to simultaneously exciting all of the vibrational modes within 

the frequency range of interest.  

 The resulting spectra, an example of which is given in Fig. 6, were quite detailed 

and showed the main resonant peaks all to be extremely sharp. Not surprisingly, the 

singlet (0,1) was by far the most important mode. The two pairs (1,1) and (2,1) were also 

significant. Only n = 1 modes and some of their (non-linear) harmonics made 
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measureable contributions. A number of peaks found did not correspond to any modes 

detected by ESPI. These enabled some of the gaps in the overall mode data, as predicted 

by FEM, to be filled. 

 In Fig. 7 we show an acoustic spectral map for the gong after striking it on the 

dome. This was obtained under free-field conditions with a 6 pole zero-phase shift 

Butterworth high pass filter with a 250 Hz cut-off subsequently applied to remove 

environmental noise. The figure again shows that the singlet (0,1) was by far the most 

important mode. The split doublet pair (1,1) were also significant. The figure clearly 

shows that any other frequencies involved decay away comparatively rapidly. 

 No evidence of a second important axisymmetric mode one octave above the 

(0,1), as reported by Rossing using a small Balinese gong, was found. It is possible that 

he may have been observing a (0,2) mode. However, in the present ESPI experiments, 

while a true (0,1) mode was found at 458 Hz (with a ½ subharmonic having a closely 

similar but much fainter pattern at 230 Hz), the (0,2) mode was found at 1284 Hz. This is 

very remote from the (0,1) octave.  

 

C. Comparison of frequencies 

 

 The frequency predictions of the FEM and the corresponding ESPI measurements 

are shown in Figs. 8 and 9 for 0n  and 1n  respectively. Frequencies above 5 kHz 

have been excluded because of the problems in interpreting their ESPI forms. Since the 

0n  “rim” doublet modes were significantly split, only the higher frequency 

components are shown, for the sake of clarity. Clearly the agreement is excellent. In the 
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case of then =1 “plate” modes, the higher frequency components of the doublets are 

again the only ones shown. In this case the agreement was not nearly so good, although 

the trends were identical. To emphasize this, the FEM predictions, as plotted, have been 

reduced by 20% in the graph. Such a deviation could easily be caused by variations in the 

thickness of the top plate, due to hammering, making the model too crude an 

approximation. The 0n  modes depend hardly at all upon the details of the top plate, it 

being a region of evanescence for them. Rather they are expected to depend mainly on 

the details of the rim’s geometry. Apart from the (0,1) all the modes included in these 

figures are of the inextensional type as described in section IIIB.  

 

D. Non-linearity  

 

 Non-linear behaviour is well established as being an important feature in many 

musical instruments
19

. In the case of percussion instruments, it is usually associated with 

large amplitudes of vibration and has been reported in large-diameter examples of 

cymbals, shallow gongs
20

 and gamelan gongs
3
. Small gamelan gongs, being less flexible 

than their larger cousins, seem less likely to achieve sufficiently large amplitudes to 

produce non-linear effects. However, the ESPI studies revealed numerous “modes” over 

and above those expected from the FEM calculations. Nearly all of these proved to be 

subharmonics of parent modes. A typical example was discussed in section VA. Only a 

few harmonics were found. No subharmonics appeared for any of the (m,0) modes apart 

from the (1,0) pair which both showed ½ examples. The (m,1) cases up to 7m  all 

showed clear subharmonics in pairs. For 4m  they all showed 1/3 subharmonics, for 
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1,0m  they showed ½ while for 3m both ½ and 1/3 were present The few (m,2) modes 

we could identify all had either a ½ or a 1/3 subharmonic. 

 The reason for the non-appearance of subharmonics for most of the (m,0) cases is 

not hard to see. For 2m  they involve almost no motion on the top plate due to 

evanescence and so are restricted to the rim where large amplitudes are improbable. Only 

when 1n  does the top plate participate significantly, making it possible for the 

amplitudes to become large enough to generate non-linear behaviour. 

 Non-linear behaviour was not observed acoustically. This was as expected with 

such a small gong being struck with a mallet. The energy input being spread across the 

whole spectrum; amplitudes of parent modes would simply be too low to generate non-

linear behaviour. With ESPI however, because a monochromatic signal with very high 

amplitude was used, such behaviour was readily observed.  

 

E. Chladni’s Law  

 

 In the study of the normal modes of flat circular plates, a law first proposed by 

Chladni
21,22

 was given some mathematical justification by Lord Rayleigh
23

. His 

formulation showed that, under asymptotic conditions, the frequency fm,n of a normal 

mode with m nodal diameters and n nodal circles should be given by 

 

                                                        fm,n   C( m + 2n)
2
                                           (3) 
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 where C is a known constant. It was shown by Rossing
24

, on analyzing the extensive data 

of Waller
25

, that while this equation does not work particularly well, it can be improved 

by modifying it into 

 

                                                     fm,n  =  Cn ( m + 2n)
Pn

                                            (4) 

 

where Cn and Pn are constants for a given plate with Pn not differing much from 2. This 

equation, sometimes called “modified Chladni’s law”, has been applied with varying 

success to other axially symmetric systems including thin rings
26

 and church bells
27

. It 

has to be remembered that, because of the asymptotic nature of the underlying derivation, 

the equation cannot be expected to work for low values of (m + 2n) which means, in the 

present context, low values of m. 

 Because of its limited success with other axisymmetric systems it is of interest to 

try to apply it to the present small gamelan gong. Sufficient data was available only for 

the n = 0 and n = 1 cases. As a trial Pn was set to 2 for both n values. The resulting fits are 

shown in Fig.10 with the lower values of m omitted. In each case only the higher 

components of the doublet pairs have been used. The fits were extremely good and the 

resulting parameters are included in Table I. From the table it can be seen that the fits to 

the lower frequency components are even better than those in the figure. The fact that the 

fits do not pass through the origin is a reflection of the asymptotic nature of the “law” and 

the remoteness of the gong from a flat circular plate. One could bring the two linear fits 

in Fig. 10 into coincidence by adjusting the factor 2 on the right hand side of Eq, 4 but it 

is hard to see what the physical significance of this might be.
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VI. SCANNING LDV MEASUREMENTS 

 

 In order to check the ESPI results further, it was decided to conduct a new set of 

experiments with the same gong, supported similarly, but now using scanning LDV. This 

technique, conceived some decades ago
28

, is, like ESPI, used in a number of sectors as an 

alternative to the more traditional contact vibration measurement methods but has 

specific advantages for measurements such as those conducted in this study
 29

. It involves 

scanning a laser beam across the surface of the structure of interest, addressing points of 

interest sequentially, using a pair of orthogonally aligned mirrors. Directing the beam 

onto the top surface of the gong parallel to the symmetry axis enabled the motion in that 

direction to be studied. Directing the beam normally to the axis onto the rim, by using an 

angled mirror, enabled the motion there to be investigated during the same measurement. 

 

A. Experimental details 

 

 The facility used to perform these experiments has been described in some detail 

previously
4
. The gong was suspended in this case by a light elastic band around its widest 

point and the driving point chosen such that there was expected to be activity in most of 

the modes of interest. A miniature force transducer was attached to the gong surface to 

measure the (reference) input signal. Excitation was generated using a permanent magnet 

electrodynamic shaker connected to the force transducer through a pin vice and thin wire 

“stinger” arrangement. A Polytec (2D) scanning LDV system was used to measure the 
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vibratory response of the gong at a discrete series of points on the surface. Broadband 

(white) noise, generated within the scanning LDV system with an appropriate frequency 

range, was amplified using an LDS PA25E power amplifier and used to drive the shaker. 

Bursts of random excitation were used with a 5% block length build-up and a 50% of 

block-length burst. These parameters gave a gong response that decayed within the 

acquisition block such that a rectangular acquisition window could be used without 

significant risk of spectral leakage. 20 linear averages were used to maximize the signal-

to-noise ratio in the measured mobility frequency response functions (FRFs). Typical 

experimental modal analysis good practice
30 

was employed to ensure that high quality 

data could be realized. 

 Response measurement points were directly defined in the scanning LDV 

software on a regular grid with enough spatial resolution to enable representation of the 

mode shapes at all frequencies of interest. The scanning LDV system was positioned 5 m 

from the gong in order that the angle of incidence of the laser beam was never more than 

5º off axis such that the sensitivity to velocity normal to the intended measurement 

direction was negligible. The frequency range of interest and required specified settings 

often led to acquisition periods of several hours. Care was taken to ensure that the 

ambient conditions and other environmental effects did not impact significantly on the 

quality of the measured data. 

 Modal processing of the FRFs was performed in the Polytec scanning vibrometer 

software by manually defining multiple search frequency bands within the sum FRF, 

from which the peak amplitudes were automatically identified. A least squares complex 

exponential curve fitting algorithm was subsequently used to synthesize a number of 
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single degree of freedom damped exponentials from which the Eigenfrequencies were 

extracted. 

 

B. Scanning LDV results and discussion 

 

 The identification of the gong’s modes using scanning LDV was relatively easy 

compared with ESPI. Fewer modes were detected, but this was partly because relatively 

few harmonics and subharmonics were excited. As expected, modes became increasingly 

difficult to find and identify as the frequency increased. Again some modes were badly 

distorted and there was some evidence of mode-mixing. Similarly to ESPI, most n = 0 

modes could only be detected by looking at the side-on view. In Fig. 11 a selection of the 

modal forms from scanning LDV are shown. When the top row is compared with those of 

Figs. 3 and 4 the agreement for the (4,1) modes is seen to be striking, except that 

scanning LDV shows relatively little motion on the shoulder. This could be attributed to 

the fact that, as previously described, scanning LDV measures velocity in the direction of 

the laser beam. Given the geometry of the gong, the shoulder’s motion may be much 

more significant in directions not closely aligned with the incident beam direction. The 

forms shown in the second row of Fig. 11 are in even better agreement with those in Figs. 

3 and 4. In these cases there is little shoulder motion, as expected. In the third row 

members of the (2,0) and (2,1) pairs are included in order to emphasize the differences 

between them. 

 An example scanning LDV spectrum for the gong is shown in Fig. 12. Comparing 

this with Fig. 6 one sees good overall agreement between the modal frequencies 
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although, as expected, the relative magnitudes of the peaks differ. Also the scanning LDV 

spectrum shows up the (4,1) modes which do not appear in the LDV spectrum, although 

they were easily detected by ESPI. Table 2 shows a comparison of the frequencies 

measured from ESPI and scanning LDV.  

 

VII COMPARISON OF METHODS 

 

  For both ESPI and scanning LDV methods the detection of modes, being optical, 

is non-contact. In ESPI the gong was excited acoustically with a sinusoidal signal whose 

frequency was varied manually and tuned to find amplitude peaks. This introduced 

uncertainties into the measured frequencies as the peaks were sometimes rather broad. It 

also made the experiments long and tedious. With scanning LDV, on the other hand, the 

gong was excited mechanically with “white noise” at a single point and the frequencies 

were extracted by the software. This could also take a long time but had the advantage of 

being essentially automated. ESPI was more sensitive as a detector of modes and found 

numerous subharmonics of true modes, while scanning LDV found relatively few.  

 Provided the mode order did not become too high it was, in general, not difficult 

to interpret the ESPI interferograms on the top plate and on the shoulder. When looking 

towards the rim it was sometimes difficult to identify m values but it could usually be 

done. With scanning LDV it was easy to see what was happening on the top plate but 

with the shoulder it was problematic. When looking at the rim using scanning LDV it was 

not too difficult to establish the m values, but relatively few n = 0 cases could be found. 

This could be attributed to a number of things including (1) a sub-optimal choice of 
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driving point and (2) the fact that bursts of random excitation were used to excite all 

modes simultaneously with a significantly lower input of energy per mode than in the 

case of ESPI. This reduced energy per mode may also account for the relatively few cases 

of subharmonics and other non-linear effects. 

 Some of the discrepancies between the frequencies measured by the two methods, 

as shown in Table 2, are larger than one might wish. There are at least two possible 

reasons for this. Firstly the ESPI method induced considerable non-linear behaviour, 

which could have caused some frequency shifts away from the “true” linear values. 

Secondly, the use of a mechanical driver in scanning LDV will have caused slight 

changes in the mass and stiffness of the system which could also result in frequency 

changes. Overall the agreement between ESPI and scanning LDV is considered 

reasonable although scanning LDV detected fewer modes. Given that the two methods 

use very different approaches, it is encouraging that the results are in such reasonable 

agreement concerning “true” modes.  

 

VIII. CONCLUSIONS  

 

The normal modes of a 20.7 cm diameter steel gamelan gong are now reasonably well 

understood and the acoustically important ones identified. Expectations from slightly 

broken axial symmetry were well satisfied and similarities with cymbals, bells and other 

axisymmetric systems are clear. Non-linear behaviour, mainly in the form of sub-

harmonics of true modes, has been established. The experimental frequencies have been 

shown to satisfy a modified version of Chladni’s law and also to agree tolerably well with 



 21 

the predictions of a finite-element model. A comparison of ESPI and scanning LDV 

methods has established that the latter is also a useful technique for investigating these 

gongs, especially in identifying the acoustically important low order modes. 
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TABLE I. Chladni’s law fits to the ESPI data 

 

mode family components m range fitted Cn R
2 

n = 0 
upper 4 - 9 47.26 0.9925 

lower 4 - 9 49.87 0.9894 

n = 1 
upper 2 - 7 48.70 0.9994 

lower 2 - 7 48.23 0.9966 
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TABLE II Comparison of measured frequencies 

 

modes ESPI (Hz) Scanning LDV (Hz) 

(0,1) 458 470 

(1,1) 698, 734 723, 745 

(2,1) 2005, 2093 1986, 2031 

(3,1) 2529, 2606 2506, 2556 

(4,1) 3045, 3089 3008, 3073 

(5,1) 3726, 3748 3580, 3661 

(6,1) 4469, 4494 --, -- 

(1,0) 69, 99 --, -- 

(2,0) 240, 244 216, -- 

(3,0) 527, 556 528, 545 

(4,0) 945, 1151 975, -- 

(5,0) 1388, 1807 1441, 1788 

(6,0) 2227, 2344 2299, 2324 

(7,0) 2941, -- 2920, -- 

(8,0) 3436, 3594 --, -- 

(9,0) 4182, 4300 --, -- 
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FIGURE CAPTIONS 

 

Figure 1. Vertical cross-section through the small gamelan gong. 

 

Figure 2. Photograph of the gong. 

 

Figure 3. Selected modes predicted by the finite-element model. 

 

Figure 4. Selected modes observed using electronic speckle-pattern interferometry. 

 

Figure 5. An example from ESPI of a pair of 1/3 subharmonics with their parent modes. 

 

Figure 6. Example of an LDV spectrum for the gong struck and detected at a discrete 

point. 

 

Figure 7. Acoustic spectral map after striking on the dome showing the relative 

importance and decay of various natural frequencies. 

 

Figure 8. Frequency vs. m for n = 0 (higher frequency components) modes for ESPI (▲) 

and FEM (continuous line).  

 

Figure 9. Frequency vs. m for n = 1 (higher frequency components) modes for ESPI (▲) 

and FEM (continuous line).  
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Figure 10. Frequency vs. ( m + 2n)
2 
  for n = 0,1 (upper components) with low m 

excluded. 

 

Figure 11. Selected modes observed using scanning laser Doppler vibrometry. 

 

Figure 12. Example scanning LDV frequency response function for the gong. 
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