
A comprehensive velocity sensitivity model for scanning and tracking 
laser Doppler vibrometry on rotating structures 

 
Ben Halkon* and Steve Rothberg,  

Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University 
 
 

ABSTRACT 
 
Recent work set out a comprehensive analysis of the velocity sensed by a single laser Doppler vibrometer beam incident 
in an arbitrary direction on a target that is of substantial interest in engineering – a rotating shaft requiring three 
translational and three rotational co-ordinates to describe its vibratory motion fully. Six separate “vibration sets”, each a 
combination of motion parameters, appeared in the full expression for vibration velocity sensitivity and the difficulties 
associated with resolving individual vibration components within a complex motion were highlighted. The velocity 
sensitivity model can incorporate time dependent beam orientation and this is described in this paper with reference to 
scanning laser Doppler vibrometry. Continuously scanning strategies, in which the laser beam orientation is a 
continuous function of time, have recently received considerable attention, including a tracking profile in which the 
probe laser beam remains fixed on a single point on a target such as a rotating disc. Typically, one beam deflection 
mirror is driven using a cosine function whilst the other is driven with a sine function, resulting in a slightly elliptical 
beam trajectory. This and other more significant issues such as the effects of misalignment are easily accommodated in 
the velocity sensitivity model and a thorough analysis of their influence on the measured vibration signal is reported in 
this paper. 
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1. INTRODUCTION 
 
A laser Doppler vibrometer (LDV) measures target velocity in the direction of the incident laser beam; interpretation of 
the measurement in terms of the various target velocity components is essential. For rotating targets, pure axial 
vibration measurements are obtained by careful alignment of the laser beam with the rotation axis. Provided 
consideration is given for the laser speckle effect1, the measurement can be obtained in the same way as for on-axis 
translational surface vibration. For radial vibration measurements, however, the presence of a velocity component due 
to the rotation itself generates significant cross-sensitivities to rotation speed fluctuation (including torsional oscillation) 
and motion components perpendicular to the intended measurement. 
 
The velocity sensed by a single laser beam incident on a rotating shaft vibrating in all six degrees of freedom is made up 
of six separate vibration “sets”, each an inseparable combination of motion parameters. By using a single LDV it is 
possible to isolate the translational vibration sets – two radial and one axial – but it has been shown not to be possible 
using a single LDV to isolate the three rotational vibration sets – pitch and yaw (including bending vibration) and 
torsional oscillation (including whole body roll and/or speed fluctuation)2. It is possible to measure the rotational 
vibration sets by making use of multiple laser beam configurations, with parallel beam arrangements being particularly 
useful3. 
 
This paper contains an overview of the recently developed comprehensive velocity sensitivity model for LDV 
measurements on rotating targets and subsequently a detailed discussion of the application of this mathematical model 
to circular scanning and tracking LDV measurements. In particular, the model will be used to predict the significant 
additional LDV output components that result in circular scanning measurements on rotating targets and an alternative 
scanning method that reduces the severity of these components will be introduced. 
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2. VELOCITY MEASURED BY A SINGLE LASER BEAM INCIDENT ON A ROTATING SHAFT 
 
With reference to Figure 1, the case considered is that of an axial element of a shaft of arbitrary cross-section, rotating 
about its spin axis whilst undergoing arbitrary, six degree of freedom vibration but this theory is equally applicable to 
any non-rotating, vibrating structure. A translating reference frame, xyz, maintains its direction at all times and has its 
origin, O, fixed to a point on the shaft spin axis with the undeflected shaft rotation axis defining the direction and 
position of the z axis. The time dependent unit vector  defines the changing direction of the spin axis, which deviates 
from the z axis as the shaft tilts. P is the instantaneous point of incidence of the laser beam on the shaft and is identified 
by the time dependent position vector r . 
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Rẑ

Pr
r

P

O

Shaft spin 
axis 

 
Figure 1 – Definition of axes and the point P on a vibrating and rotating structure 

 
In the usual configuration, an LDV measures target velocity at the point of incidence in the direction of the laser beam, 
described by the unit vector , which, if orientated according to the angles α and β as shown in Figure 2, is given by: b̂
 
 ( ) ( ) ( zyxb ˆsinˆsincosˆcoscosˆ βαβαβ −+= ) . (1) 
 
Provided that the illuminated axial element of the shaft can be assumed to be of rigid cross-section, the velocity 
measured by a laser beam, incident on the shaft surface, is given by2: 
 
 ( ) ( )[ ]zyxU xyzm θθθαβ Ω−−Ω++= &&&coscos  

  ( ) ( )[ ]zxy yxz θθθαβ Ω++Ω+− &&&sin+ cos  

( ) ( )[ ]  xyz xyyx θθθθβ Ω−+Ω+− &&&− sin  

[  ( ) ]yxzy θθαββ Ω++ &sincossin 00−  

[  ( ) ]xyxz θθβαβ Ω−+ &sincoscos 00+  

[ &  ( ]Ω+− zyx θαβαβ coscossincos 00+ , (2) )
 



where , ,  and x, y, z are the translational vibration velocities and displacements of the origin, O, in the x, y, z 
directions, Ω is the total rotation speed of the axial shaft element (combining rotation speed and any torsional 
oscillation), 

x& y& z&

xθ , yθ , , ,  are the angular vibration displacements and velocities of the shaft around the x, y, z 
axes, referred to as pitch, yaw and roll, respectively, and (x

xθ& yθ& zθ&

0, y0, z0) is the position of an arbitrary known point that lies 
along the line of the beam. 
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Figure 2 – Laser beam orientation, defining angles α and β 

 
The original derivation2 of this important equation showed, more generally than in any previous study, that the velocity 
sensed by an LDV incident on a vibrating target is unaffected by the shape of the target, even when the axial and radial 
position of the incident beam on the target alters significantly. This immunity gives the instrument significant 
advantages over, for example, proximity probes, and the same immunity is obviously found for targets with less 
complex motions. The analysis is sufficiently versatile to give the velocity sensitivity in applications where the laser 
beam is scanned4,6 or where a single point on the target is tracked5,6. 
 
 

3 APPLICATION TO CIRCULAR SCANNING LASER DOPPLER VIBROMETRY 
 
Scanning LDV measurements are typically performed via the introduction of some form of laser beam deflection 
around two orthogonal axes. A circular scan profile can be achieved by deflecting the laser beam around the two axes 
simultaneously through suitable angles, typically by driving the mirror controllers with cosine and sine functions. 
 
With reference to Figures 3, 4 and 5, the scanning system optical axis is defined as being the line along which the laser 
beam is directed towards the target when there is “zero” beam deflection. In the usual configuration, the scanning 
system and target reference frames are collinear such that the scanning system optical axis lies on the z axis and the two 
orthogonal axes about which the beam is deflected during scanning are in the x and y directions. The effect of such 
beam deflection is easily accounted for in the velocity sensitivity model by temporal variation of one or both of the 
beam orientation angles, and, in many cases, temporal variation of the arbitrary known point that lies along the line of 
the laser beam6. 
 
3.1 The idealised scanning system 
 
In the idealised scanning system, the laser beam deflection is performed by a single optical element, i.e. a mirror that 
can be rotated simultaneously about the x and y axes as shown schematically in Figure 3. In such a system, the known 
point (x0, y0, z0) can be defined as the incidence point of the LDV beam on the scanning mirror. Clearly, the position of 
this point remains constant in time and scanning can be conveniently accounted for in the velocity sensitivity model by 
defining β as a constant and α as a function of time: 
 



 επβ −=
2

3  (3a) 

and 
 ( ) SS tt φα +Ω= , (3b) 
 
where ε is determined by the stand-off distance (between the target and the LDV) and the desired scan radius, SΩ  is the 
scan rotational angular frequency and Sφ  is the scan initial phase angle. In this idealised configuration, application of 
the velocity sensitivity model to a circular scan profile is particularly straightforward. 
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Figure 3 – The idealised scanning arrangement 

 
3.2 The dual mirror scanning system – analysis of the laser beam orientation angles 
 
In commercially available scanning LDV’s, laser beam deflection is performed by the introduction of two orthogonally 
aligned mirrors, separated by some distance dS, into the beam path. With reference to Figure 4, it can be seen that when 
the laser beam is traced back to the point from which it appears to originate, the position of this point does not remain 
constant but scans back and forth along the rotation axis of the y deflection mirror. The velocity sensitivity model is, 
however, sufficiently versatile to be able to account for this time dependency in the known point position. In this case, 
scanning is accommodated in the velocity sensitivity model by time dependency in x0, β and α; x0 varies at the scan 
frequency whilst β and α contain components that vary at twice the scan frequency. 
 
Equations (3a&b) must be rewritten to incorporate the time variation in β and α necessary to scan a perfect circle, i.e.: 
 

 ( ) ( )tt επβ −=
2

3 , (4a) 

and 
 ( ) ( )ttt SS δφα ++Ω= , (4b) 



where time dependency in ( )tε  is the result of time dependency in x0. As shown in Figure 4, ( )tδ  is the small 
difference between ( )tα  and SS t φ+Ω  and is determined by the probe laser beam position in the target plane and the 
time dependency in x0. In a previous publication6 ( )tα  was set equal to tSΩ  (setting 0=Sφ ) but this paper offers a 
refinement to this approximation. Clearly, these parameters can be defined algebraically but it is more appropriate to 
continue the discussion in terms of the beam deflection mirror scan angles, since it is these, not the laser beam 
orientation angles, that are controlled in real scanning LDV systems. This paper gives this new development in the 
velocity sensitivity model for the first time. 
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Figure 4 – The dual mirror scanning arrangement incorporating two orthogonally aligned mirrors, shown in terms of laser beam 

orientation angles 
 
3.3 The dual mirror scanning system – analysis of the deflection mirror scan angles 
 
With reference to Figures 5 and 6, the “zero” positions of the x and y deflection mirrors which result in deflection of the 
laser beam along the z axis are both 45° (to the y direction). The mirror scan angles, ( )tSxθ  and ( )tSyθ , are defined as 

positive if anticlockwise about the z direction and x axis respectively and can be described by the unit vectors ( )tnxû  
and  which are normal to the mirror reflective surface. ( )tunyˆ
 
With reference to Figure 6, it is possible to express ( )tnxû  and ( )tunyˆ  in terms of the principal unit vectors, ,  and 

, as follows: 
x̂ ŷ

ẑ
 
 ( ) ( )( ) ( )( ytxttu SxSxnx ˆ45cosˆ45sinˆ )θθ −+−=  (5a) 
and 
 ( ) ( )( ) ( )( )ztyttu SySyny ˆ45cosˆ45sinˆ θθ −−−−= . (5b) 
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Sr

0z

Sd

( )tyS

( )tx0∆

( )txS

Target 
surface

 
Figure 5 – The dual mirror scanning arrangement incorporating two orthogonally aligned mirrors, shown in terms of laser beam 

deflection mirror scan angles 
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Figure 6 – Laser beam reflections at (a) the x deflection mirror and (b) the y deflection mirror 

 
Let  be the direction of the laser beam before reflection at the x deflection mirror, b  be the direction of the laser 

beam before reflection at the y deflection mirror and recall that b  is the laser beam direction before incidence on the 
target. The convention used is that the direction of the unit vectors is from the target to the LDV (along the beam path), 
as illustrated in Figure 6. 

xb̂ y
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Figure 6a shows the view of the reflection at the x deflection mirror in the negative z direction, illustrating that: 
 
 ( ) ( ) nxnxnxnxxxy uuxxuubbb ˆˆˆ2ˆˆˆˆ2ˆˆ ⋅−=⋅−= , (6) 
 
since in this configuration . Similarly, Figure 6b shows the view of the reflection at the y deflection mirror in the 
negative x direction, illustrating that: 

xbx ˆˆ =

 
 ( ) ( ) ( )( )( ) nynynxnxnxnxnynyyy uuuuxxuuxxuubbb ˆˆˆˆˆ2ˆ2ˆˆˆ2ˆˆˆˆ2ˆˆ ⋅⋅−−⋅−=⋅−= . (7) 
 
Since, as can be seen in equation (5b),  is always perpendicular to , equation (7) can be re-written as: nyû x̂
 
 . (8) ( ) ( )( nynynxnxnxnx uuuuxuuxxb ˆˆˆˆˆ4ˆˆˆ2ˆˆ ⋅⋅+⋅−= )
 
Making use of the fact that (from equations (5a&b)): 
 
 ( )Sxnxux θ−=⋅ 45sinˆˆ  (9a) 
and 
 ( ) ( )SySxnynx uu θθ −−−=⋅ 45sin45cosˆˆ , (9b) 
 
equation (8) can be re-written as: 
 
 ( ) ( ) ( )zyxb SySxSySxSx ˆ2cos2cosˆ2sin2cosˆ2sinˆ θθθθθ +−= . (10) 
 
Equation (10) is of great significance since it defines the incident laser beam direction for any combination of deflection 
mirror scan angles. 
 
3.4 Derivation of mirror scan angles for arbitrary scan profiles 
 
With reference to Figures 5 and 6, the probe laser beam position in the target plane, described by  and ( )txS ( )tyS , can 
be defined in terms of ( )tSxθ  and ( )tSyθ  by consideration of the time dependent positions of the mirror incidence points 
and the target incidence point. 
 
Since the time dependency in the known point position x coordinate, ( )tx0∆ , is given by: 
 
 ( ) SxSdtx θ2tan0 −=∆ , (11) 
 
the probe laser beam position in the target plane can be evaluated as follows: 
 
 ( ) ( ) ( ) SxSxSS ndxbntxtx θθ 2sin2tanˆˆ

0 −−=⋅−∆=  (12a) 
and 
 ( ) ( ) SySxS nybnty θθ 2sin2cosˆ.ˆ =−= , (12b) 
 
 ( ) SySxnzbnz θθ 2cos2cosˆ.ˆ0 == , (12c) 
 



where n is the distance between the y deflection mirror and the target along the line of the laser beam. Substitution for n 
in equations (12a&b) results in a totally general description of the probe laser beam position in the target plane for any 
combination of mirror scan angles: 
 

 ( ) 









+−=

Sy
SSxS

z
dtx

θ
θ

2cos
2tan 0  (13a) 

and  
 ( ) SyS zty θ2tan0= . (13b) 
 
Whilst equation 13b can be rearranged such that the y deflection mirror scan angle can be obtained for any , it can be 
seen from equation 13a that  is not a simple function of the x deflection mirror scan angle. This is particularly 
important when attempting to obtain a circular scan profile via the simultaneous modulation of the x and y deflection 
mirror scan angles. 

Sy

Sx

 
4 CIRULAR SCAN PROFILE AND LDV MEASUREMENT ANALYSIS 

 
As illustrated in Figure 5, a circular scan profile in the target plane, with scan angular frequency Ω  and initial phase S

Sφ , requires that  and ( )txS ( )tyS  are cosine and sine functions, respectively, which can be written as: 
 
 ( ) ( )SSSS trtx φ+Ω= cos  (14a) 
and 
 ( ) ( )SSSS trty φ+Ω= sin , (14b) 
 
where Sr  is the desired scan radius. Substituting for ( )txS  and ( )tyS  in equations (13a) and (13b) results in two 
equations which must be rearranged for the deflection mirror scan angles if such a scan profile is to be achieved. This 
rearrangement is not possible for the first equation, the consequence of which is that a perfect circular scan cannot be 
achieved using basic functions to drive the deflection mirrors. 
 
4.1 Typical deflection mirror scan angles 
 
In real circular scanning LDV systems4,5, cosine and sine functions of equal amplitude are used to perform a “circular” 
scan profile, i.e.: 
 
 ( ) ( )SSSxSx tt φθ +ΩΘ−= cos  (15a) 
and 
 ( ) ( )SSSySy tt φθ +ΩΘ= sin , (15b) 
where 

 








=Θ=Θ −

0

1tan5.0
z
rS

SySx
. (15c) 

 
The slightly elliptical trajectory5,6 which results can clearly be observed by substituting equations (15a,b&c) into 
equations (13a&b) and is shown, normalised to the desired scan radius, in Figure 7a for the case where = 50 mm, Sd

Sr = 100 mm and = 1 m. Figure 7b shows the normalised actual scan radius as a function of scan angle. 0z
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Figure 7 – Normalised scan profile which results from equal amplitude cosine and sine mirror drive signals 
 
Figure 7a clearly shows the inherent problem that occurs when employing such equal amplitude mirror drive signals, 
i.e. the fact that the probe laser beam does not follow the desired path. For this particular combination of mirror 
separation, desired scan radius and LDV stand-off, the maximum absolute error in the actual scan radius is in the order 
of 5%, as illustrated in Figure 7b. The effect of such a probe laser beam position error on the validity of the 
measurement is clearly structure dependent but, in some cases, there may be a significant difference between the 
amplitude and phase of the velocity at the intended and actual measurement points. 
 
4.2 Additional measurement components resulting from typical mirror scan angles 
 
In addition to this effect, and arguably more importantly, is the influence that such variation in laser beam orientation 
has on the LDV measurement. Re-writing equation (2) in the following form: 
 
 ( )( ) ( )( )[ ]zzyyxU xyzm −Ω−+−Ω+−= 00coscos θθθαβ &&&  

  ( )( ) ( )( )[ ]zzxxy yxz −Ω+−−Ω++ 00sin θθθαβ &&&+ cos  

[  ( )( ) ( )( )]xxyyz yyyx −Ω−−−Ω++ 00 θθθθβ &&&sin  (16a) 
 
and replacing the laser beam orientation angles for the mirror scan angles by equating equations (1) and (10) and 
evaluating the principal unit vector coefficients, enables the measured vibration to be expressed as: 
 
 ( )( ) ( )( )[ ]zzyyxU xyzSxm −Ω−+−Ω+−= 002sin θθθθ &&&  

  ( ) ( )( ) ( )( )[ ]zzxtxy yxzSySx −Ω+−−Ω++ 002sin2 θθθθθ &&&− cos  

  ( )( ) ( ) ( )( )[ ]xtxyyz yyyxSySx −Ω−−−Ω++ 002cos2 θθθθθθ &&&+ cos , (16b) 
 
where x0 is time dependent and, using equation (11), is given by: 
 
 ( ) ( ) SxSdxtxxtx θ2tan0000 −=∆+= . (17) 
 
The additional measurement components which result from using the equal amplitude mirror scan angles can therefore 
be quantified by substituting equations (15a,b&c) into equation (16b) and setting the translational and angular vibration 
component parameters to zero. The system arrangement is as discussed in section 3, i.e. the scanning system and target 
reference frames are collinear (no translational or angular misalignment), such that the measured LDV signal per unit 
rotation speed for this “no target vibration” case is given by: 
 



 ( ) ( ) ( 







+Ω





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
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+Ω




















+Ω










−=

Ω
−−

SS
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SS
S

SS
Sm

z
rd

t
z
r

t
z
rU

φφφ cossintansincostancos
00

1

0

1 ) . (18) 

 
The additional information that exists in the measured LDV signal occurs at twice and six times the scan frequency, as 
shown in Figure 8. For typical rotation frequencies, the level of the component at six times the scan frequency is well 
below the noise floor that results from the laser speckle effect (generally greater than 10-2 mm/s1) and is therefore 
insignificant. The component at twice the scan frequency is, however, of great significance since typical levels are of 
the order tens of mm/s. This component has been observed previously5 but its origin was unknown until recently6. It is 
due to additional measured “vibration” components such as this one that care must be taken when interpreting vibration 
information obtained from such measurements. The theory presented here provides the vibration engineer with the 
ability to predict the amplitude of the additional components that exist in the measured LDV signal and therefore make 
measurements with confidence. 
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Figure 8 – Additional measurement components that occur in a dual-mirror circular scan when employing equal amplitude cosine and 

sine mirror drive signals 
 
Theoretical component amplitudes show good agreement with those obtained from initial experimentation and with 
those that have been previously reported5. 
 
4.3 Elliptical scan trajectory correction 
 
The elliptical shape resulting from the scan trajectory may be overcome to an extent by using “corrected” mirror drive 
signals that take into account the difference between the target to x deflection mirror and target to y deflection mirror 
distances. With reference to Figure 5, the amplitudes of the cosine and sine functions (equations (15a,b)) used to drive 
the deflection mirrors should not be equal, i.e.: 
 

 











+
=Θ −

S

S
Sx dz

r

0

1tan5.0  (19a) 

and 

 










=Θ −

0

1tan5.0
z
rS

Sy
. (19b) 

 
Substitution of equations (15a&b) and (19a&b) into equations (13a&b) results in a scanning profile that is much closer 
to the required circular path. Figure 9 shows the normalised scan radius as a function of scan angle for this corrected 
mirror drive signal case ( d = 50 mm, S Sr = 100 mm and = 1 m), with the scale on the abscissa the same as for the 0z



typical mirror drive signal case shown in Figure 9a. As illustrated in Figure 9b, the maximum absolute error in the 
actual scan radius is reduced to much less than 0.1% by employing mirror drive signals with unequal amplitudes. 
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Figure 9 – Scan profile which results from corrected amplitude cosine and sine mirror drive signals 
 
4.4 Additional measurement components resulting from corrected mirror scan angles 
 
It is possible to quantify the influence that this reduced variation in laser beam orientation has on the additional 
measurement components by substituting equations (15a&b) and (19a&b) into equation (16b) and setting the 
translational and angular vibration component parameters to zero as before. The measured LDV signal per unit rotation 
speed for this “corrected, no target vibration” case, with no translational or angular misalignment, is given by: 
 

 ( ) ( ) (











+Ω

+









+Ω




















+Ω











+
−=

Ω
−−

SS
S

SS
SS

S
SS

S

Sm

dz
rd

t
z
r

t
dz

rU
φφφ cossintansincostancos

00

1

0

1 ) . (20) 

 
The additional information that exists in the measured LDV signal now occurs at twice, four and six times the scan 
frequency, as shown in Figure 10a. Again, only the component at twice the scan frequency is of significance but in this 
case its level is approximately 40% lower than that which occurs when using equal amplitude mirror drive signals. The 
reduction in the deviation of the probe laser beam from the desired point is clearly advantageous in many cases and, 
when performing tracking LDV measurements, the resulting minimisation of pseudo-random noise generated by the 
laser speckle effect1 is also desirable. 
 
4.5 Additional measurement components resulting from scanning system and target misalignment 
 
Any translational and/or angular misalignment between the scanning system and target reference frames results in 
additional components at multiples of the target rotation frequency as illustrated in Figure 10b. One source of the 
component at synchronous frequency has previously been correctly attributed to angular misalignment4,5 but there had 
been no analysis of the origins of the other first order components and the mechanism by which the higher order 
components occur until recently6. Whilst this paper has concentrated on the additional measurement components that 
occur as a result of the dual mirror arrangement used in typical scanning systems, the velocity sensitivity model 
presented here is well suited to the analysis of the effects of translational and angular misalignments and this is the 
subject of ongoing research. 
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Figure 10 – Additional measurement components that occurs in a dual-mirror circular scan when employing corrected amplitude 
cosine and sine mirror drive signals for (a) zero misalignment and (b) 5 mrad angular and 5 mm translational misalignment 

 
 

CONCLUSIONS 
 
The use of LDV’s incorporating some form of manipulation of the laser beam orientation, typically using two 
orthogonally aligned mirrors, has become increasingly popular in recent years. Considerable attention has been given to 
the operation of such scanning LDV’s in continuous scanning mode in which the laser beam orientation is a continuous 
function of time, making it possible to track a single point on a moving target such as a rotor. This paper has 
investigated the application of a previously developed velocity sensitivity model to this particularly challenging 
measurement technique. A novel development is the reformulation of the original model to make use of mirror scan 
angles, rather than laser beam orientation angles, since it is these angles that an operator would seek to control in 
practice. 
 
The revised velocity sensitivity model has been applied in this paper to show how the common use of a pair of 
orthogonally aligned scanning mirrors leads to a significant yet predictable additional component in the LDV output at 
twice the scan frequency in rotating target measurements. In addition, it has been shown how the combination of this 
mirror configuration and equal amplitude cosine and sine mirror drive functions leads to an elliptical beam profile. An 
alternative scheme has been proposed in which the scan mirror drive signals are “corrected” to produce a more circular 
profile as intended. The velocity sensitivity model has been used to indicate how, for rotating target measurements, this 
scheme would bring about a useful reduction in the additional component at twice the scan frequency, in addition to 
other benefits. Furthermore, the model has been used to predict the additional components in a circular scanning LDV 
output resulting from the presence of small misalignments, both translational and angular, that inevitably occur in such 
measurements. 
 
The theory presented in this paper provides the vibration engineer with the capacity to calculate the amplitude of all of 
the additional components that exist in the measured LDV signal in order that such measurements can be made with 
confidence. 
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