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Abstract 

This paper presents the novel application of a technique for measuring flow around the hand during a simulated swim stroke 
with a view to enable a better understanding of propulsion generation in swimming.  The technique relies on the 
instantaneous, non-intrusive, volumetric measurement of 3D velocity fields using a commercially available optical 
measurement system.  A hand and forearm model was towed through a water tank to replicate the pull phase with fluid flow 
data being captured at regular intervals in a fixed volume through which the model moved.  The measurement system 
included a single body, three-sensor probe for capturing pairs of images which were then processed to determine particle 
velocities and to characterise the flow. The results were used to investigate changes in mean velocity for six experimental 
cases based on three different angles of attack and two towing speeds.  The results showed that the V3V system could be 
used to capture velocity data around the hand and for a 45° increase in angle of attack, the velocity magnitude of the flow 
reduced by half, indicating the presence of lift forces. 
 

1. Introduction 

There are five phases of the front crawl stroke cycle: entry, catch, pull, push and recovery.  The hand entry 
and catch are the phases where the swimmer’s hand enters and gets ‘hold’ of the water.  The pull defines the 
first half of the stroke where the arm moves from a position stretched out in front of the body to a medial point; 
the push describes the hand as it moves from this point towards the feet of the swimmer.  Recovery, the final 
phase, is where the arm leaves the water and returns to the re-entry point.  It is generally agreed that the arms 
provide more than 85% of the total thrust in the front crawl stroke [1], with the pull phase generating the most 
power through the stroke.  The success of a competitive swimmer depends on many factors; one of the most 
prominent is technique, and within this the hand orientation during each phase of the stroke.  The coefficients of 
lift and drag are strongly dependent on the angle of attack, illustrated in Fig. 1; small changes in angle of attack 
can change the resulting propelling force, which is a vector product of the lift and drag force [1].  Swimmers are 
able to direct the propelling force by varying the lift and drag component by means of angle of attack.  The 
optimal angle of attack can be seen to vary throughout the swim motion depending on the phase of the stroke 
[1].   

Hand position and finger separation are important considerations when investigating the effect of hand 
orientation on performance.  Computational Fluid Dynamic and physical modelling studies have determined the 
optimal finger separation to be between 10-12º, equivalent to a relaxed hand position.  This is found to improve 
performance compared to a fully open or completely closed hand [2,3].  In addition to understanding the 
movements and angles of the arms during a stroke it is also necessary to consider body and hand velocity.  The 
stroke slip rate of an elite swimmer is the relative velocity between the hand and the water in the direction of the 
swimmer’s forward motion and varies from 0.1 to 0.6 m.s-1 [3].  Velocities of the underwater phases of 
swimming have also been reported by Maglischo [4], however these consider the hand velocity in three 
dimensions thereby resulting in higher values.   

Theories in propulsion have evolved through continued research and better understanding of fluid behaviour.  
Arellano [5] discusses the relationship between these theories and swimmer technique and highlights the need 
for further research in this field.  Many studies have been based on steady flow theory [6]; flow fields around 
swimmers are, however, typically unsteady and, therefore, inherently difficult to predict and measure.  Particle 
Image Velocimetry (PIV) has been used to analyse the motion of swimmers, allowing velocity vector 
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measurements to be taken in a region of flow while being non-intrusive to the swimmer.  Studies have 
investigated areas such as the flow around the hands [7] and also investigated the area behind the feet during 
undulatory swimming [8–10], allowing for correlations between propulsion and vortex generation.   

Techniques presented in reviewed literature have been limited to two-dimensional studies, investigating flow 
in either the sagittal or the frontal plane, with no research to date reporting data collection simultaneously in 
multiple planes.  For this reason, flow generated from an arm model towed through water was studied here by 
examining a volumetric flow field using a volumetric PIV system.   

2. Methodology 

2.1. Hand model and rig 

Experiments were conducted in a water filled tank sized 800 x 450 x 350 mm, using a bespoke mechanical 
rig towing an end-effecter.  A model of a female forearm (hand length 185 mm, hand breadth 80 mm, hand 
circumference 190 mm), produced from a water resistant Jesmonite acrylic resin, with the hand at the correct 
orientation and finger spread, was mounted to a double-acting pneumatic actuator, allowing only linear motion 
with total travel range 750 mm.  The air pressures at the inlet and outlet ports of the actuator governed the 
velocity of the arm.  The average velocity of the end-effecter was captured with two optical switches arranged as 
light gates separated by 232 mm.    

2.2. Data capture 

A TSI Volumetric 3-Component Velocimetry (V3V) System was used to capture the region of flow on the 
dorsal side of the hand as it moved through the tank with the centre of the arm model approximately 215 mm 
from the edge of the tank, as illustrated in Fig.1b.The flow was illuminated by a dual head 200 mJ/pulse 
Nd:YAG laser with a pulse separation time (Δt) of 1250 µs.  Two negative  
25 mm cylindrical lenses were mounted in perpendicular orientations to produce an ellipsoidal cone of 
illumination which was expanded to cover a larger region. A flat mirror was used to reflect the beam back 
through the water tank towards the measurement region to increase illumination intensity.  Screens were used on  

  

 
 
 
 
 

Figure 1: (a)  Hand angle of attack; (b) Image of the experimental setup; arrow indicating the direction the arm was towed 

.  



the side of the tank to limit the illumination volume to the area of interest. Polycrystalline particles with a mean 
diameter of 50 µm were used as tracers.  The volumetric camera sensor consisted of three apertures, each 
containing a four-megapixel CCD, arranged in an equilateral triangle of side length 170 mm.  The camera sensor 
was mounted 675 mm from the rear of the measurement region and perpendicular to the illuminating light.  This 
arrangement allowed for a measurement region of 135 mm x 110 mm in the horizontal and vertical directions 
respectively and with a depth of 100 mm.  The V3V camera frames and laser pulses were triggered by a 
synchroniser with each of the three CCD’s capturing a pair of images.  The two laser-emitted pulses are timed to 
straddle neighbouring camera frames in order to produce images for 3D particle tracking.  The synchroniser was 
triggered externally to coincide with the arm passing through the optical timing switch.  The velocities of the 
arm through the capture region were based on a slow velocity of 185 mm.s-1, and a faster velocity in the region 
of 260 mm.s-1 as shown in Table 1.  Image sets were captured at 7.25Hz giving 15 image sets per stroke, each 
with three image pairs.  The parameters used during image capture are detailed in  
Table 1.   

 
After image capture, the V3V software was used to determine the velocity vector fields in four steps:  

i) 2D particle identification in each of the individual images, ii) 3D particle location in the measurement volume 
iii) 3D velocity vector generation based on particle tracking and, finally, iv) interpolation of the vectors onto a 
regularly spaced grid.  Each of the four stages are summarised below, with more details found in Troolin and 
Longmire [11].  The locations of the tracer particles in each image were determined by setting a baseline 
intensity threshold out of 4096 grey scales, a minimum and maximum 2D particle diameter (1 mm and 3-3.5 
mm used for the data collected) and a maximum particle overlap size of 75%.   

The process of identifying particles from one image and its corresponding image in the pair required the use 
of the volumetric spatial calibration, which was achieved in advance of making measurements by traversing a 
single planar target through the measurement region and capturing images at regular, pre-defined intervals.  The 
target surface consists of a series of holes spaced on a 5 mm square grid; the target was traversed towards the 
camera in the z-direction at 5 mm intervals over a range of 100 mm resulting in 63 images per calibration.  Once 
the calibration information was obtained, the locations of the 2D particles were compared with it, in order to 
determine 3D particle locations or triplets [12].  The centroids of the 2D particle locations were forced to match 
the calibration within a tolerance of four pixels.  After particle clouds were achieved in both frames a relaxation 
method of particle tracking is performed [13].  Vectors found were spaced within the volume dependent upon 
particle locations.  It is useful to have vectors on a Cartesian grid; these vectors are found through regular 
Gaussian-weighted interpolation.  A typical single capture yielded approximately 300 independent arbitrarily 
spaced vectors and 22000 interpolated vectors per velocity field.  

2.3. Data Analysis 

Data was obtained for the six cases under investigation and, within each, multiple runs were completed; each 
run resulted in 15 pairs of images, each pair separated by 0.138 sec.  The data obtained was not phase averaged 
at this time; the preliminary study focused on investigating the mean flow in the three vector components for a 
single instance in time; this was the period immediately after the hand had passed through the capture region.  It 
is predicted that this instance would be of most interest and allowed for the largest volume of water to be 
processed without being obscured by the arm.  Initially, only 10 trails from each case were processed using the 
V3V software and the vector files further processed using MATLAB to investigate the averaged flow and the 
results presented within.   

3. Results and discussion 

This research was carried out to investigate if the pull phase of the swimming stroke could be analysed using 
the V3V system.  Figures 2a-c show the individual components of velocity averaged across the entire volume at 
a single time instance, for each of the three angles of attack at a low arm tow speed (cases 1-3).  The data 
highlights significant variation between runs, with average and standard deviation values being shown in Table 
2.  In general the average velocity magnitude (V̄ ) of the water behind the hand was found to decrease with 
increased angle of attack.  Considering the components of velocity, in the first three cases in which the arm was 

Table 1:  Angle of attack and arm mean velocity 
 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

angle of attack (°) 0 20 45 0 20 45 

mean velocity (mm.s-1) (SD) 184 (0.9) 184 (0.6) 187 (0.8) 243 (1.0) 276 (1.0) 279 (0.7) 



towed at the same velocity though the measurement region, the average x-component, (ū ), reduced in 
magnitude with an increased angle of attack.  However, the z-component (w̄ ) increased, indicating the presence 
of a lift force across the hand with increased angle of attack.  This trend is less significant in the second group of 
trials, conducted at a higher tow speed, probably due greater to fluctuations in the speed across the three angles 
of attack.   

Lift forces act perpendicular to the direction of hand movement and combined with drag forces are important 
for propulsion.  However, the reaction force to lift must result in momentum in the fluid, as discussed in depth 
by Toussaint et al. [1].  Force in the direction of travel is generated by giving a mass of water a velocity change 
and consequently the pushed mass of water acquires a kinetic energy.  This kinetic energy is a result of work 
done by the swimmer.  However, not all of the work done by the swimmer generates force in the desired 
direction of travel; some of the energy is wasted moving the water in other directions.  It is hypothesised that 
minimisation of this loss of energy that is an indicator of efficiency and good swimming technique.  It is 
therefore clear that, to generate the same propulsive force at a given speed, by using an efficient technique the 
swimmer can reduce the work required.  Both propulsion generation and energy losses to the water need to be 
considered together to understand swimming technique; quantifying this energy loss and efficiency is the next 
stage in understanding the propulsion forces generated in swimming.   

 
(a) average u velocity (mm.s-1) (b) average v velocity (mm.s-1) 

  
 
 
 
 
 
 
 
 

(c) average w velocity (mm.s-1)  
  

 
 
 
 
 
 
 
 

Figure 2:  The average u v and w velcotiy in the measurement region against towed hand speed, for a single time instance for case 1-3,  0, 
20 and 45° at low speed 

Table 2: Average velocity data for each case (mm.s-1), (standard deviation).   

 Case 1 (0º) Case 2 (20º) Case 3 (45º) Case 4 (0º) Case 5 (20º) Case 6 (45º) 

ū   (mm.s-1) -105 (26) -51 (7) -33 (5) -154 (12) -107(16) -51 (9) 

v̄  (mm.s-1) 22 (16) 35 (6) 38 (3) 26 (13) 29 (7) 48 (4) 

w̄  (mm.s-1) -12(10) 6 (4) 9 (5) -17 (12) -34 (15) 13 (8) 

V̄  (mm.s-1) 108 62 51 157 117 71 

4. Conclusions 

Flow generated from an arm model towed through water was studied by examining volumetric flow fields.  
The current data shows that the pull phases of the front crawl stroke can be investigated using the V3V system.  
Previous studies investigating swimmers using PIV have focused on the size and location of vortices generated 
with only some links being made to the energy expenditure associated to this.  Hochstein and Blickhan [9] 
discussed the need to recapture the energy associated with vortex generation, but they do not quantify the energy 
transfer to the water in the same way.  The V3V technique was useful in providing velocity data to begin the 
process of understanding the momentum and energy transfer between the water and the swimmer.  It allowed a 



volume of flow to be investigated without the need for instrumentation within the water which could influence 
the results.   

In order to investigate a human swimmer in a pool environment there is a need to further develop the 
technique to, firstly, use an illumination source which is suitable for a swimmer to traverse through and, 
secondly, move away from seeding of the flow with physical particles.  These developments would allow the 
technique to be deployed with minimum invasion of the swimmer’s training ensuring there are no adaptations in 
the athlete’s technique.   
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