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Abstract

We consider the problem of multivariate density deconvolution when interest lies in estimat-
ing the distribution of a vector valued random variable X but precise measurements on X
are not available, observations being contaminated by measurement errors U. The exist-
ing sparse literature on the problem assumes the density of the measurement errors to be
completely known. We propose robust Bayesian semiparametric multivariate deconvolution
approaches when the measurement error density of U is not known but replicated proxies
are available for at least some individuals. Additionally, we allow the variability of U to
depend on the associated unobserved values of X through unknown relationships, which
also automatically includes the case of multivariate multiplicative measurement errors. Ba-
sic properties of finite mixture models, multivariate normal kernels and exchangeable priors
are exploited in novel ways to meet modeling and computational challenges. Theoretical
results showing the flexibility of the proposed methods in capturing a wide variety of data
generating processes are provided. We illustrate the efficiency of the proposed methods in
recovering the density of X through simulation experiments. The methodology is applied to
estimate the joint consumption pattern of different dietary components from contaminated
24 hour recalls. Supplementary materials present substantive additional details.

Some Key Words: B-splines, Conditional heteroscedasticity, Latent factor analyzers,
Measurement errors, Mixture models, Multivariate density deconvolution, Regularization,
Shrinkage.

Short Title: Multivariate Density Deconvolution
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1 Introduction

Many problems of practical importance require estimation of the density fX of a vector

valued random variable X. Precise measurements on X may not, however, be available, ob-

servations being contaminated by measurement errors U. Under the assumption of additive

measurement errors, the observations are generated from a convolution of the density fX of

X and the density fU of the measurement errors U. The problem of estimating the den-

sity fX from available contaminated measurements then becomes a problem of multivariate

density deconvolution.

This article proposes novel Bayesian semiparametric density deconvolution approaches

based on finite mixtures of latent factor analyzers for robust estimation of the density fX

when the measurement error density fU is not known, but replicated proxies contaminated

with measurement errors U are available for at least some individuals. The proposed decon-

volution approaches are highly robust, not having to impose restrictive parametric assump-

tions on fX or fU. Additionally, the variability of U is allowed to depend on the associated

unobserved values of X through unknown relationships.

While the focus of the article will primarily be on additive measurement errors, im-

portantly, the methodology for additive conditionally heteroscedastic measurement errors

developed here also automatically encompasses the case of multivariate multiplicative mea-

surement errors.

To the best of our knowledge, all existing multivariate deconvolution approaches assume

that U is independent of X and that the error density fU is completely known. Ours is thus

the first paper that allows the density of the measurement errors to be unknown and free

from parametric laws and additionally also accommodates conditional heteroscedasticity in

the measurement errors.

The literature on the problem of univariate density deconvolution, in which context we

denote the variable of interest by X and the measurement errors by U , is vast. Most of the

early literature considered scenarios when the measurement error density fU is completely

known. Fourier inversion based deconvoluting kernel density estimators have been studied by

Carroll and Hall (1988), Liu and Taylor (1989), Devroye (1989), Fan (1991a, 1991b, 1992) and

Hesse (1999) among many others. For a review of these methods, the reader may be referred

to Section 12.1 in Carroll, et al. (2006) and Section 10.2.3 in Buonaccorsi (2010). In reality

fU is rarely known. The problem of deconvolution when the errors are homoscedastic with

an unknown density and replicated proxies are available for each subject has been addressed

by Li and Vuong (1998). See also Diggle and Hall (1993), Neumann (1997), Carroll and

Hall (2004) and the references therein. The assumptions of homoscedasticity of U and their

independence from X are also often unrealistic. Flexible Bayesian density deconvolution

approaches that allow U to be conditionally heteroscedastic have recently been developed in
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Staudenmayer, et al. (2008) and Sarkar, et al. (2014). Staudenmayer, et al. (2008) assumed

the measurement errors to be normally distributed and used finite mixtures of B-splines to

estimate fX and a variance function that captured the conditional heteroscedasticity. Sarkar,

et al. (2014) further relaxed the assumption of normality of U employing flexible infinite

mixtures of normal kernels induced by Dirichlet processes to estimate both fX and fU . Sieve

based methods developed in Schennach (2004) and Hu and Schennach (2008) can also handle

conditional heteroscedasticity.

In sharp contrast to the univariate case, the literature on multivariate density deconvolu-

tion is quite sparse. We can only mention Masry (1991), Youndjé and Wells (2008), Comte

and Lacour (2013), Hazelton and Turlach (2009, 2010) and Bovy, et al. (2011). The first

three considered deconvoluting kernel based approaches assuming the measurement errors

U to be distributed independently from X according to a known probability law. Hazelton

and Turlach (2009, 2011), working with the same assumptions on U, proposed weighted

kernel based methods. Bovy, et al. (2011) modeled the density fX using flexible mixtures

of multivariate normal kernels, but they assumed fU to be multivariate normal with known

covariance matrices, independent from X. As in the case of univariate problems, the as-

sumptions of a fully specified fU, known covariance matrices, and independence from X are

highly restrictive for most practical applications.

The focus of this article is on multivariate density deconvolution when fU is not known

but replicated proxies are available for at least some individuals. The proposed deconvo-

lution approaches can additionally accommodate conditional heteroscedasticity in U. The

problem is important, for instance, in nutritional epidemiology, where nutritionists are typi-

cally interested not just in the consumption behaviors of individual dietary components but

also in their joint consumption patterns. The data are often available in the form of dietary

recalls and are contaminated by measurement errors that show strong patterns of conditional

heteroscedasticity.

As in Sarkar, et al. (2014), we use mixture models to estimate both fX and fU but the

multivariate nature of the problem brings in new modeling challenges and computational ob-

stacles that preclude straightforward extension of their univariate deconvolution approaches.

Instead of using infinite mixtures induced by Dirichlet processes, we use finite mixtures of

multivariate normal kernels with exchangeable Dirichlet priors on the mixture probabilities.

The use of finite mixtures and exchangeable priors greatly reduces computational complex-

ity while retaining essentially the same flexibility. Carefully constructed priors also allow

automatic model selection and model averaging. To save space, detailed discussions on these

important issues are moved to Section S.6 in the Supplementary Materials.

We also exploit symmetric Dirichlet priors and properties of multivariate normal distri-

butions and finite mixture models to develop a novel strategy that enables us to enforce

a required zero mean restriction on the measurement errors. Our proposed technique, as
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opposed to the one adopted by Sarkar, et al. (2014), is particularly suitable for high dimen-

sional applications and can be easily generalized to enforce moment restrictions on other

types of finite mixture models.

It is well known that inverse Wishart priors, due to their dense parametrization, are not

suitable for modeling covariance matrices in high dimensional applications. In deconvolution

problems the issue is further complicated since X and U are both latent. This results in

numerically unstable estimates even for small and moderate dimensions, particularly when

the true covariance matrices are sparse and the likelihood function is of complicated form.

To reduce the effective number of parameters required to be estimated, we consider factor-

analytic representation of the component specific covariance matrices with sparsity inducing

shrinkage priors on the factor loading matrices.

Models for multivariate regression errors that assume normality but allow the covariance

matrix to vary flexibly with associated precisely measured and possibly multivariate predic-

tors have recently been developed in the literature (Hoff and Niu, 2012; Fox and Dunson,

2016, etc.). Unlike regression settings, exclusive relationships exist between different com-

ponents of multivariate measurement errors U and different components of the associated

multivariate latent ‘predictor’ X - the `th component U` of U contaminates only the `th

component X` of X but not others. We thus deem covariance regression models that allow

cov(U|X) to vary arbitrarily with all components of X to be inappropriate in multivariate

measurement error settings. As discussed above, the assumption of multivariate normality

is also particularly restrictive in measurement error problems. In this article, we develop

a semiparametric approach that appropriately highlights the exclusive associations between

U` and X` while allowing the distribution of (U|X) to depart from normality. Importantly,

the model also arises naturally from multivariate multiplicative measurement error settings,

automatically encompassing such cases. Diagnostic tools for checking model adequacy are

also discussed.

The likelihood function for the conditional heteroscedastic model poses significant com-

putational challenges. We overcome these obstacles by designing a novel two-stage procedure

that exploits the unique properties of conditionally heteroscedastic multivariate measurement

errors to our advantage. The procedure first estimates the variance functions characterizing

var(U`|X`) using reparametrized versions of the corresponding univariate submodels. The es-

timates obtained in the first stage are then plugged-in to estimate the remaining parameters

in the second stage. Having two estimation stages, our deconvolution method for condi-

tionally heteroscedastic measurement errors is not purely Bayesian. But they show good

empirical performance and, with no other solution available in the existing literature, they

provide at least workable starting points towards more sophisticated methodology.

The article is organized as follows. Section 2 details the models. Model identifiability

issues and implementation details, including the choice of hyper-parameters and Markov
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chain Monte Carlo (MCMC) algorithms to sample from the posterior, are discussed in the

Supplementary Materials. Section 4 discusses model identifiability issues. Section 5 presents

theoretical results showing flexibility of the proposed models. Simulation studies comparing

the proposed deconvolution methods to a naive method that ignores measurement errors are

presented in Section 6. Section 7 presents an application of the proposed methodology in

estimation of the joint consumption pattern of dietary intakes from contaminated 24 hour

recalls in a nutritional epidemiologic study. Section 8 includes a discussion. An unnumbered

section concludes the article with a description of the Supplementary Materials.

2 Deconvolution Models

The goal is to estimate the unknown joint density of a p-dimensional multivariate random

variable X. There are i = 1, . . . , n subjects. Precise measurements of X are not available.

Instead, for j = 1, . . . ,mi, replicated proxies Wij contaminated with measurement errors

Uij are available for each subject i. The replicates are assumed to be generated by the model

Wij = Xi + Uij. (1)

Given Xi, Uij are independently distributed with E(Uij|Xi) = 0. The marginal density of

Wij is denoted by fW. The implied conditional distributions of Wij and Uij, given Xi, are

denoted by fW|X and fU|X, respectively.

2.1 Modeling the Density fX

In this article fX is specified as a mixture of multivariate normal kernels

fX(X) =
∑KX

k=1 πX,k MVNp(X|µX,k,ΣX,k), (2)

where MVNp(·|µ,Σ) denotes a p-dimensional multivariate normal density with mean µ and

covariance matrix Σ. For the rest of this subsection, the subscript X is kept implicit to keep

the notation clean.

We assign a finite Dirichlet prior to the mixture probability vector π = (π1, . . . , πK)T as

π ∼ Dir(α/K, . . . , α/K). (3)

Here Dir(α1, . . . , αK) denotes a finite dimensional Dirichlet distribution on theK-dimensional

unit simplex with concentration parameter (α1, . . . , αK). Given K and the latent cluster

membership indices, the prior is conjugate. The symmetry of the assumed Dirichlet prior

helps in additional reduction of computational complexity by simplifying MCMC mixing

issues. Provided K is sufficiently large, a carefully chosen α can impart the posterior with
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certain properties that simplify model selection and model averaging issues by influencing

the posterior to concentrate in regions that favor empty redundant components, see Section

S.1 and Section S.6 of the Supplementary Materials. We assign conjugate multivariate nor-

mal priors to the component specific mean vectors µk, so that

µk ∼ MVNp(µ0,Σ0). (4)

The conjugacy again helps in simplifying posterior calculations. Later on, we will employ

similar mixture models for the density of the measurement errors, and this conjugacy, along

with some basic properties of multivariate normal kernels, will also help us enforce the mean

zero restriction on the measurement errors. For the component specific covariance matrices

Σk, we first consider conjugate inverse Wishart priors

Σk ∼ IWp(ν0,Ψ0). (5)

Here IWp(ν,Ψ) denotes an inverse Wishart density on the space of p × p positive definite

matrices with mean Ψ/(ν − p− 1). While the conjugacy of the inverse Wishart priors helps

in simplifying posterior calculations, in complex high dimensional problems its dense param-

eterization may result in numerically unstable estimates, particularly when the covariance

matrices are sparse. In a deconvolution problem the issue is compounded further by the

nonavailability of the true Xi’s. To reduce the effective number of parameters to be esti-

mated, we consider a parsimonious factor-analytic representation of the component specific

covariance matrices:

Σk = ΛkΛ
T
k + Ω, (6)

where Λk are p × qk factor loading matrices and Ω is a diagonal matrix with non-negative

entries. In practical applications qk will typically be much smaller than p, inducing parsi-

monious characterizations of the unknown covariance matrices Σk. Model (2) can be equiv-

alently represented as

Pr(Ci = k) = πk, (7)

(Xi|Ci = k) = µk + Λkηi + ∆i, (8)

ηi ∼ MVNp(0, Ip), ∆i ∼ MVNp(0,Ω), (9)

where Ci are the mixture labels associated with Xi, ηi are latent factors, and ∆i are errors

with covariance Ω = diag(σ2
1, . . . , σ

2
p).

The above characterization of Σk is not unique, since for any semi-orthogonal matrix P

the loading matrix Λ1
k = ΛkP also satisfies (6). Since interest lies primarily in estimating the

density fX, identifiability of the latent factors is, however, not required. This also allows the

loading matrices to have a-priori a potentially infinite number of columns. Sparsity inducing

priors, that favor more shrinkage as the column index increases, can then be used to shrink

the redundant columns towards zero. In this article, we do this by adapting the shrinkage
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priors proposed in Bhattacharya and Dunson (2011) that allow easy posterior computation.

Let Λk = ((λk,jh))
p,∞
j=1,h=1, where j and h denote the row and the column indices, respectively.

For h = 1, . . . ,∞, we assign priors as follows

λk,jh ∼ Normal(0, φ−1
k,jhτ

−1
k,h), φk,jh ∼ Ga(ν/2, ν/2), (10)

τk,h ∼
∏h

`=1 δk,`, δk,` ∼ Ga(a`, 1), σ2
j ∼ Inv-Ga(aσ, bσ). (11)

Here Ga(α, β) denotes a Gamma distribution with shape parameter α and rate parameter

β and IG(a, b) denotes an inverse-Gamma distribution with shape parameter a and scale

parameter b. In the kth component factor loading matrix Λk, the parameters {φk,jh}pj=1

control the local shrinkage of the elements in the hth column, whereas τk,h controls the global

shrinkage. When ah > 1 for h = 2, . . . ,∞, the sequence {τk,h}∞h=1 becomes stochastically

increasing and thus favors more shrinkage as the column index h increases.

In addition to inducing adaptive sparsity and hence numerical stability, by favoring more

shrinkage as the column index increases, the shrinkage priors play another important role in

making the proposed factor analytic model highly robust to misspecification of the number

of latent factors, allowing us to adopt simple strategies to determine the number of latent

factors to be included in the model in practice. Details are deferred to Section S.1.

Throughout the rest of the paper, mixtures with inverse Wishart prior on the covariance

matrices will be referred to as MIW models and mixtures of latent factor analyzers will be

referred to as MLFA models.

For a review of finite mixture models and mixtures of latent factor analyzers, without

moment restrictions or sparsity inducing priors and with applications in measurement error

free scenarios, see Fokoué and Titterington (2003), Frühwirth-Schnatter (2006), Mengersen,

et al. (2011) and the references therein. For other types of shrinkage priors, see Brown and

Griffin (2010), Carvalho, et al. (2010), Bhattacharya, et al. (2014) etc.

2.2 Modeling the Density of the Measurement Errors

2.2.1 Independently Distributed Measurement Errors

In this section, we develop models for the measurement errors U assuming them to be

independent from X. That is, we assume fU|X = fU for all X. This remains the most

extensively researched deconvolution problem for both univariate and multivariate cases.

The techniques developed in this section will also provide crucial building blocks for more

realistic models in Section 2.2.2. The measurement errors and their density are now denoted

by εij and fε, respectively, for reasons to become obvious shortly in Section 2.2.2.

As in Section 2.1, a mixture of multivariate normals can be used to model the density fε

but the model now has to satisfy a mean zero constraint. That is
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fε(ε) =
∑Kε

k=1 πε,k MVNp(ε|µε,k,Σε,k), (12)

subject to
∑Kε

k=1 πε,kµε,k = 0. (13)

To get numerically stable estimates of the density of the errors, latent factor characterization

of the covariance matrices with sparsity inducing shrinkage priors as in Section 2.1 may

again be used. Details are curtailed to avoid unnecessary repetition and we only present

the mechanism to enforce the zero mean restriction on the model. The subscript ε is again

dropped in favor of cleaner notation. In later sections, the subscripts X and ε reappear to

distinguish between the parameters associated with fX and fε, when necessary.

Without the mean restriction and under conjugate multivariate normal priors µk ∼
MVNp(µ0,Σ0), the posterior full conditional of µKp×1 = (µT

1 , . . . ,µ
T
K)T is given by

MVNKp




µ0

1

µ0
2

...

µ0
K

 ,


Σ0

1 0 . . . 0

0 Σ0
2 . . . 0

...
...

...

0 0 . . . Σ0
K




≡ MVNKp(µ

0,Σ0), (14)

where εij and other conditioning variables are implicitly understood. Explicit expressions of

µ0 and Σ0 in terms of the conditioning variables can be found in Section S.1. The posterior

full conditional of µ under the mean restriction can then be obtained easily by further con-

ditioning the distribution in (14) by µR =
∑K

k=1 πkµk = 0 and is given by

(µ|µR = 0) ∼ MVNKp{µ0 −Σ0
1,R(Σ0

R,R)−1µ0
R,Σ

0 −Σ0
1,R(Σ0

R,R)−1Σ0
R,1}, (15)

where µ0
R =

∑K
k=1 πkµ

0
k = E(µR), Σk,K = πkΣ

0
k = cov(µk,µR), Σ0

R,R = ΣK+1,K+1 =∑K
k=1 π

2
kΣ

0
k = cov(µR), and Σ0

R,1 = (Σ1,K+1,Σ2,K+1, . . . ,ΣK,K+1). To sample from this sin-

gular density, we can first sample from the non-singular distribution of {(µT
1 ,µ

T
2 , . . . ,µ

T
K−1)T|µR =

0}, which can also be trivially obtained from (15), and then set µK = −
∑K−1

k=1 πkµk/πK .

2.2.2 Conditionally Heteroscedastic Measurement Errors

We now consider the case when the variances of the measurement errors depend on the

associated unknown values of X through unknown relationships.

Interpreting the conditioning variables X broadly as predictors, one can loosely connect

our problem of modeling conditionally heteroscedastic U to the problem of covariance re-

gression (Hoff and Niu, 2012; Fox and Dunson, 2016, etc.), where the covariance of the

multivariate regression errors are allowed to vary flexibly with precisely measured and pos-
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Figure 1: Dependency structures in trivariate deconvolution problems with (a) independently
distributed and (b) conditionally varying measurement errors. (c) Dependency structure in a
trivariate regression problem with response Y, regression errors U and bivariate predictor X.
The filled rectangular regions focus on the relationship between the (potentially conditionally
varying) errors U and the (corresponding conditioning) variable X. The unfilled and the
shaded nodes signify latent and observable variables, respectively. The directed and the
undirected edges represent one and two-way relationships, respectively. The solid black and
the dashed gray edges in panel (b) signify strong and weak dependencies, respectively.

sibly multivariate predictors. In such problems, the dimension of the regression errors is

unrelated to the dimension of the predictors and different components of the regression er-

rors are assumed to be equally influenced by different components of the predictors. In

multivariate deconvolution problems, in contrast, the dimension of Uij is exactly the same

as the dimension of Xi, the `th component Uij` being the measurement error associated ex-

clusively with Xi`. See Figure 1. While different components of Uij may be correlated, this

exclusive association between Uij` and Xi` implies that the dependence of Uij` on Xi should

be explained primarily through Xi`. Figure 7, for instance, suggests strong conditional het-

eroscedasticity patterns and it is plausible to assume that this conditional variability in Uij`

can be explained mostly through Xi` only. It is interesting to note these contrasts between

conditionally varying regression and measurement errors become particularly prominent in

the multivariate set up. Additionally, the aforementioned covariance regression approaches

all assume multivariate normality of the regression errors. As discussed in the introduction,

such strong parametric assumptions on the error distribution are particularly restrictive in

measurement error problems. Additional detailed discussions of these important issues and

resulting modeling implications can be found in Section S.5 of the Supplementary Materials.

They preclude direct application of existing covariance regression approaches to multivariate

deconvolution problems but warrant models that can highlight the aforementioned unique

dependence relationships, accommodate distributional flexibility while enforcing the mean

zero restriction, and produce computationally stable estimates even in the absence of precise

information on the conditioning variable X.
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The semiparametric approach that we adopt in this article achieves distributional flexi-

bility, enforces the mean zero restriction, accommodates the exclusive relationships between

Uij` and Xi` but ignores the weak dependencies of Uij` on {Xim}m 6=` depicted in Figure 1(b).

Specifically, we let

(Uij|Xi) = S(Xi)εij, (16)

where S(Xi) = diag{s1(Xi1), s2(Xi2), . . . , sp(Xip)} and εij, henceforth referred to as the

‘scaled errors’, are distributed independently of Xi. Model (16) implies that cov(Uij|Xi) =

S(Xi) cov(εij) S(Xi) and marginally var(Uij`|Xi) = s2
`(Xi`)var(εij`), a function of Xi` only.

The techniques developed in Section 2.2.1 can now be employed to model the density of εij,

allowing different components of Uij to be correlated and their joint density to deviate from

multivariate normality.

We model the variance functions s2
` , denoted also by v`, using positive mixtures of B-spline

basis functions with smoothness inducing priors on the coefficients as in Staudenmayer, et al.

(2008). For the `th component, partition an interval [A`, B`] of interest into L` subintervals

using knot points A` = t`,1 = · · · = t`,q+1 < t`,q+2 < t`,q+3 < · · · < t`,q+Lk < t`,q+L`+1 = · · · =
t`,2q+L`+1 = B`. A flexible model for the variance functions is given by

v`(Xi`) = s2
`(Xi`) =

∑J`
j=1 bq,j,`(Xi`) exp(ξj`) = Bq,J`,`(Xi`) exp(ξ`), (17)

(ξ`|J`, σ2
ξ,`) ∝ (2πσ2

ξ,`)
−J`/2 exp{−ξT

` P`ξ`/(2σ
2
ξ,`)}, σ2

ξ,` ∼ Inv-Ga(aξ, bξ). (18)

Here {bq,j,`}J`j=1 denote J` = (q+L`) B-spline bases of degree q as defined in de Boor (2000),

ξ` = {ξ1`, ξ2`, . . . , ξJ``}T; exp(ξ`) = {exp(ξ1`), exp(ξ2`), . . . , exp(ξJ``)}T; and P` = DT
` D`,

where D` is a J`× (J`+ 2) matrix such that D`ξ` computes the second differences in ξ`. The

prior P0(ξ`|σ2
ξ,`) induces smoothness in the coefficients because it penalizes

∑Jk
j=1(∆2ξj`)

2 =

ξT
` P`ξ`, the sum of squares of the second order differences in ξ` (Eilers and Marx, 1996).

The parameters σ2
ξ,` play the role of smoothing parameter - the smaller the value of σ2

ξ,`, the

stronger the penalty and the smoother the variance function. The inverse-Gamma hyper-

priors on σ2
ξ,` allow the data to have influence on the posterior smoothness and make the

approach data adaptive.

Since s2
`(Xi`)var(εij`) = {s2

`(Xi`)c}{var(εij`)/c} for any c > 0, the variance functions

s2
` ’s can not be uniquely determined without additional restrictions on var(εij`). Sepa-

rate identifiability of S and fε is, however, not required for inference on fX or to assess

the conditional variability in Uij`. The latter, for instance, may simply be obtained as

var(Uij`|Xi) = s2
`(Xi`)var(εij`). We thus avoid additional identifiability restrictions that

would further compound modeling challenges. Adjustments made to the estimates of s2
` and

fε to enable comparisons with the corresponding true values in simulation experiments are

discussed in Section S.3 in the Supplementary Materials.
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2.2.3 Multiplicative Measurement Errors

In this section we consider the case of multivariate multiplicative measurement errors. The

replicates are now assumed to be generated by the model

Wij = Xi ◦ Ũij, (19)

where ◦ denotes element wise product and the errors Ũij are distributed independently of

Xi with E(Ũij) = 1. Importantly, model (19) can be reformulated to arrive at model (16)

as
Wij = Xi ◦ Ũij = Xi + Uij, with Uij = Xi ◦ (Ũij − 1) = S(Xi)εij. (20)

with E(Uij|Xi) = Xi ◦ E(Ũij − 1) = 0, S(Xi) = diag{s1(Xi1), . . . , sp(Xip)} with s`(Xi`) =

Xi` and εij = (Ũij − 1) are independent of Xi with E(εij) = 0. This observation precludes

the need for separate methodology to be developed for the problem of multivariate density

deconvolution in the presence of multiplicative measurement errors and further emphasizes

the importance of the additive conditionally heteroscedastic measurement error model (16)

developed in Section 2.2.2.

3 Posterior Inference

Inference is based on samples drawn from the posterior using MCMC algorithms. A Gibbs

sampler for the independent error case discussed in Section 2.2.1 is presented in Section

S.2 of the Supplementary Materials. For the conditionally heteroscedastic case discussed

in Section 2.2.2, the full conditionals of the parameters characterizing the variance func-

tions do not have closed form expressions. MCMC algorithms where we tried to integrate

Metropolis-Hastings (MH) steps within the Gibbs sampler to generate samples from the full

posterior were numerically unstable and failed to converge sufficiently quickly. To address

this challenge, we designed a novel two-stage procedure. For each k, we first estimate the

functions s`(Xi`) by fitting the univariate deconvolution models Wij` = Xi`+s`(Xi`)εij`. High

precision estimates of the variance functions s2
`(Xi`) can be obtained using the univariate

deconvolution models. See Figure 2 in the main article and Figure S.7 in the Supplementary

Materials for illustrations. Parameters characterizing other components of the full model are

then sampled using a Gibbs sampler keeping the estimates of the variance functions fixed.

Additional details are deferred to Sections S.3 and S.4 of the Supplementary Materials.
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4 Model Identifiability

This section presents a discussion of model identifiability issues. The density of interest fX

is identifiable under mild technical assumptions. In the case of independently distributed

measurement errors considered in Section 2.2.1 of the main paper, appealing to Li and Vuong

(1998), the densities fX and fε are identifiable provided mi ≥ 2 replicates are available for

some individuals, and the characteristics functions φX(t) = E{exp(ιtTX)} and φε(t) =

E{exp(ιtTε)} are non-vanishing everywhere.

In the case of conditionally heteroscedastic measurement errors considered in Section

2.2.2 of the main paper, appealing to Hu and Schennach (2004), the densities fX and fU|X
are identifiable provided mi ≥ 3 replicates are available for some individuals, the joint,

conditional and marginal densities of W1,W2,W3,X are all bounded, and the density fX|W
is bounded complete in the sense that the unique solution to

∫
fX|W(X)g(X)dX = 0 for all

W and for all bounded g(X) is g(X) = 0 for all X. The following lemma provides a sufficient

condition for the density fX|W to be bounded complete.

Lemma 1. fX|W is bounded complete if E{exp(ιtTX|W)} is non-vanishing everywhere for

all W.

Proof. By Theorem 10C of Goldberg (1961), since E{exp(ιtTX|W)} is non-vanishing ev-

erywhere for all W, the closed linear span of fX|W(·) is L1(R). By Hahn-Banach Theorem,

the dual space of L1(R) is L∞(R) and there is an isometric isomorphism from L∞(R) to

L1(R) given by g 7→ Φg where Φg(fX|W) =
∫
fX|W(X)g(X)dX for all W. Since the closed

linear span of fX|W(·) for all W is L1(R),
∫
fX|W(X)g(X)dX = 0 for all W implies that the

mapping Φg is identically 0. By the isometric isomorphism above, it follows that g should

be identically 0.

Different types of completeness of densities are often used as key identifying conditions

in measurement error problems. See, for example, d’Haultfoeuille (2011) and Carroll, et al.

(2010). Here, we have provided a general sufficient condition for bounded completeness to

hold true and a novel proof using functional analysis techniques. Loosely speaking, if the

density fX|W(X) varies with X, its characteristic function does not vanish. Without sufficient

variability of the density of X|W, observations on W do not have enough information to

recover the density of X.

Model parameters specifying the components fX, fε, s` etc. are not separately identifi-

able. For inference on identifiable functional model components, identifiability of individual

parameters is, however, not required. Indeed, the mixture models and the associated pri-

ors were so chosen that the mixture components remain unidentifiable. This helps simplify

MCMC mixing issues. See Section S.6 of the Supplementary Materials.
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5 Model Flexibility

This section presents a theoretical study of the flexibility of the proposed models. Proofs of

the results are presented in the Supplementary Materials. We focus on the deconvolution

models for conditionally heteroscedastic measurement errors, the case of independently dis-

tributed errors following as a special case. First we show that componentwise our models for

the density fX of X, the density fε of the scaled errors ε, and the variance functions v` are

all highly flexible. Building on these results, we then show that our proposed deconvolution

models can accommodate a large class of data generating processes.

Let the generic notation Π denote a prior on some class of random functions. Also let T
denote the target class of functions to be modeled by Π. The support of Π throws light on

the flexibility of Π. For Π to be a flexible prior, one would expect that T or a large subset

of T would be contained in the support of Π.

For investigating the flexibility of priors for density functions, a relevant concept is that of

Kullback-Leibler (KL) support. The KL divergence between two densities f0 and f , denoted

by dKL(f0, f), is defined as dKL(f0, f) =
∫
f0(Z) log {f0(Z)/f(Z)}dZ. Let Πf denote a

prior assigned to a random density f . A density f0 is said to belong to the KL support of

Πf if Πf{f : dKL(f0, f) < δ} > 0 ∀δ > 0. The class of densities in the KL support of Πf is

denoted by KL(Πf ).

Let F be the class of target densities to be modeled by the prior Πf . Let S denote

the support of F and F̃ ⊆ F denote the class of densities that satisfy the following fairly

minimal set of regularity conditions. Since F̃ is a large subclass of F , its inclusion in the

KL support of Πf would establish the flexibility of Πf .

Conditions 1. 1. f0 is continuous on S except on a set of measure zero.

2. The second order moments of f0 are finite.

3. For some r > 0 and for all z ∈ S, there exist hypercubes Cr(z) with side length r and

z ∈ Cr(z) such that ∫
f0(z) log

{
f0(z)

inft∈Cr(z) f0(t)

}
dz <∞.

Let ΠX be a generic notation for both the MIW and the MLFA prior on fX defined in

Section 2.1. Similarly, let Πε be a generic notation for both the MIW and the MLFA prior

on fε defined in Section 2.2. When the measurement errors are distributed independently

of X, the support of fX, say X , may be taken to be any subset of Rp. For conditionally

heteroscedastic measurement errors, the variance functions s2
`(·) that capture the conditional

variability are modeled by mixtures of B-splines defined on closed intervals [Ak, Bk]. In this

case, the support of fX is assumed to be the closed hypercube X = [A1, B1]× · · · × [Ap, Bp].

Let FX denote the set of all densities on X , the target class of densities to be modeled by

ΠX and F̃X ⊆ FX denote the class of densities f0X that satisfy Conditions 1. Similarly, let
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Fε denote the set of all densities on Rp that have mean zero and F̃ε ⊆ Fε denote the class

of densities f0ε that satisfy Conditions 1. The following Lemma establishes the flexibility of

the models for fX and fε.

Lemma 2. 1. F̃X ⊆ KL(ΠX) 2. F̃ε ⊆ KL(Πε).

For investigating the flexibility of models for general classes of functions, a relevant

concept is that of sup norm support. The sup norm distance between two functions g0 and

g, denoted by ||g0 − g||∞, is defined as ||g0 − g||∞ = supZ |g0(Z) − g(Z)|. Let Πg denote

a prior assigned to a random function g. A function g0 is said to belong to the sup norm

support of Πg if Πg(g : ||g0 − g||∞ < δ) > 0 ∀δ > 0. The class of functions in the sup norm

support of Πg is denoted by SN(Πg).

Let ΠV denote the prior on the variance functions based on mixtures of B-spline basis

functions defined in Section 2.2.2. For notational convenience we consider the case of a

univariate variance function supported on [A,B]. Extension to the multivariate case with

variance functions supported on X is technically trivial. Let C+[A,B] denote the set of

continuous functions from [A,B] to R+. Also, for α ≤ (q+1), let Cα+[A,B] ⊆ C+[A,B] denote

the set of functions that are α0 times continuously differentiable, and for all v0 ∈ Cα+[A,B],

‖v0‖α <∞, where α0 is largest integer less than or equals to α and the seminorm is defined

by ‖v0‖α = supX,X′∈[A,B],X 6=X′{|v(α0)
0 (X) − v

(α0)
0 (X ′)|/|X − X ′|α−α0}. The local support

properties of B-splines make the models for the variance functions very flexible as is indicated

by the following lemma.

Lemma 3. Cα+[A,B] ⊆ C+[A,B] ⊆ SN(ΠV).

Although technically the sup norm distance between linear combinations of B-splines and

any continuous function can be made arbitrarily small by increasing the number of knots,

for obvious reasons the actual bounds for the sup norm distance may not be very sharp if the

function to be modeled is wiggly. However, for most applications of practical importance,

the true variance function may be assumed to be smooth, that is, to belong to some Cα+[A,B]

with α ≥ 1. Therefore, for practical reasons, it is only important that the smaller Hölder

class of functions Cα+[A,B] belongs to the sup norm support of ΠV. As shown in Section

S.7.2 of the Supplementary Materials, the bounds for sup norm distance in this case will also

be much sharper.

Since the models for the variance functions v` and the models for the density of the

scaled errors fε are separately very flexible, under model (16) on the measurement er-

rors, the implied conditional and joint densities are also expected to be very flexible.

This is investigated in the next lemma. For a given X, let ΠU|X denote the prior for

fU|X induced by Πε and ΠV under model (16). Define F̃U|X = {f0U|X : f0U|X(U) =∏p
k=1 s

−1
0k (Xk)f0ε{S−1

0 (X)U}, s2
0k ∈ C+[Ak, Bk] for k = 1, . . . , p, f0ε ∈ F̃ε}. Also let ΠU|V
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denote the prior for the unknown conditional density of U induced by Πε and ΠV under

model (16). Define F̃U|• = {f0U|• : for any given X ∈ X , f0U|• = f0U|X ∈ F̃U|X}. Finally,

let ΠX,U denote the prior for the joint density of (X,U) induced by ΠX, Πε and ΠV under

model (16). Define F̃X,U = {f0,X,U : f0,X,U(X,U) = f0,X(X)f0,U|X(U|X), where f0X ∈
F̃X and f0U|X ∈ F̃U|X for all X ∈ X}.

Lemma 4. 1. F̃U|X ⊆ KL(ΠU|X) for any given X ∈ X .

2. For any f0U|• ∈ F̃U|V, ΠU|V{supX∈X dKL(f0U|X, fU|X) < δ} > 0 for all δ > 0.

3. F̃X,U ⊆ KL(ΠX,U).

The flexibility of the implied model for the marginal density fW is the subject of our

final result. Since the only observed quantities are Wij, the support of the induced prior on

fW tells us about the types of likelihood functions the model can approximate.

Let ΠW denote the prior for the density of W induced by ΠX, Πε and ΠV under model

(16). Also let F̃W = {f0W : f0W(W) =
∫
f0X(X)f0U|X(W−X)dX, f0X ∈ F̃X, f0U|• ∈ F̃U|•},

the class of densities f0W that can be obtained as the convolution of two densities f0X and

f0U|•, where f0X ∈ F̃X and f0U|• ∈ F̃U|•.

Since the supports of ΠX and ΠU|X are large, it is expected that the support of ΠW

will also be large. However, because convolution is involved, investigation of KL support

of ΠW is a difficult problem. A weaker but relevant concept is that of L1 support. The

L1 distance between two densities f0 and f , denoted by ||f0 − f ||1, is defined as ||f0 −
f ||1 =

∫
|f0(Z) − f(Z)|dZ. A density f0 is said to belong to the L1 support of Πf if

Πf (f : ||f0 − f ||1 < δ) > 0 ∀δ > 0. The class of densities in the L1 support of Πf is denoted

by L1(Πf ). The following theorem shows that the L1 support of ΠW is large.

Theorem 1. F̃W ⊆ L1(ΠW).

The proofs of these results are deferred to Section S.7 of the Supplementary Materials.

The proofs require that the number of mixture components K be allowed to vary over N,

the set of all positive integers, through priors, denoted by the generic notation P0(K), that

assign positive probability to all K ∈ N. Posterior computation for such methods will be

computationally intensive, specially in a complicated multivariate set up like ours. In our

implementation, we thus keep the number of mixture components fixed at finite values.
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6 Simulation Experiments

The mean integrated squared error (MISE) of estimation of fX by f̂X is defined as MISE =

EfX
∫
{fX(X) − f̂X(X)}2dX. Based on B simulated data sets, a Monte Carlo estimate of

MISE is given by MISEest = B−1
∑B

b=1

∑M
m=1{fX(Xb,m) − f̂ (b)

X (Xb,m)}2/p0(Xb,m), where

{Xb,m}B,Mb=1,m=1 are random samples from the density p0. We designed simulation experiments

to evaluate the MISE performance of the proposed models for a wide range of possibilities.

The MISEs we report here are all based on 100 simulated data sets and M = 106 samples

generated from each of the two densities (a) p0 = fX, the true density of X, and (b) p0

that is uniform on the hypercube with edges mink{µX,k − 31p} and maxk{µX,k + 31p}.
With carefully chosen initial values and proposal densities for the MH steps, we were able

to achieve quick convergence for the MCMC samplers. The use of exchangeable Dirichlet

priors helped simplify mixing issues (Geweke, 2007). See Section S.6.2 in the Supplementary

Materials for additional discussions. We programmed our methods in R. In each case, we ran

3000 MCMC iterations and discarded the initial 1000 iterations as burn-in. The post burn-in

samples were thinned by a thinning interval of length 5. For the univariate samplers, 1000

MCMC iterations with a burn-in of 500 sufficed to produce stable estimates of the variance

functions. In our experiments with much larger iteration numbers and burn-ins, the MISE

performances remained practically the same. This being the first article that tries to solve

the problem of multivariate density deconvolution when the measurement error density is

unknown, the proposed MIW and MLFA models have no competitors. We thus compared

our models with a naive Bayesian method that ignores measurement errors and treats the

subject specific means as precisely measured observations instead, modeling fX by a finite

mixture of multivariate normals as in (2) with inverse Wishart priors on the component

specific covariance matrices.

We considered two choices for the sample size n = 500, 1000. For each subject,

we simulated mi = 3 replicates. The true density of X was chosen to be fX(X) =∑KX

k=1 πX,k MVNp(X|µX,k,ΣX,k) with p = 4, KX = 3, πX = (0.25, 0.50, 0.25)T, µX,1 =

(0.8, 6, 4, 5)T, µX,2 = (2.5, 4, 5, 6)T and µX,3 = (6, 4, 2, 4)T. For the density of the measure-

ment errors fε we considered two choices, namely

1. f
(1)
ε (ε) = MVNp(ε|0,Σε), and

2. f
(2)
ε (ε) =

∑Kε
k=1 πε,k MVNp(ε|µε,k,Σε,k) with Kε = 3, πε = (0.2, 0.6, 0.2)T, µε,1 =

(−0.3, 0, 0.3, 0)T, µε,2 = (−0.5, 0.4, 0.5, 0)T and µε,3 = −(πε,1µε,1 + πε,2µε,2)/πε,3.

For the component specific covariance matrices, we set ΣX,k = DXΣX,0DX for each k,

where DX = diag(0.751/2, . . . , 0.751/2). Similarly, Σε,k = DεΣε,0Dε for each k, where

Dε = diag(0.31/2, . . . , 0.31/2). For each pair of fX and fε, we considered four types of

covariance structures for ΣX,0 = {(σX,0
ij )} and Σε,0 = {(σε,0ij )}, namely
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1. Identity (I): ΣX,0 = Σε,0 = Ip,

2. Latent Factor (LF): ΣX,0 = ΛXΛX + ΩX, with ΛX = (0.7, . . . , 0.7)T and ΩX =

diag(0.51, . . . , 0.51), and Σε,0 = ΛεΛε + Ωε, with Λε = (0.5, . . . , 0.5)T and Ωε =

diag(0.75, . . . , 0.75),

3. Autoregressive (AR): σX,0
ij = 0.7|i−j| and σε,0ij = 0.5|i−j| for each (i, j), and

4. Exponential (EXP): σX,0
ij = exp(−0.5 |i− j|) and σε,0ij = exp(−0.9 |i− j|) for each

(i, j).

The parameters were chosen to produce a wide variety of one and two dimensional marginal

densities, see Figure 4 and also Figure 6. Scale adjustments by multiplication with DX and

Dε were done so that the simulated values of each component of X fall essentially in the range

(−2, 6) and the simulated values of all components of ε fall essentially in the range (−3, 3).

For conditionally heteroscedastic measurement errors, we set the true variance functions at

s2
`(X) = (1 + X/4)2 for each component `. A total of 16 (2 × 1 × 2 × 4) cases were thus

considered for both independent and conditionally heteroscedastic measurement errors.

We first discuss the results of the simulation experiments when the measurement errors

U were independent of X. The estimated MISEs are presented in Table 1. When the

true fε was a single component multivariate normal, the MLFA model produced the lowest

MISE when the true covariance matrices were diagonal. In all other cases the MIW model

produced the best results. When the true fε was a mixture of multivariate normals, the

model complexity increases and the performance of the MIW model started to deteriorate.

In this case, the MLFA model dominated the MIW model when the true covariance matrices

were either diagonal or had a latent factor characterization.

The estimated MISEs for the cases when U were conditionally heteroscedastic are pre-

sented in Table 2. Models that accommodate conditional heteroscedasticity are significantly

more complex compared to models that assume independence of the measurement errors

from X. The numerically more stable MLFA model thus out-performed the MIW model in

all 32 cases. The improvements were particularly significant when the true covariance ma-

trices were sparse and the number of subjects was small (n = 500). The true and estimated

univariate and bivariate marginals of fX produced by the MIW and the MLFA methods

when the true density of the scaled errors was a mixture of multivariate normals (f
(2)
ε ) and

the component specific covariance matrices were diagonal (I) are summarized in Figure 3

and Figure 4, respectively. The true and estimated univariate and bivariate marginals for

the density of the scaled errors fε for this case produced by the two methods are summa-

rized in Figure 5 and Figure 6, respectively. The true and the estimated variance functions

produced by the univariate submodels are summarized in Figure 2. Comparisons between
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Figure 3 and Figure 4 illustrate the limitations of the MIW models in capturing high dimen-

sional sparse covariance matrices and the improvements that can be achieved by the MLFA

models. The estimates of fε produced by the two methods are in better agreement. This

may be attributed to the fact that many more residuals are available for estimating fε than

there are Xi’s to estimate fX. Figure 2 in the main paper and Figures S.7 and S.16 in the

Supplementary Materials show that the univariate submodels can recover the true variance

functions well. Additional figures when the true covariance matrices had auto-regressive

structure (AR) are presented in the Supplementary Materials. In this case the true covari-

ance matrices were not sparse. The MLFA method still vastly dominated the MIW method

when the sample size was small (n = 500). When the sample size was large (n = 1000) the

two methods produced comparable results.

The proposed deconvolution methods, in particular the MLFA method, are highly scal-

able. In small scale simulations, not reported here, we tried p = 6, 8 and 10 and observed

good empirical performance. We have focused here on p = 4 dimensional problems since

with p = 4 the numbers of univariate and bivariate marginals, p = 4 and
(
p
2

)
= 6, remain

manageable and the results are conveniently graphically summarized.

Additional small scale simulations for a variety of other distributions with similar MISE

patterns are presented in the Supplementary Materials.

7 Example

Dietary habits are known to be leading causes of many chronic diseases. Accurate esti-

mation of the distributions of dietary intakes is thus important in nutritional epidemiologic

surveillance and epidemiology. Nutritionists are typically interested not just in the consump-

tion patterns of individual dietary components but also in their joint consumption patterns.

By the very nature of the problem, X, the average long term daily intakes of the dietary

components, can never be directly observed. Data are thus typically collected from a repre-

sentative sample of the population in the form of dietary recalls, the subjects participating

in the study remembering and reporting the type and amount of food they had consumed in

the past 24 hours. The problem of estimating the joint consumption pattern of the dietary

components from the contaminated 24-hour recalls then becomes a problem of multivariate

density deconvolution.

A large scale epidemiologic study conducted by the National Cancer Institute, the Eating

at America’s Table (EATS) study (Subar, et al. 2001), serves as the motivation for this paper.

In this study n = 965 participants were interviewed mi = 4 times over the course of a year

and their 24 hour dietary recalls (Wij’s) were recorded. The goal is to estimate the joint

consumption patterns of the true daily intakes (Xi’s).
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To illustrate our methodology, we consider the problem of estimating the joint consump-

tion pattern of four dietary components, namely (a) carbohydrate, (b) fiber, (c) protein

and (d) a mineral potassium. Figure 7 shows the plots of subject-specific means versus

subject-specific variances for daily intakes of the dietary components with the estimates of

the variance functions produced by univariate submodels superimposed over them. As is

clearly identifiable from this plot, conditional heteroscedasticity is a very prominent feature

of the measurements errors contaminating the 24 hour recalls. The estimated univariate and

bivariate marginal densities of average long term daily intakes of the dietary components

produced by the MIW method and the MLFA method are summarized in Figure 8. The

estimated univariate and bivariate marginal densities for the scaled errors are summarized in

Figure 9. The estimated marginals of X produced by the two methods look quite different,

while the estimated marginals of ε are in close agreement. The estimated univariate and

bivariate marginal densities of the long term intakes of the dietary components produced by

the MIW model look irregular and unstable, whereas the estimates produced by the MLFA

model look relatively more regular and stable. In experiments not reported here, we observed

that the estimates produced by the MIW method were sensitive to the choice of the number

of mixture components, but the estimates produced by the MLFA model were quite robust.

The trace plots and the frequency distributions of the of the numbers of nonempty mixture

components are summarized in Figures S.14 and S.15 in the Supplementary Materials and

provide some idea about the relative stability of the two methods. These observations are

similar to that made in Section 6 for conditionally heteroscedastic measurement errors and

sparse covariance matrices.

We next comment only on the estimates produced by the MLFA method assuming them

to be closer to the truth. The estimates show that the long term daily intakes of the

four dietary components are strongly correlated. The shapes of the bivariate consumption

patterns suggest deviations from normality. Similarly, the shapes of the bivariate marginals

for the scaled errors suggest that the measurement errors in the reported 24 hour recalls are

positively correlated and deviate from normality. People who consume more are expected to

do so for most dietary components. Strong correlations between the intakes of the dietary

components are thus somewhat expected. The correlations among different components of

the measurement errors suggest that people usually have a tendency to either over-report

or under-report the daily intakes. These findings illustrate the importance of robust but

numerically stable multivariate deconvolution methods in nutritional epidemiologic studies.

Additional discussions on potentially far-reaching impact of our work on nutritional epi-

demiology studies are deferred to Section S.10 in the Supplementary Materials.
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8 Discussion

We considered the problem of multivariate density deconvolution when the measurement

error density is not known but replicated proxies are available for some individuals. We

used flexible finite mixtures of multivariate normal kernels with symmetric Dirichlet priors

on the mixture probabilities to model both the density of interest and the density of the

measurement errors. We proposed a novel technique to make the model for the density

of the errors satisfy a zero mean restriction. We showed that the dense parametrization

of inverse Wishart priors are not suitable for modeling covariance matrices in the presence

of measurement errors. We proposed a numerically more stable approach based on latent

factor characterization of the covariance matrices with sparsity inducing priors on the factor

loading matrices. We built models for conditionally heteroscedastic additive measurement

errors that also automatically accommodate multivariate multiplicative measurement errors.

The methodological contributions of this article are not limited to deconvolution prob-

lems. Mixtures of latent factor analyzers with sparsity inducing priors on the factor loading

matrices can be used in other high dimensional applications including ordinary density esti-

mation. The techniques proposed in Section 2.2.1 to enforce the mean zero moment restric-

tion on the measurement errors can be readily used to model multivariate regression errors

that are distributed independently of the predictors. The technique can also be adapted to

relax the strong assumption of multivariate normality made by Hoff and Niu (2012) and Fox

and Dunson (2016) in covariance regression problems.

As explained in Sections 2.2.2 and 2.2.3 in the main paper and also in Section S.5 in

the Supplementary Materials, the structural separability assumption (16) arises naturally in

both additive and multiplicative multivariate measurement error settings. It would still be

interesting, in future work, to consider more general covariance models that allow var(Uij`|X)

to be explained primarily by Xi`, as in the current approach, but would allow the residual

variability to be explained by the remaining components {Xim}m 6=` of X. The current MCMC

based implementation of the proposed methodology is computationally intensive. We are

pursuing the development of faster algorithms for approximate posterior inference as the

subject of a separate manuscript.

The question of consistency of Bayesian procedures is intimately related to the flexibility

of the priors. For instance, in ordinary density estimation problems inclusion of the true

density in the KL support of the prior is a sufficient condition to ensure weak consistency via

the Schwartz theorem. In density deconvolution problems such a condition is not sufficient

but is still required. The results from Section 5 thus provide crucial first steps in that

direction. We have not pursued the question of consistency of the proposed deconvolution

methods any further in this article. It remains an important direction for future research.
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Supplementary Materials

The Supplementary Materials discuss the choice of hyper-parameters and MCMC algorithms
to sample from the posterior, including the two-stage estimation procedure for conditionally
heteroscedastic measurement errors. The Supplementary Materials also present our argu-
ments in favor of finite mixture models, pointing out how their close connections and their
subtle differences with possible infinite dimensional alternatives are exploited to achieve
significant reduction in computational complexity while retaining the major advantages of
infinite dimensional mixture models including model flexibility and automated model selec-
tion and model averaging. The Supplementary Materials additionally present discussions on
the contrasts between regression and measurement errors that preclude the use of covari-
ance regression techniques to model conditionally heteroscedastic measurement errors, the
proofs of the theoretical results presented in Section 5, some additional figures, and results
of additional simulation experiments. R programs implementing the deconvolution methods
for conditionally heteroscedastic errors are included as part of the Supplementary Materials.
The EATS data analyzed in Section 7 can be accessed from National Cancer Institute by
arranging a Material Transfer Agreement. A simulated data set, simulated according to one
of the designs described in Section 6, and a ‘readme’ file providing additional details are also
included in the Supplementary Materials.
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True Error
Distribution

Covariance
Structure

Sample Size
MISE ×104

MLFA MIW Naive

(a) Multivariate
Normal

I
500 1.24 3.05 8.01
1000 0.59 1.33 6.58

LF
500 6.88 6.33 33.41
1000 5.15 3.10 32.42

AR
500 11.91 5.51 27.17
1000 9.82 2.78 26.01

EXP
500 7.15 4.40 17.82
1000 5.46 2.19 17.40

(b) Mixture of
Multivariate
Normal

I
500 1.28 3.24 5.97
1000 0.64 1.37 4.99

LF
500 7.28 7.51 31.62
1000 4.17 4.34 31.48

AR
500 10.43 6.66 30.74
1000 7.75 4.35 28.90

EXP
500 7.16 5.18 17.85
1000 4.87 2.66 17.26

Table 1: Mean integrated squared error (MISE) performance of MLFA (mixtures of latent
factor analyzers) and MIW (mixtures with inverse Wishart priors) density deconvolution models
described in Section 2 of this article for homoscedastic errors compared with a naive method
that ignores measurement errors for different measurement error distributions. The minimum
value in each row is highlighted.

True Error
Distribution

Covariance
Structure

Sample Size
MISE ×104

MLFA MIW Naive

(a) Multivariate
Normal

I
500 2.53 19.08 10.64
1000 1.15 9.43 9.14

LF
500 11.46 34.21 21.33
1000 5.78 15.98 20.75

AR
500 17.11 30.83 36.44
1000 10.77 12.46 36.37

EXP
500 11.63 26.99 24.28
1000 6.67 10.56 23.36

(b) Mixture of
Multivariate
Normal

I
500 2.79 22.17 20.16
1000 1.38 10.55 19.39

LF
500 13.39 35.67 43.43
1000 7.50 20.86 43.28

AR
500 18.27 35.70 75.26
1000 12.06 16.64 77.55

EXP
500 12.11 34.50 48.76
1000 7.59 13.74 50.02

Table 2: Mean integrated squared error (MISE) performance of MLFA (mixtures of latent
factor analyzers) and MIW (mixtures with inverse Wishart priors) density deconvolution models
described in Section 2 of this article for conditionally heteroscedastic errors compared with
a naive method that ignores measurement errors for different measurement error distributions.
The minimum value in each row is highlighted.
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Figure 2: Results for conditional variability var(U |X) = s2(X)var(ε) produced by the uni-
variate density deconvolution method for each component of X for the conditionally het-

eroscedastic error distribution f
(2)
ε with sample size n = 1000, mi = 3 replicates for each

subject and identity matrix (I) for the component specific covariance matrices. The re-
sults correspond to the data set that produced the median of the estimated integrated
squared errors (ISE) out of a total of 100 simulated data sets for the MLFA (mixtures
of latent factor analyzers) method. For each component of X, the true variance function is
s2(X) = (1 +X/4)2. See Section 2.2.2 and Section S.3 for additional details. In each panel,
the true (lighter shaded green lines) and the estimated (darker shaded blue lines) variance
functions are superimposed over a plot of subject specific sample means vs subject specific
sample variances. The figure is in color in the electronic version of this article.
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Figure 3: Results for fX produced by the MIW (mixtures with inverse Wishart priors)

method for the conditionally heteroscedastic error distribution f
(2)
ε with sample size n =

1000, mi = 3 replicates for each subject and identity matrix (I) for the component specific
covariance matrices. The results correspond to the data set that produced the median of
the estimated integrated squared errors (ISE) out of a total of 100 simulated data sets. See
Section 6 for additional details. The upper triangular panels show the contour plots of the
true two dimensional marginal densities. The lower triangular diagonally opposite panels
show the corresponding estimates. The numbers i, j at the bottom right corners of the off-
diagonal panels show that the marginal densities fXi,Xj are plotted in those panels. The
diagonal panels show the true (lighter shaded green lines) and the estimated (darker shaded
blue lines) one dimensional marginals. The figure is in color in the electronic version of this
article.
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Figure 4: Results for the fX produced by the MLFA (mixtures of latent factor analyzers)

method for the conditionally heteroscedastic error distribution f
(2)
ε with sample size n =

1000, mi = 3 replicates for each subject and identity matrix (I) for the component specific
covariance matrices. The results correspond to the data set that produced the median of
the estimated integrated squared errors (ISE) out of a total of 100 simulated data sets. See
Section 6 for additional details. The upper triangular panels show the contour plots of the
true two dimensional marginal densities. The lower triangular diagonally opposite panels
show the corresponding estimates. The numbers i, j at the bottom right corners of the off-
diagonal panels show that the marginal densities fXi,Xj are plotted in those panels. The
diagonal panels show the true (lighter shaded green lines) and the estimated (darker shaded
blue lines) one dimensional marginals. The figure is in color in the electronic version of this
article.



−3 −1 1 2 3

0.
0

0.
2

0.
4

es.grid

−3 −1 1 2 3

0.
0

0.
2

0.
4

es.grid

de
ns

ity
.e

s.
tru

e.
un

iv
[, 

i]

−3 −1 1 2 3

0.
0

0.
2

0.
4

es.grid

de
ns

ity
.e

s.
tru

e.
un

iv
[, 

i]

−3 −1 1 2 3

0.
0

0.
2

0.
4

0.
6

de
ns

ity
.e

s.
tru

e.
un

iv
[, 

i]

−3 −1 1 2 3

−3
−1

1
2

3
es.grid

es
.g

rid

1 2

−3 −1 1 2 3

−3
−1

1
2

3

es.grid

es
.g

rid

1 3

−3 −1 1 2 3

−3
−1

1
2

3

es.grid

es
.g

rid

1 4

−3 −1 1 2 3

−3
−1

1
2

3
es.grid

es
.g

rid

2 3

−3 −1 1 2 3

−3
−1

1
2

3

es.grid

es
.g

rid

2 4

−3 −1 1 2 3

−3
−1

1
2

3
es.grid

es
.g

rid

3 4

−3 −1 1 2 3

−3
−1

1
2

3

es.grid

1 2

−3 −1 1 2 3

−3
−1

1
2

3

es.grid

1 3

−3 −1 1 2 3

−3
−1

1
2

3

es.grid

es
.g

rid

2 3

−3 −1 1 2 3

−3
−1

1
2

3

1 4

−3 −1 1 2 3

−3
−1

1
2

3

es
.g

rid

2 4

−3 −1 1 2 3

−3
−1

1
2

3

es
.g

rid

3 4

Figure 5: Results for the density of the scaled measurement errors fε produced by the MIW
(mixtures with inverse Wishart priors) method for the conditionally heteroscedastic error

distribution f
(2)
ε with sample size n = 1000, mi = 3 replicates for each subject and identity

matrix (I) for the component specific covariance matrices. The results correspond to the
data set that produced the median of the estimated integrated squared errors (ISE) out of a
total of 100 simulated data sets. See Section 6 for additional details. The upper triangular
panels show the contour plots of the true two dimensional marginal densities. The lower
triangular diagonally opposite panels show the corresponding estimates. The numbers i, j
at the bottom right corners of the off-diagonal panels show that the marginal densities fεi,εj
are plotted in those panels. The diagonal panels show the true (lighter shaded green lines)
and the estimated (darker shaded blue lines) one dimensional marginals. The figure is in
color in the electronic version of this article.
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Figure 6: Results for the density of the scaled measurement errors fε produced by the
MLFA (mixtures of latent factor analyzers) method for the conditionally heteroscedastic

error distribution f
(2)
ε with sample size n = 1000, mi = 3 replicates for each subject and

identity matrix (I) for the component specific covariance matrices. The results correspond
to the data set that produced the median of the estimated integrated squared errors (ISE)
out of a total of 100 simulated data sets. See Section 6 for additional details. The upper
triangular panels show the contour plots of the true two dimensional marginal densities. The
lower triangular diagonally opposite panels show the corresponding estimates. The numbers
i, j at the bottom right corners of the off-diagonal panels show that the marginal densities
fεi,εj are plotted in those panels. The diagonal panels show the true (lighter shaded green
lines) and the estimated (darker shaded blue lines) one dimensional marginals. The figure is
in color in the electronic version of this article.
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Figure 7: Estimated variance functions var(U |X) = s2(X)var(ε) produced by the univariate
density deconvolution method for each component of X for the EATS data set with sample
size n = 965, mi = 4 replicates for each subject. See Section 7 for additional details. The
figure is in color in the electronic version of this article.
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Figure 8: Results for the EATS data set for the fX. The off-diagonal panels show the contour
plots of two-dimensional marginals estimated by the MIW method (upper triangular panels)
and the MLFA method (lower triangular panels). The numbers i, j at the bottom right
corners of the off-diagonal panels show that the marginal densities fXi,Xj are plotted in
those panels. The diagonal panels show the one dimensional marginal densities estimated by
the MIW method (darker shaded blue lines) and the MLFA method (lighter shaded green
lines). The figure is in color in the electronic version of this article.
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Figure 9: Results for the EATS data set for the density of the scaled errors fε. The off-
diagonal panels show the contour plots of two-dimensional marginals estimated by the MIW
method (upper triangular panels) and the MLFA method (lower triangular panels). The
numbers i, j at the bottom right corners of the off-diagonal panels show that the marginal
densities fεi,εj are plotted in those panels. The diagonal panels show the one dimensional
marginal densities estimated by the MIW method (darker shaded blue lines) and the MLFA
method (lighter shaded green lines). The figure is in color in the electronic version of this
article.
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The Supplementary Materials are organized as follows. Section S.1 discusses the choice of
hyper-parameters. In Section S.2, we describe a Gibbs sampler for drawing samples from the
posterior of the deconvolution model for multivariate independently distributed homoscedas-
tic errors, described in Section 2.2.1 of the main paper. In Section S.3, we detail a two stage
estimation procedure for drawing samples from the posterior of the deconvolution model for
multivariate conditionally heteroscedastic measurement errors described in Section 2.2.2 of
the main paper. Section S.4 provides heuristic justification for the two-stage sampler. In
Section S.5, we provide additional detailed discussion of the model for multivariate condi-
tionally heteroscedastic measurement errors described in Section 2.2.2 of the main paper,
contrasting it with models for multivariate conditionally varying regression errors (Section
S.5.1), its connections with latent factor models (Section S.5.2), its flexibility, limitations,
and plausible generalizations (Section S.5.3), and tools for model adequacy checks (Section
S.5.4). Section S.6 presents our arguments in favor of finite mixture models, pointing out how
their close connections and their subtle differences with possible infinite dimensional alter-
natives are exploited to achieve significant reduction in computational complexity (Section
S.6.2) while retaining the major advantages of infinite dimensional mixture models includ-
ing model flexibility (Section S.6.4) and automated model selection and model averaging
(Section S.6.3). Section S.7 details proofs of the theoretical results presented in Section 5
of the main paper. Section S.8 presents additional figures related to the simulation exper-
iments discussed in Section 6 of the main paper. Section S.9 presents results of additional
simulation experiments. Section S.10 discusses potentially far-reaching impact of our work
in nutritional epidemiology.
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S.1 Choice of Hyper-Parameters

We discuss the choice of hyper-parameters in this section. To avoid unnecessary repetition,

in this section and onwards, symbols sans the subscripts X and ε are sometimes used as

generics for similar components and parameters of the models. For example, K is a generic

for KX and Kε; µk is a generic for µX,k and µε,k; and so on.

1. Number of mixture components: Practical application of our method requires

that a decision be made on the number of mixture components KX and Kε in the models

for the densities fX and fε, respectively.

Our simulation experiments suggest that when the true densities are finite mixtures of

multivariate normals and KX and Kε are assigned values greater than the corresponding

true numbers, the MCMC chain often quickly reaches a steady state where the redundant

components become empty. See Figures S.6, S.12 and S.13 in the Supplementary Materials

for illustrations. These observations are similar to that made in the context of ordinary

density estimation by Rousseau and Mengersen (2011) who studied the asymptotic behavior

of the posterior for overfitted mixture models and showed that when α/K < L/2, where L

denotes the number of parameters specifying the component kernels, the posterior is stable

and concentrates in regions with empty redundant components. We set αX = αε = 1 so

that the condition α/K < L/2 is satisfied.

Educated guesses about KX and Kε may nevertheless be useful in safeguarding against

gross overfitting that would result in a wastage of computation time and resources. The

following simple strategies may be employed. Model based cluster analysis techniques as

implemented by the mclust package in R (Fraley and Raftery, 2007) may be applied to

the starting values of Xi and the corresponding residuals, obtained by fitting univariate

submodels for each component of X, to get some idea about KX and Kε. The chain may be

started with larger values of KX and Kε and after a few hundred iterations the redundant

empty components may be deleted on the fly.

As shown in Section 5, our methods can approximate a large class of data generating

densities, and we found the strategy described above to be very effective in all cases we

experimented with. The parameter α now plays the role of a smoothing parameter, smaller

values favoring a smaller number of mixture components and thus smoother densities. In

simulation experiments involving multivariate t and multivariate Laplace distributions re-

ported in the Supplementary Materials, and in some other cases not reported here, the values

αX = αε = 1 worked well.

As we discuss in Section 6, the MIW method becomes highly numerically unstable when
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the measurement errors are conditionally heteroscedastic and the true covariance matrices

are highly sparse. In these cases in particular, the MIW method usually requires much larger

sample sizes for the asymptotic results to hold and in finite samples the above mentioned

strategy usually overestimates the required number of mixture components. See Figure

S.5 in the Supplementary Materials for an illustration. Since mixtures based on (K + 1)

components are at least as flexible as mixtures based on K components, as far as model

flexibility is concerned, such overestimation is not an issue. But since this also results in

clusters of smaller sizes, the estimates of the component specific covariance matrices become

numerically even more unstable, further compounding the stability issues of the MIW model.

In contrast, for the numerically more stable MLFA model, for the exact opposite reasons,

the asymptotic results are valid for moderate sample sizes and such models are also more

robust to overestimation of the number of nonempty clusters.

2. Number of latent factors: For the MLFA method, the MCMC algorithm sum-

marized in Section S.2 also requires that the component specific infinite factor models be

truncated at some appropriate truncation level. The shrinkage prior again makes the model

highly robust to overfitting allowing us to adopt a simple strategy. Since a latent factor char-

acterization leads to a reduction in the number or parameters only when qk ≤ d(p + 1)/2e,
where dse denotes the largest integer smaller than or equals to s, we simply set the trunca-

tion level at qk = q = max{2, d(p+ 1)/2e} for all the components. We also experimented by

setting the truncation level at qk = q = p for all k with the results remaining practically the

same. The shrinkage prior, being continuous in nature, does not set the redundant columns

to exact zeroes, but it adaptively shrinks the redundant parameters sufficiently towards zero,

thus producing stable and efficient estimates of the densities being modeled.

3. Other hyper-parameters: We take an empirical Bayes type approach to assign

values to other hyper-parameters. We set µX,0 = X
(0)

, the overall mean of X
(0)
1:n, where

X
(0)
1:n denote the starting values of X1:n for the MCMC sampler discussed in Section S.2.

For the scaled errors we set µε,0 = 0. For the MIW model we take ν0 = (p + 2), the

smallest possible integral value of ν0 for which the prior mean of Σk exists. We then take

ΣX,0/2 = ΨX,0 = cov(X
(0)

1:n). These choices imply E(ΣX,k) = ΨX,0 = cov(X
(0)

) and,

since the variability of each component is expected to be significantly less than the overall

variability, ensure noninformativeness. Similarly, for the scaled errors we take Σε,0/2 =

Ψε,0 = cov(ε
(0)
1:N). For the MLFA model, the hyper-parameters specifying the prior for Λ

are set at a1 = 1, ah = 2 for all h ≥ 2, and ν = 1. Inverse gamma priors with parameters

aσ = 1.1, bσ = 1 are placed on the elements of Ω. For each k, the variance functions were

modeled using quadratic (q=2) B-splines based on (2 × 2 + 5 + 1) = 10 equidistant knot

points on [Ak, Bk] = [min(Wk,1:n) − 0.1 range(Wk,1:n),max(Wk,1:n) + 0.1 range(Wk,1:n)],

where W`,1:n denotes the subject specific means corresponding to `th component.
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S.2 Posterior Computation

Samples from the posterior can be drawn using Gibbs sampling techniques. In what follows

ζ denotes a generic variable that collects the observed proxies W1:N and all the parameters

of a model, including the imputed values of X1:n and ε1:N , that are not explicitly mentioned.

Carefully chosen starting values can facilitate convergence of the sampler. The posterior

means of the Xi`’s, obtained by fitting univariate submodels, are used as the starting values

for the multivariate sampler. The number of mixture components are initialized at KX =

(mX + 2), where mX denotes the optimal number of clusters returned by model based

clustering algorithm implemented by the mclust package in R applied to the corresponding

initial values X
(0)
1:n. The component specific mean vectors of the nonempty clusters are set at

the mean of X
(0)
i values that belong to that cluster. The component specific mean vectors

of the two empty clusters are set at X
(0)

, the overall mean of X
(0)
1:n. For the MIW model, the

initial values of the cluster specific covariance matrices are chosen in a similar fashion. The

mixture probabilities for the kth nonempty cluster is set at πX,k = nk/n, where nk denotes

the number of X
(0)
i belonging to the kth cluster. The mixture probabilities of the empty

clusters are initialized at zero. For the MLFA method, the starting values of all elements

of Λ and η are set at zero. The starting values for the elements of Ω are chosen to equal

the variances of the corresponding starting values. The parameters specifying the density

of the scaled errors are initialized in a similar manner. The MCMC iterations comprise the

following steps. We suppress the subscript ε to keep the notation clean as in the main paper.

1. Updating the parameters specifying fX: For the MIW model the parameters

specifying the density fX are updated using the following steps.

(π|ζ) ∼ Dir(α/K + n1, α/K + n2, . . . , α/K + nK),

(Ci|ζ) ∼ Mult(1, pi1, pi2, . . . , piK),

(µk|ζ) ∼ MVNp(µ
(n)
k ,Σ

(n)
k ),

(Σk|ζ) ∼ IWp{nk + ν0,
∑

i:Ci=k
(Xi − µk)(Xi − µk)

T + Ψ0},

where nk =
∑

i 1(Ci = k), pik ∝ πk × MVNp(Xi|µk,Σk), Σ
(n)
k = (Σ−1

0 + nkΣ
−1
k )−1 and

µ
(n)
k = Σ

(n)
k

{
Σ−1
k

∑
i:Ci=k

Xi + Σ−1
0 µ0

}
. To update the parameters specifying the covari-

ance matrices in the MLFA model, the sampler cycles through the following steps.

(λk,j|ζ) ∼ MVNq{(D−1
k,j + σ−2

j ηT
k ηk)

−1σ−2
j ηT

k (X
(j)
k − µ

(j)
k ), (D−1

k,j + σ−2
j ηT

k ηk)
−1},

(ηi|Ci = k, ζ) ∼ MVNq{(Iq + ΛT
kΩ−1Λk)

−1ΛT
kΩ−1(Xi − µk), (Iq + ΛT

kΩ−1Λk)
−1},

(σ2
j |ζ) ∼ Inv-Ga

{
aσ + n/2, bσ + (1/2)

∑n
i=1(Xij − µCi,j

− λT
Ci,j

ηi)
2
}
,

(φk,jh|ζ) ∼ Ga{(ν + 1)/2, (ν + τk,hλ
2
k,jh)/2},

(δk,h|ζ) ∼ Ga{ah + p(q − h+ 1)/2, 1 +
∑q

`=1 τ
(h)
k,`

∑p
j=1 φk,j`λ

2
k,j`/2},
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where D−1
k,j = diag(φk,j1τk,1, . . . , φk,jqτk,q), τ

(h)
k,` =

∏`
t=1,t6=h δk,t, X

(j)
k = (Xi1j, Xi2j, . . . , Xink j

)T,

ηnk×qk = (ηi1 ,ηi2 , . . . ,ηink )T, {i1, i2, . . . , ink} = {i : Ci = k}.

2. Updating the parameters specifying fε: The unconstrained full conditionals of

the parameters specifying fε are very similar. For instance, for the MIW model they are

given by
(π|ζ) ∼ Dir(α/K +N1, α/K +N2, . . . , α/K +NK),

(Cij|ζ) ∼ Mult(1, pij1, pij2, . . . , pijK),

(µk|ζ) ∼ MVNp(µ
(N)
k ,Σ

(N)
k ),

(Σk|ζ) ∼ IWp{Nk + ν0,
∑

ij:Cij=k
(εij − µk)(εij − µk)

T + Ψ0},

where Nk =
∑

i,j 1(Cij = k), pijk ∝ πk × MVNp(εij|µk,Σk), Σ
(N)
k = (Σ−1

0 + NkΣ
−1
k )−1

and µ
(N)
k = Σ

(N)
k

{
Σ−1
k

∑
ij:Cij=k

εij + Σ−1
0 µ0

}
. Samples from the constrained posterior

({µk}Kk=1|
∑K

k=1 πkµk = 0, ζ) are then obtained from the unconstrained full conditionals

(µk|ζ) given above using the simple additional steps described in Section 2.2.2 of the main

paper. The steps to update the parameters specifying the covariance matrices in the MLFA

model are similarly obtained and are excluded.

3. Updating the values of X: When the measurement errors are independent of X,

the Xi have closed form full conditionals given by

(Xi|CX,i = k, Cε,i1 = k1, . . . , Cε,imi = kmi , ζ) ∼ MVNp(µ
(n)
X ,Σ

(n)
X ),

where Σ
(n)
X = (Σ−1

X,k +
∑mi

j=1 Σ−1
ε,kj)

−1 and µ
(n)
X = Σ

(n)
X (Σ−1

X,kµX,k +
∑mi

j=1 Σ−1
ε,kjWij). For

conditionally heteroscedastic measurement errors, the full conditionals are given by

(Xi|CX,i = k, Cε,i1 = k1, . . . , Cε,imi = kmi , ζ)

∝ MVNp(Xi|µX,k,ΣX,k)×
∏mi

j=1 MVNp{Wij|Xi + S(Xi)µε,kj ,S(Xi)Σε,kjS(Xi)},

The full conditionals do not have closed forms. Metropolis-Hastings (MH) steps with multi-

variate truncated normal proposals are used within the Gibbs sampler.

4. Updating the parameters specifying s`: When the measurement errors are condi-

tionally heteroscedastic, we first estimate the variance functions s2
`(Xi`) by fitting univariate

submodels Wij` = Xi` + s`(Xi`)εij` for each `. The details are provided in Section S.3. The

parameters characterizing other components of the full model are then sampled using the

Gibbs sampler described above, keeping the estimates of the variance functions fixed.

An alternative class of algorithms integrates out the mixture probabilities π and works

with the resulting Polya urn scheme (Neal, 2000). We did not consider such algorithms as

they render the labels Ci a-priori dependent, requiring the prior conditionals (Ci|C−i) to be

recomputed each time any Ci is updated. Importantly, we also need the sampled values of

π to enforce the zero mean restriction
∑K

k=1 πkµk = 0 on the measurement errors.
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S.3 Estimation of the Variance Functions

When the measurement errors are conditionally heteroscedastic, we need to update the

parameters ξ` that specify the variance functions s2
`(Xi`). These parameters do not have

closed form full conditionals. MCMC algorithms, where we tried to integrate MH steps for

ξ` with the sampler for the parameters specifying fε, were numerically unstable and failed

to converge sufficiently quickly. We need to supply the values of the scaled errors εij` to

step 2 of the algorithm described in Section S.2 and the instability stems from the operation

εij = S(Xi)
−1Uij required to calculate the scaled residuals εij`, as we try to divide Uij` by

the quantity s`(Xi`), which may be very small for certain values of Xi`, for example, for

values of Xi` near zero for the EATS data application. See Figure 7.

To solve the problem, we adopt a novel two-stage procedure. First, for each k, we

estimate the functions s2
`(Xi`) by fitting the univariate submodels Wij` = Xi` + s`(Xi`)εij`.

The problem of numerical instability arising out of the operation to determine the values

of the scaled errors remains in these univariate subproblems too. But the following lemma

from Pelenis (2014), presented here for easy reference, provides us with an escape route by

allowing us to avoid this operation in the first place.

Lemma 5. Let θ1:K = {(πk, µk, σ2
k)}Kk=1 be such that

f1(ε|θ1:K) =
∑K

k=1 πk Normal(ε|µk, σ2
k), with

∑K
k=1 πk = 1,

∑K
k=1 πkµk = 0. (S.1)

Then there exists a set of parameters θ?1:(K−1) = {(π?k, p?k,r, µ?k,r, σ?2k,r)}
2,K−1
r=1,k=1 such that

f1(ε|θ1:K) = f2(ε|θ?1:(K−1)) =
∑K−1

k=1 π
?
k

∑2
r=1 p

?
k,rNormal(ε|µ?k,r, σ?2k,r), (S.2)∑K−1

k=1 π
?
k = 1,

∑2
r=1 p

?
k,r = 1,

∑2
r=1 p

?
k,rµ

?
k,r = 0 ∀k.

Lemma 5 implies that the univariate submodels for the density of the scaled errors given

by (S.1) has a reparametrization (S.2) where each component is itself a two-component

normal mixture with its mean restricted at zero. The reparametrization (S.2) thus re-

places the zero mean restriction on (S.1) by similar restrictions on each of its compo-

nents. These restrictions also imply that each mixture component in (S.2) can be further

reparametrized by only four free parameters. One such parametrization could be in terms

of θ̃k = (p̃k, µ̃k, σ̃
2
k,1, σ̃

2
k,2), where (p?k,1, σ

?2
k,1, σ

?2
k,2) = (p̃k, σ̃

2
k,1, σ̃

2
k,2) and µ?k,r = ck,rµ̃k, where

ck,1 = (1 − p̃k)/{p̃2
k + (1 − p̃k)2}1/2 and ck,2 = −p̃k/{p̃2

k + (1 − p̃k)2}1/2. Letting p0 denote

the prior assigned to θ̃k, the full conditional of θ̃k in terms of the conditional likelihood

fU |X is proportional to P0(θ̃k)
∏

ij:Cε,ij`=k
fU |X(Uij`|Xi`, ξ`, θ̃k, ζ). The problem of numerical

instability can now be tackled by using MH steps to update not only the parameters ξ`
specifying the variance functions but also the parameters {θ̃k}k characterizing the density fε

using the conditional likelihood fU |X (and not fε itself), thus escaping the need to separately

determine the values of the scaled errors.
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The priors and the hyper-parameters for the univariate submodels are chosen following

the suggestions of Sarkar, et al. (2014) who used an infinite dimensional extension of this

reparametrized finite dimensional submodel. The strategy of exploiting the properties of

overfitted mixture models to determine the number of mixture components described in

Section S.1 can also be applied to the univariate subproblems. High precision estimates of the

variance functions can be obtained using these reparametrized finite dimensional univariate

deconvolution models. See Figure 2 and also Figures S.7 and S.16 in the Supplementary

Materials for illustrations.

A similar reparametrization exists for the multivariate problem too, but the strategy

would not be very effective in a multivariate set up as it would require updating the mean

vectors and the covariance matrices involved in fε through MH steps which are not efficient

in simultaneous updating of large numbers of parameters. After estimating the parameters

characterizing the variance functions from the univariate submodels, we therefore keep these

estimates fixed and sample the other parameters using the Gibbs sampler described in Section

S.2. Additional details follow.

As discussed in Section 2.2.2 of the main paper, the variance functions s2
` ’s can not

be uniquely determined without additional identifiability restrictions on the variance of

εij`. This, however, does not pose any problem to assess var(Uij`|Xi`) which can be es-

timated as v̂`(Xi`) =
∑M

m=1 v
(m)
` (Xi`)var(m)(εij`)/M , where v

(m)
` (Xi`) and var(m)(εij`) are

estimates of s2
`(Xi`) and var(εij`) based on the mth sample drawn from the posterior of

the `th univariate submodel in the first stage. The final estimate of ξ` is then obtained

as ξ̂`,opt = argξ`
min

∑R`
r=1

{
v̂`(X

∆
r`)−Bq,J`,`(X

∆
r`) exp(ξ`)

}2
, where {X∆

r`}
R`
r=1 is a set of grid

points on the support [A`, B`] of the variance functions.

In the second stage, we keep these estimates ξ̂`,opt fixed and sample the other parameters

using the Gibbs sampler described in Section S.2. At the mth MCMC iteration of the

Gibbs sampler, the scaled errors to be used in step 2 of the algorithm are obtained as

ε
(m)
ij` = (Wij` − X(m)

i` )/ŝ`(X
(m)
i` ), where ŝ`(X

(m)
i` ) = {Bq,J`,`(X

(m)
i` ) exp(ξ̂`,opt)}1/2 and X

(m)
i` is

sampled value of Xi` at the mth iteration.

Appropriate scale adjustments are made to make the estimate f̂ε comparable to the

true fε in simulation experiments. Specifically, f̂ε =
∑M

m=1 π
(m)
k MVN(Dµ

(m)
k ,DΣ

(m)
k D)/M ,

where D = diag(σtrue,1, . . . , σtrue,p), σ
2
true,` is the variance of εij` under the true fε used to

generate them, and {π(m)
k ,µ

(m)
k ,Σ

(m)
k }Kk=1 are mth sampled values from the posterior of the

parameters {πk,µk,Σk}Kk=1 specifying fε.
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S.4 The Two-Stage Sampler

Over the last two decades, MCMC techniques have remained at the forefront of Bayesian

inference. The literature on the topic is already vast and is still rapidly expanding. While

the research on exact MCMC methods is still highly active, owing to numerous practical

challenges, approximate computation methods are becoming increasingly popular. For a

recent review of traditional exact methods and more recent approximate tools, see Green,

et al. (2015). The basic idea of the two-stage sampler described above, while being simple

and intuitive, is a novel addition to the growing literature on the topic. We are studying its

properties in greater detail in simpler settings in a separate manuscript. Figure S.1 below

provides some heuristics.

θ1

θ2

p(θ1, θ2|D)

p(θ1|θ̂2,D)

p(θ1|θ20,D)

p(θ1|D)

θ20

θ̂2

Figure S.1: Heuristics of the two-stage sampler. The brown elliptical region shows the joint
posterior p(θ1, θ2|D) of two parameters θ1 and θ2 given data D. The light blue curve shows
p(θ1|D), the marginal posterior of θ1 given data D. The blue curve shows p(θ1|θ20,D), the

posterior of θ1, where θ20, the ‘true’ value of θ2, is known. The red curve shows p(θ1|θ̂2,D),

the pseudo-posterior of θ1 given θ̂2, an estimate of θ2. p(θ1|θ̂2,D) will be close to p(θ1|θ20,D)

when θ̂2 is close to θ20.

Consider the problem of drawing samples from the posterior p(θ1, θ2|D) of two parameters

θ1 and θ2 given data D. The basic MCMC sampler iterates between sampling from (A)

p(θ1|θ2,D) and (B) p(θ2|θ1,D). If, however, the ‘true’ value of θ2 (in a frequentist sense),
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say θ20, is known, we only require step (A), which becomes p(θ1|θ20,D). And if we substitute

θ2 by a point estimate θ̂2, step (A) becomes p(θ1|θ̂2,D). While an uncertainty assessment

based on p(θ1|θ̂2,D) will be overly optimistic compared to that based on the actual marginal

posterior p(θ1|D), p(θ1|θ̂2,D) and p(θ1|θ20,D) will be close when θ̂2 is close to θ20, and

samples drawn from p(θ1|θ̂2,D) may be used for approximate Bayesian inference on θ1.

The two-stage sampler can also be explained using the following heuristics. Under suitable

regularity conditions and considering parametric models (observe that Bayesian nonparamet-

ric models are usually large parametric models), the posterior distribution p(θ1, θ2|D) can

be approximated by a Gaussian distribution centered at the true value θ0 = (θ10, θ20) and

variance equal to the inverse of the Fisher information matrix I(θ0). The justification of

this argument is usually tedious and follows from Bernstein von-Mises (BvM) theorems. Re-

fer, for example, to Johnstone (2010), Bontemps (2011), Bickel and Kleijn (2012), Spokoiny

(2013) and Castillo and Nickl (2014) for recent literature on BvM theorems in nonparamet-

ric Bayesian models and growing parametric Bayesian models. For the sake of convenience,

let us assume such results are true for p(θ1, θ2|D). Hence the marginal posterior distribu-

tion p(θ1|D) is similar to a Gaussian distribution with mean θ10 and variance [I(θ0)]−1
11 , the

(1, 1)th block of the inverse of I(θ0). Assuming θ̂2 to be a consistent estimate of θ20, the

conditional posterior distribution in step (A) can be approximated by p(θ1|θ20,D) which in

turn is similar to a Gaussian distribution centered at θ10 with precision matrix I(θ10|θ20),

the conditional Fisher information matrix assuming θ20 to be known. In classical inference,

it is well known that [I(θ0)]−1
11 ≥ [I(θ10|θ20)]−1 in the sense that the difference is non-negative

definite, since knowing θ20 results in a higher value of the ‘information’. While confidence

intervals based on samples drawn by the two-stage algorithm will be optimistic, the draws

will be centered around the true value θ10 and hence may be used for approximate ‘mean’

inference on θ1.
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S.5 Comments on the Model for U|X
As shown in Sarkar, et al. (2014), even in univariate deconvolution settings, due to the non-

availability of precise information about X, variations in higher order conditional moments of

(U |X) are extremely difficult to capture even in large data sets. Semiparametric approaches

that focus separately on the first two moments, namely E(U |X) = 0 and var(U |X), and

the shape of fU |X , are thus more efficient than possible fully nonparametric approaches even

when the truth closely follows the setup of the nonparametric model. See their Section 4.3.

This will certainly remain true in the significantly more difficult multivariate deconvolution

problem. In building models for fU|X, we may thus concentrate on the class of models that

separates the problem of modeling cov(U|X) from that of modeling the shape and other

properties of fU|X. Recent advances in covariance regression models, where the covariance

of the multivariate regression errors are allowed to vary flexibly with precisely measured and

possibly multivariate predictors, provide us with clues about how this may be achieved. How-

ever, as we explain in the following section, there are major differences between conditionally

varying multivariate regression errors and conditionally varying multivariate measurement

errors. As an implication, covariance regression methods may not be exactly appropriate for

modeling conditionally varying covariance matrices cov(U|X) in measurement error settings.

S.5.1 Regression Errors vs Measurement Errors

Consider the problem of flexible modeling of conditionally heteroscedastic regression errors

where the response and the covariates are both univariate. Consider also the problem of

modeling conditionally heteroscedastic measurement errors in a univariate deconvolution

set up. From a modeling perspective, Bayesian hierarchical framework allows us to treat

these two problems on par by treating both the covariate in the regression problem and the

variable of interest in the deconvolution problem simply as conditioning variables. Of course

in the regression problem X is precisely measured, whereas in the deconvolution problem X

would be latent, but in either case we are required to flexibly model the density of (U |X)

subject to E(U |X) = 0, where U , depending upon the context, denotes either regression or

measurement errors. See Figure S.2. Models for regression errors that allow their variance to

vary with the values of the covariate (Pati and Dunson, 2013; Pelenis, 2014) can thus be tried

as potential candidates for models for univariate conditionally heteroscedastic measurement

errors. Conversely, the models for conditionally heteroscedastic univariate measurement

errors (Staudenmayer, et al. 2008; Sarkar, et al. 2014) can also be employed to model

univariate conditionally heteroscedastic regression errors.

This is not quite true in a multivariate set up. Interpreting the variables of interest X

broadly as conditioning variables, one can again loosely connect the problem of modeling

conditionally heteroscedastic multivariate measurement errors to the problem of covariance
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X UW

(a)

X UY

(b)

Figure S.2: (a) Dependency structure in a univariate deconvolution model with latent vari-
able of interest X, associated measurement errors U and replicates W . (b) Dependency
structure in a univariate regression model with response Y , associated regression errors U
and a univariate observed predictor X. In both panels, the filled rectangular regions focus
on the dependency structures between the conditionally varying errors U and the condition-
ing variable X. The unfilled and the shaded nodes signify latent and observable variables,
respectively.

regression (Hoff and Niu, 2012; Fox and Dunson, 2016 etc.), where the goal is to develop

models that allow the covariance of multivariate regression errors to vary flexibly with pre-

cisely measured and possibly multivariate predictors. In covariance regression problems, the

dimension of the regression errors is typically unrelated to the dimension of the predictors.

Different components of the regression errors are assumed to be equally influenced by dif-

ferent components of the predictors and hence independent reordering of the components of

Xi will not change the dependency structure. In multivariate deconvolution problems, in

contrast, the `th component Uij` is the measurement error associated exclusively with Xi`.

Here the dimension of Uij is the same as the dimension of Xi and any reordering of the

components of Xi would require that the components of Uij and Wij be also reordered

using the same relabeling scheme. See Figure S.3. While different components of the mea-

surement error vectors Uij may be correlated, this exclusive association between Uij` and Xi`

implies the plausibility that the dependence of Uij` on Xi can be explained primarily through

Xi`. Figure 7, for instance, suggests strong conditional heteroscedasticity patterns and it

is plausible to assume that the conditional variability in Uij` can be explained primarily by

Xi` only. The dependency structure of conditionally varying multivariate measurement er-

rors are, therefore, different from that of conditionally varying multivariate regression errors.

Additionally, the aforementioned covariance regression approaches all assume multivariate

normality of the regression errors. As is well established in the literature, parametric dis-

tributional assumptions on the errors can be particularly restrictive in measurement error

problems.

These issues preclude direct application of existing covariance regression approaches to

model conditionally heteroscedastic multivariate measurement errors. Models for condition-

ally varying multivariate measurement errors (U|X) should highlight their unique features,

accommodate distributional flexibility, enforce the mean zero restriction and, to be practi-

cally effective, should be computationally stable even in the absence of precise information

on the conditioning variable X.
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X1
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(a)

X1

X2
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U2
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W2

W3
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Xσ(1)

Xσ(2)

U1

U2

U3

Y1

Y2

Y3

(c)

Figure S.3: (a) Dependency structure in a trivariate deconvolution model with latent variable
of interest X = (X1, X2, X3)T, associated measurement errors U = (U1, U2, U3)T and repli-
cates W = (W1,W2,W3)T. The solid black and the dashed gray edges signify strong and weak
dependencies, respectively. (b) Dependence relationships in a trivariate deconvolution prob-
lem implied by the ‘separable’ measurement error model (U|X) = S(X)ε with ε independent
of X and S(X) = diag{s1(X1), s2(X2), s3(X3)}. Unlike panel (a), possible weak relationships
between U` and {Xm}m 6=` are ignored. (c) Dependency structure in a trivariate regression
model with response Y = (Y1, Y2, Y3), associated regression errors U = (U1, U2, U3)T and an
observed bivariate predictor X = (X1, X2)T where Xσ = (Xσ(1), Xσ(2))

T denotes arbitrary
reordering of X. In both panels, the filled rectangular regions focus on the dependency
structures between the conditionally varying errors U and the conditioning variable X. The
unfilled and the shaded nodes signify latent and observable variables, respectively. The di-
rected and the undirected edges represent one-way and two-way relationships, respectively.

While we reiterate that, for both modeling and computational reasons, the covariance re-

gression methodology of Fox and Dunson (2016) is not be suitable for our purposes, they still

provide clues about how the problems of flexible modeling cov(U|X) and that of modeling

the shape of fU|X can be separated. The following section explains.

S.5.2 Latent Factor Models for Different Covariance Classes

Lemma 6 gives a slightly modified version of Lemma 2.1 of Fox and Dunson (2016).

Lemma 6. Any conditionally varying covariance matrix cov(U|X) = Σ(X) can be repre-

sented as Σ(X) = Λ(X)ΛT(X) for some lower triangular matrix Λ(X) = ((λ`,m(X))).

Proof. The proof follows from straightforward application of Cholesky factorization.

Following Lemma 6, introducing a latent factor ε, we can write (U|X, ε) = Λ(X)ε, that

is, (U`|X, ε) =
∑`

m=1 λ`,m(X)εm, with ε ⊥ X and cov(ε) = Ip. Completely unrestricted

covariance functions can thus be modeled via such latent variable framework by flexibly

modeling Λ(X). E(U|X) = 0 can be achieved by setting E(ε) = 0.
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The general nature of the latent factor formulation having been established, we formulate

the subsequent results in terms of additional restrictions on such models. Following the

discussion in Section S.5.1, we now focus specifically on covariance functions cov(U|X) for

measurement error problems, where U and X are of the same dimension, each component

U` of U being related to the corresponding component X` of the conditioning vector X. We

consider first the situation when (U`|X, ε) depends exclusively on X` but not on {Xm}m 6=`.

Lemma 7. Let (U|X, ε) = Λ(X)ε, where Λ(X) = ((λ`,m(X))) is lower-triangular, ε ⊥ X

and cov(ε) = Ip. If (U`|X, ε) = (U`|X`, ε) for all `, then λ`,m(X) = λ`,m(X`) for all `,m.

Proof. The proof follows trivially by noting that (U`|X, ε) =
∑`

m=1 λ`,m(X)εm = (U`|X`, ε),

if and only if, for all m ≤ `, λ`,m(X) is a function of X` only.

As an immediate corollary of Lemma 7, the conditional moments mr
`(X) = E(U r

` |X)

are functions of X` only and the conditional cross-moments mr,s
`,m(X) = E(U r

`U
s
m|X) are

functions of X` and Xm only. Modeling variations in the conditional cross-moments is a

daunting task in multivariate settings, particularly in the absence of precise information on

X. The next result allows the cross-moments mr,s
`,m(X) to vary with X` and Xm, but assumes

the correlations corr(U`, Um|X) to remain constant across X.

Lemma 8. Let (U|X, ε) = Λ(X)ε, where Λ(X) = ((λ`,m(X))) is lower-triangular, ε ⊥ X

and cov(ε) = Ip. Also, let (U`|X, ε) = (U`|X`, ε) for all `, and corr(U`, Um|X) does not

vary with X for all ` 6= m. Then, Λ(X) = Λ1(X)C for some diagonal matrix Λ1(X) =

diag{λ1(X1), . . . , λp(Xp)} and some lower-triangular matrix C.

Proof. From Lemma 7, we have λ`,m(X) = λ`,m(X`) for all `,m, and corr(U`, Um|X) varies

with X` and Xm only. Under the additional assumption of Lemma 8, we first prove that

λ`,m(X`) = c`,mλ`,`(X`) for some constant c`,m for all m < ` and all ` = 2, . . . , p. Without

loss of generality, we assume that corr(U`, Um|X) = r`,m 6= 0 for all ` 6= m. We have

corr(U1, U2|X) =
λ2,1(X2)

{λ2
2,1(X2) + λ2

2,2(X2)}1/2
= r1,2 ⇒ λ2

2,2(X2) =
(1− r2

1,2)

r2
1,2

λ2
2,1(X2). (S.3)

So the proposition holds true for ` = 2. Next, assume that it holds for ` = 2, . . . , h − 1 for

some h > 2. Also, from (S.3), var(U2|X) =
∑2

m=1 λ
2
2,m(X2) = λ2

2,1(X2)/r2
1,2. This is, in fact,

more generally true for all `. For instance, for ` = h,

corr(U1, Uh|X) =
λh,1(Xh)

{
∑h

m=1 λ
2
h,m(Xh)}1/2

= r1,h ⇒
h∑

m=2

λ2
h,m(Xh) =

(1− r2
1,h)

r2
1,h

λ2
h,1(Xh)

⇒ var(Uh|X) =
∑h

m=1 λ
2
h,m(Xh) = λ2

h,1(Xh)/r
2
1,h. (S.4)

Then, corr(U2, Uh|X) =
λ2,1(X2)λh,1(Xh) + λ2,2(X2)λh,2(Xh)

{
∑2

m=1 λ
2
2,m(X2)}1/2{

∑h
m=1 λ

2
h,m(Xh)}1/2

= r2,h
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⇒ λ2,2(X2){c2,1λh,1(Xh) + λh,2(Xh)}
|c2,1λ2,2(X2)| |λh,1(Xh)|

=
r2,h

|r1,2r1,h|
.

⇒ λh,2(Xh) = c̃h,2λh,1(Xh) for some constant c̃h,2. (S.5)

Next, corr(U3, Uh|X) =

∑3
m=1 λ3,m(X3)λh,m(Xh)

{
∑3

m=1 λ
2
3,m(X3)}1/2{

∑h
m=1 λ

2
h,m(Xh)}1/2

= r3,h

⇒ λ3,3(X3){c3,1λh,1(Xh) + c3,2c̃h,2λh,1(Xh) + λh,3(Xh)}
|c3,1λ3,3(X3)| |λh,1(Xh)|

=
r3,h

|r1,3r1,h|
⇒ λh,3(Xh) = c̃h,3λh,1(Xh) for some constant c̃h,3. (S.6)

Finally, corr(Uh−1, Uh|X) =

∑h−1
m=1 λh−1,m(Xh−1)λh,m(Xh)

{
∑h−1

m=1 λ
2
h−1,m(Xh−1)}1/2{

∑h
m=1 λ

2
h,m(Xh)}1/2

= rh−1,h

⇒ λh−1,h−1(Xh−1){ch−1,1λh,1(Xh) + ch−1,2c̃h,2λh,1(Xh) + · · ·+ λh,h(Xh)}
|ch−1,1λh−1,1(Xh−1)| |λh,1(Xh)|

=
rh−1,h

|r1,h−1r1,h|
⇒ λh,h−1(Xh) = c̃h,h−1λh,1(Xh) for some constant c̃h,h−1. (S.7)

Combining (S.5), (S.6), (S.7) etc. with (S.4), the proposition follows by principles of mathe-

matical induction. This implies Λ(X) = Λ1(X)C where Λ1(X) = diag{λ1(X1), . . . , λp(Xp)}
with λ`(X`) = λ`,`(X`) for all ` and C = ((c`,m)) is a lower triangular matrix with c`,` = 1

for all `.

Under the conditions of Lemma 8, we thus have cov(U|X) = Σ(X) = Λ1(X)Σ1Λ
T
1 (X)

with Σ1 = CCT. Introducing a latent factor ε, we can now write (U|X, ε) = Λ1(X)ε with

ε ⊥ X and cov(ε) = Σ1. Due to the diagonal nature of Λ1(X), each component ε` of ε

is exclusively associated with the corresponding component U` of U and may be treated

as a scaled version of U`. Starting with a general latent factor model framework, with

two additional restrictions that are particularly relevant in multivariate measurement error

settings, we have now arrived at model (16). The problems of modeling cov(U|X) and the

shape of fU|X can now be achieved by separately modeling Λ1(X) and fε. And E(U|X) = 0

can be achieved by enforcing E(ε) = 0.

S.5.3 Models for U|X and cov(U|X)

In this section, we first revisit the models for conditionally varying measurement errors devel-

oped in Section 2.2 of the main paper. A few plausible alternatives and generalizations, the

implied covariance structures, their strengths, limitations and connections with the adopted

model are also discussed.

The model (16) for conditionally varying measurement errors developed in Section 2.2 of

the main paper assumes (Uij|Xi) = S(Xi)εij` where S(Xi) = diag{s1(Xi1), . . . , sp(Xip)} and

εij` are distributed independently of X with E(εij) = 0. This ‘separability’ of Xi and εij

allows us to incorporate distributional flexibility and enforce the mean zero restriction using
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the techniques developed for independent errors in Section 2.2.1 in the main paper. The di-

agonal structure of S highlights the exclusive associations between Uij` and Xi` but ignores

weak dependencies of Uij` on {Xim}m 6=`. The general of shape of fU|X as well correlations

between different components of Uij are inherited from fε. The associated dependency struc-

ture is summarized in Figure S.3(b). The novel two-stage procedure described in Sections

S.2 and S.3 produces efficient and numerically stable posterior estimates.

As discussed in Section 2.2.3, the model also arises naturally in multivariate multiplicative

measurement error settings Wij = Xi◦Ũij where the errors Ũij are distributed independently

of Xi with E(Ũij) = 1. The model can be reformulated as Wij = Xi + Uij, where Uij =

S(Xi)εij, S(Xi) = diag{Xi1, . . . , Xip} and εij = (Ũij − 1) with E(εij) = 0. It thus conforms

to the conditionally varying additive measurement error model (16) described above.

These results and the ones provided in Section S.5.2 establish the fairly general nature

of model (16) and are also informative about cases outside its support. A few such cases

that are particularly relevant to measurement error problems and form part of our research

aspirations but are not pursued in detail in this article are briefly discussed below.

As informed by Lemma 7, another class that implies var(Uij`|Xi) = s2
`(Xi`) and allows

corr(Uij`, Uijm|Xi) to vary with Xi` and Xim is obtained by letting Uij = Λ(Xi)εij with

Λ(Xi) = ((λ`,m(Xi`)))
p,p
`=1,m=1. The model highlights the exclusive associations between Uij`

and Xi` - var(Uij`|Xi) depends on Xi` and cov(Uij`, Uijm|Xi) depends on Xi` and Xim. Mod-

eling variations in conditional cross-moments is a daunting task in multivariate settings,

more so in the absence of precise information about Xi. Towards a more parsimonious rep-

resentation, the off-diagonal elements {λ`,m(Xi`)}` 6=m may be shrunk towards zero, resulting

in a model that associates each Uij` with its own latent factor component εij`. That is, Λ(Xi)

should be shrunk towards Λ0(Xi) = diag{λ1,1(Xi1), . . . , λp,p(Xip)}. This limiting case still

allows var(Uij`|Xi) to vary flexibly with Xi`, and cov(Uij`, Uijm|X) to vary with Xi` and Xim,

but assumes the correlations corr(Uij`, Uijm|Xi) to not vary with Xi.

Another flexible class of models for (Uij|Xi) that conforms to the dependency struc-

ture depicted in Figure S.3(a) is obtained by letting Uij = Λ(Xi)εij with Λ(Xi) =

((λ`,m(Xim)))p,p`=1,m=1. The implied covariance structure is given by cov(Uij|Xi) = Σ(Xi) =

Λ(Xi)ΣεΛT(Xi). Specifically, we have (Uij`|Xi) =
∑

m λ`,m(Xim)εijm with

cov(Uij`1 , Uij`2|Xi) =
∑

m1,m2
λ`1,m1(Xim1)λ`2,m2(Xim2)σm1,m2

= λ`1,`1(Xi`1)λ`2,`2(Xi`2)σ`1,`2 +
∑

m1 6=`1,m2 6=`2 λ`1,m1(Xim1)λ`2,m2(Xim2)σm1,m2

and var(Uij`|Xi) = λ2
`,`(Xi`)σ`,` +

∑
m1 6=`,m2 6=` λ`,m1(Xim1)λ`,m2(Xim2)σm1,m2 .

Ideally, to highlight the exclusive strong association between Uij` and Xi`, the diagonal ele-

ments of Λ(Xi), namely λ`,`(Xi`), should dominate and the remaining off-diagonal elements

{λ`,m(Xim)} 6̀=m may be shrunk towards zero. That is, Λ(Xi) should be shrunk towards

Λ0(Xi) = diag{λ1,1(Xi1), . . . , λp,p(Xip)}.
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Since measurement error problems are well known to be inherently computationally un-

stable, it is not clear whether any practical gain in efficiency can be achieved by modeling

large number of off-diagonal functions in Λ(Xi) at the expense of significantly increased

model complexity. Model (16) considered in this article instead focuses on the special limit-

ing cases with S(Xi) = Λ0(Xi).

Another extension results from mixtures of multiplicative and independent additive er-

rors. In univariate settings, such models were considered in Rocke a Durbin (2001) for

studying gene expression levels measured by DNA slides. In multivariate settings, we have

Uij = Xi ◦ ε(1)
ij + ε

(2)
ij , where ε

(k)
ij , k = 1, 2 are distributed independently of Xi. With

cov(ε
(k)
ij ) = Σk = ((σ

(k)
`,m))p,pm=1,`=1 for k = 1, 2, the implied covariance structure is given

by cov(Uij|Xi) = S(Xi)Σ1S(Xi) + Σ2, where S(Xi) = diag{Xi1, . . . , Xip}, as above. The

model conforms to the dependency structure of Figure S.3(b) but can not be strictly writ-

ten as model (16). However, as can be seen from Figure 7, in our motivating nutritional

epidemiology application, smaller average consumptions naturally result in more precise 24

hour recalls, the variability approaching 0 as the true consumption approaches 0. Under the

assumption of continuity, limX→0 Σ(X)→ 0p×p implies Σ2 = 0p×p, resulting in model (16).

S.5.4 Model Adequacy Checks

In Figure 7 in the main paper, we showed the plots of subject specific means W i` of the

replicates vs the corresponding subject-specific variances S2
W,i` for each of the four dietary

components included in our analysis in Section 7. These plots suggest very strong conditional

heteroscedasticity patterns in the measurement errors. If we consider the plots of subject

specific means W i` vs subject specific variances S2
W,im for all possible pairs (`,m), we will

see similar monotone increasing patterns not just for the pairs with ` = m, but in pairs with

` 6= m too. This can be explained by the high correlation between different components

of Xi, see Figure 8, and does not necessarily imply that the conditional variability in Uij`

depends on other components of Xi, not just Xi`. As discussed in the previous subsections,

since the `th component Uij` is the measurement error associated exclusively with Xi`, it

is plausible to assume that the conditional variability of Uij` can be modeled mostly as a

function of Xi` only.

We present here some diagnostic plots to further validate the practical adequacy of this

structural assumption. Figure S.4 shows the plots of X̂i` vs subject specific variances Ŝ2
ε,im of

ε̂ijm, where X̂i` represent the posterior means of Xi` values and ε̂ijm = (Wijm−X̂im)/ŝm(X̂im)

represent the corresponding scaled measurement error residuals produced by the univariate

submodels for the EATS data set analyzed in Section 7 of the main paper. The figure

indicates constant variance of the scaled measurement error residuals ε̂ij` over the entire

range of Xim values for all (`,m) pairs. Nonparametric Eubank-Hart tests of no covariate
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effect (Eubank and Hart, 1992) applied to (X̂i`, Ŝ
2
ε,im) for all (`,m) pairs (treating X̂i` as

the covariate and Ŝ2
ε,im as the response) produced a minimum Benjamini-Hochberg adjusted

p-value of 0.096, suggesting that there is no residual heteroscedasticity left in Uij` after

accounting for the variability in Uij` that can be sufficiently explained through Xi` only.

See Table S.1. It may thus be concluded that for the EATS data application model (16)

developed in Section 2.2.2 of the main paper that implies var(Uij`|Xi) = s2
`(Xi`)var(εij`)

suffices to explain the conditional variability in the measurement errors.

Model (16) also assumed that only the conditional variability of Uij depends on Xi,

and derived other features of Uij like skewness, multimodality, heavy-tails etc. from the

scaled errors εij. As shown in Sarkar, et al. (2014), even in the much simpler univariate

set up, in the absence of precise information on Xi`, variations in other features of Uij` for

varying values of Xi`, if any, are extremely difficult to detect. More importantly, semipara-

metric methods that make the multiplicative structural assumption (Uij`|Xi`) = s`(Xi`)εij`

are highly robust to departures from this assumption and significantly outperform possible

nonparametric alternatives that allow all order moments of Uij` to vary flexibly with Xi`,

not just the conditional variance, even in scenarios where the true data generating process

closely conforms to these nonparametric alternatives.

Panel p-values BFN BH BY
1 1,1 0.991 1.000 0.991 1.000
2 1,2 0.764 1.000 0.873 1.000
3 1,3 0.251 1.000 0.446 1.000
4 1,4 0.129 1.000 0.446 1.000
5 2,1 0.598 1.000 0.736 1.000
6 2,2 0.266 1.000 0.446 1.000
7 2,3 0.037 0.592 0.197 0.667
8 2,4 0.990 1.000 0.991 1.000
9 3,1 0.224 1.000 0.446 1.000
10 3,2 0.012 0.192 0.096 0.325
11 3,3 0.011 0.176 0.096 0.325
12 3,4 0.497 1.000 0.692 1.000
13 4,1 0.519 1.000 0.692 1.000
14 4,2 0.163 1.000 0.446 1.000
15 4,3 0.279 1.000 0.446 1.000
16 4,4 0.244 1.000 0.446 1.000

Table S.1: The original and adjusted p-values (BFN=Bonferroni, BH=Benjamini-Hochberg,
BY=Benjamini-Yekutli) returned by nonparametric Eubank-Hart tests of no covariate effect

applied to (X̂i`, Ŝ
2
ε,im) for all (`,m) pairs treating X̂i` as the covariate and Ŝ2

ε,im as the
response. The minimum values corresponding to panel (3, 3) are highlighted. See Section
S.5.4 and Figure S.4 in the Supplementary Materials for additional details.
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Figure S.4: Panel (`,m) shows the plot of estimates X̂i` of Xi` vs subject specific variances

Ŝ2
ε,im of scaled measurement error residuals ε̂ijm, produced by univariate deconvolution meth-

ods. See Section S.5.4 of the Supplementary Materials for additional details. The darker
horizontal lines in each panel represent the upper 10% trimmed mean of the subject specific

variances Ŝ2
ε,i`. The lighter solid lines in each panel represent nonparametric lowess fits.
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S.6 Finite vs Infinite Mixture Models

In this article, we modeled the fX and the density of the scaled measurement errors fε us-

ing mixtures of fixed finite number of multivariate normal kernels. Alternative approaches

that escape the need to prespecify the number of mixture components include models with

potentially infinite number of mixture components, models induced by Dirichlet processes

(Ferguson, 1973; Escobar and West, 1995) being perhaps the most popular among such

techniques. Apart from flexibility, one major advantage of such techniques comes from the

ability of associated MCMC machinery to perform model selection and model averaging

implicitly and semiautomatically. Model averaging is achieved by allowing the number of

mixture components to vary from one MCMC iteration to the other. The number of mixture

components that is visited the maximum number of times by the sampler then provides a

maximum a-posteriori (MAP) estimate of the number of mixture components required to ap-

proximate the target density. However, in complicated multivariate set up like ours, MCMC

algorithms for such infinite dimensional models become computationally highly intensive.

Mixtures based on fixed finite number of components, on the other hand, can greatly reduce

computational complexity. Recent studies of asymptotic properties of the posterior of over-

fitted mixture models (Rousseau and Mengersen, 2011) suggest that mixture models with

sufficiently large number of components can perform automatic model selection and model

averaging just like infinite dimensional models. Additionally, as the proofs of the results

in Section 5 imply, the use of mixture models with fixed finite number of components does

not necessarily imply a compromise on the issue of flexibility. The approaches adopted in

this article try to take the best from both worlds. Computational burden is reduced by

keeping the number of mixture components fixed at some finite values. At the same time,

simultaneous semiautomatic model selection and model averaging is achieved by exploiting

properties of overfitted mixture models. We elaborate our arguments below, pointing out

the close connections and the subtle differences our adopted finite dimensional models have

with the aforementioned infinite dimensional alternatives.

S.6.1 Infinite Mixture Models as Limits of Finite Mixture Models

Let GK =
∑K

k=1 πkδθk with (π1, . . . , πK) ∼ Dir(α/K, . . . , α/K) and θk ∼ H. Also, let G∞ ∼
DP(α,H), a Dirichlet process with concentration parameter α and base measure H. Then,

G∞ can be represented as G∞ =
∑∞

k=1 π̃kδθk with π̃k = Vk
∏k−1

`=1 (1 − V`), V` ∼ Beta(1, α)

and θk ∼ H (Sethuraman, 1994). As K → ∞,
∫
g(θ)dGK(θ)

d→
∫
g(θ)dG∞(θ) for any

measurable function g integrable with respect to H (Ishwaran and Zarepour, 2000, 2002).

The finite mixtures of multivariate normal kernels with symmetric Dirichlet priors that

we used in this article to model both fX and the density of the scaled measurement errors
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fε have close connections with infinite dimensional Dirichlet process based mixture models.

Specifically, taking g(θ) = MVN(µ,Σ) and appealing to the above result, we have fX =∑KX

k=1 πX,kMVN(µX,k,ΣX,k)
d→
∑∞

k=1 π̃X,kMVN(µX,k,ΣX,k) as KX → ∞. Our proposed

mechanism to enforce the mean zero restriction on fε specifically requires a finite dimensional

symmetric prior on the mixture probabilities and therefore does not admit a straightforward

infinite dimensional extension. But in the limit, as Kε → ∞, a reformulation of the model

results in a complicated multivariate version of the infinite dimensional model of Sarkar, et

al. (2014) (See Lemma 5 in Section S.3).

S.6.2 Computational Complexity

The implementation of complex infinite dimensional models, specially the complicated mean

restricted model for the scaled errors, will be computationally intensive in a multivariate

setting like ours. The computational simplicity of the finite dimensional methods proposed

in this article make them particularly suitable for multivariate problems.

In this paragraph, we discuss additional mixing issues that render infinite dimensional

models, particularly the ones with non or semiconjugate priors on the component specific

parameters (like our MLFA model), unsuitable for multivariate applications. There are two

main types of MCMC algorithms for fitting infinite dimensional mixture models - condi-

tional methods and marginal methods. In the conditional scheme, the mixture probabilities

are sampled. The mixture labels are then updated independently, conditional on the mix-

ture probabilities. The mixture probabilities in infinite dimensional mixture models can be

stochastically ordered. For instance, mixture probabilities in a Dirichlet process mixture

model satisfy E(π̃k) > E(π̃k+1) and Pr(π̃k > π̃k+1) > 0.5 for all k ∈ N. This imposes weak

identifiability on the mixture labels resulting in a complicated model space comprising many

local modes of varying importance. Different permutations of the mixture labels are not

equivalent and exploration of the entire model space becomes important for valid inference.

In high dimensional and large data settings it is difficult to achieve even by sophisticated

MCMC algorithms with carefully designed label switching moves (Hastie, et al. 2013). The

problem can be avoided with marginal methods (Neal, 2000) that integrate out the mixture

probabilities and work with the resulting Polya urn scheme, rendering the mixture labels de-

pendent but nonidentifiable. Unfortunately, such integration is possible only when conjugate

priors are assigned to the component specific parameters. Typically for infinite dimensional

models with non or semiconjugate priors on the component specific parameters, good mixing

is thus difficult to achieve, particularly in complicated multivariate setup like ours.

Such issues also plague finite dimensional truncation based approximations to Dirichlet

process mixture models where the mixture probabilities are constructed as π̃k = Vk
∏k−1

`=1 (1−
V`), V` ∼ Beta(1, α), k = 1, . . . , (K − 1), and VK = 1 (Ishwaran and James, 2002) and the
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mixture components remain weakly identifiable.

On the contrary, the issues of mixing and convergence become much less important

for finite mixture models with symmetric priors (π1, . . . , πK) ∼ Dir(α/K, . . . , α/K) on the

mixture probabilities. With KX and Kε mixture components for the densities fX and fε,

respectively, the posterior is still multimodal but comprises KX! ×Kε! modal regions that

are exact copies of each other. For inference on the overall density or any other functions

of interest that are invariant to permutations of the mixture labels, it is only important

that the MCMC sampler visits and explores at least one of the modal regions well and label

switching (or the lack of it) does not present any problem (Geweke, 2007).

S.6.3 Model Selection and Model Averaging

As mentioned at the beginning of Section S.6, a major advantage of infinite dimensional

mixture models is their ability to implicitly and semiautomatically perform model selection

and model averaging. Properties of overfitted mixture models can be exploited to achieve the

same in finite dimensional models with sufficiently large number of components. Recently

Rousseau and Mengersen (2011) studied the asymptotic behavior of the posterior for over-

fitted mixture models with Dirichlet prior Dir(α1, . . . , αK) on the mixture probabilities in a

measurement error free set up and showed that the hyper parameter (α1, . . . , αk) strongly in-

fluences the way the posterior handles overfitting. In particular, when maxk=1,...,K αk < L/2,

where L denotes the number of parameters specifying the component kernels, the posterior

is asymptotically stable and concentrates in regions with empty redundant components. In

this article, we chose symmetric Dirichlet priors Dir(α/K, . . . , α/K) on the mixture proba-

bilities to model both the fX and the density of the scaled measurement errors fε. We set

αX = αε = 1 so that the condition α/K < L/2 is satisfied for both fX and fε. In simulation

experiments reported in Section 6, the behavior of the posterior was similar to that observed

by Rousseau and Mengersen (2011) in measurement error free set up. That is, when KX

and Kε were assigned sufficiently large values, the MCMC chain quickly reached a stable

stage where the redundant components became empty. See Figure S.6 in the main article

and Figure S.12 and S.13 in the Supplementary Materials for illustrations, where, with some

abuse of nomenclature, the kth component is called empty if the associated mixture probabil-

ity πk ≤ 0.05. Since such overfitted mixture models allow the number of nonempty mixture

components to vary from one MCMC iteration to the next, model averaging is automatically

achieved. MAP estimates of the numbers of mixture components required to approximate

the target densities are given by the numbers of components which are visited the maximum

number of times by the MCMC sampler, as in the case of infinite mixture models.

As discussed in the main paper, for the MIW method, when the measurement errors

are conditionally heteroscedastic and the true covariance matrices are highly sparse, the
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strategy usually overestimates the number of non-empty mixture components required to

approximate the target densities well. In these cases, the MIW method becomes highly

numerically unstable and much larger sample sizes are required for the asymptotic results

to hold. See Figure S.5 in the main article for an illustration. This may be regarded more

as a limitation of the MIW method than a limitation of the adopted strategy to determine

KX and Kε. For the numerically more stable MLFA model, the asymptotic results are valid

even for moderate sample sizes and such models are also more robust to overestimation of

the number of nonempty clusters.

S.6.4 Model Flexibility

The proofs of the support results presented in Section 5 require that the number of mixture

components of the corresponding mixture models be allowed to vary over the set of all positive

integers. However, as the technical details of the proofs reveal, the use of mixture models with

fixed finite number of components does not necessarily imply a compromise on the issue of

flexibility. Indeed, a common recurring idea in the proofs of all these results, including those

for the variance functions, is to show that any function coming from the target class can be

approximated with any desired level of accuracy by the corresponding finite mixture models

provided the models comprise sufficiently large number of mixture components and the

function satisfies some fairly minimal regularly conditions. The requirement that the priors

on the number of mixture components assign positive probability to all positive integers only

helps us reach the final conclusions as immediate consequences. For any given data set of

finite size, the number of mixture components required to approximate a target density will

always be bounded above by the number of latent or observed variables generated by the

target density. For most practical applications the required number would actually be much

smaller than the number of variables generated by the target. Even if one applies mixture

models that a-priori allow potentially infinitely many mixture components, the posterior

will essentially concentrate on a finite set comprising moderately small positive integers.

This means that for all practical purposes, solutions based on finite mixture models with

fixed but sufficiently large number of mixture components will essentially be as robust as

solutions based on their infinite or varying dimensional counterparts while at the same time

being significantly less burdensome from a computational viewpoint. The requirement that

the priors on the number of mixture components assign positive mass on all positive integers

may thus be relegated to the requirement that the priors assign positive mass on sets of the

form {1, . . . , K}, where K is sufficiently large. Posterior computation for such models might

be even much more intensive and complex requiring reversible jump moves. Since a mixture

model with K components is at least as flexible as a model with (K − 1) components,

properties of overfitted mixture models discussed in Section S.6.3 allow us to adopt a much
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simpler strategy. We can simply keep the number of mixture components fixed at sufficiently

large values for all MCMC iterations. Carefully chosen priors for the mixture probabilities

then result in a posterior that concentrates in regions favoring empty redundant components,

essentially eliminating the need to assign any priors on the number of mixture components.

We will still need some mechanism, preferably an automated and data adaptive one, to

determine what values of K would be sufficiently large. This issue is discussed in the section

on hyper-parameter choices in Section S.1.

The discussions of Section S.6 suggest that finite mixture models with sufficiently large

number of mixture components and carefully chosen priors for the mixture probabilities

can essentially retain the major advantages of infinite dimensional alternatives including

flexibility, automated model averaging and model selection while at the same time being

computationally much less burdensome, making them our preferred choice for complicated

high dimensional problems.
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S.7 Proofs of Theoretical Results of Section 5

S.7.1 Proof of Lemma 2

Proof of part 1 of Lemma 2 follows mostly by modifications of the results of Norets and Pe-

lenis (2012). We present here only the proof of part 2 that requires additional modifications

along the lines of Pelenis (2014) to accommodate the mean zero restriction on the density

of the measurement errors. The first step is to construct finite mixture models of the form

fm(z|θm) =
m+2∑
k=1

πm,k MVNp(z|µm,k,Σm,k) with
m+2∑
k=1

πm,kµm,k = 0

that can approximate any given density f0 that has mean zero and satisfies Conditions 1

with any desired level of accuracy. The continuity of fm(·|θ) implies that the KL distance

between f0 and fm remains small on sufficiently small open neighborhoods around θm. Both

the MIW and the MLFA priors assign positive probability to open neighborhoods around

θm. The conclusion of part 2 of Lemma 2 follows since the prior probability of having (m+2)

mixture components is also positive for all m ∈ N.

Lemma 9. For any f0 ∈ F̃ε and η > 0, there exists θm such that dKL{f0(·), fm(·|θm)} < η.

Proof. Let {Am,k}mk=1 be adjacent cubes with side length hm, and Am,0 = Rp − ∪mk=1Am,k

such that hm ↓ 0 but ∪mk=1Am,k ↑ Rp as m→∞. So {Am,k}mk=1 becomes finer but ∪mk=1Am,k

covers more of Rp as m increases. Additionally, let the partition be constructed in such a

way that for all m sufficiently large, if ε ∈ Am,0, then Cr(ε) ∩ Am,0 contains a hypercube

C0(ε) with side length r/2 and a vertex at ε; and if ε /∈ Am,0, then Cr(ε) ∩ (Rp − Am,0)

contains a hypercube C1(ε) with side length r/2 and a vertex at ε. Consider the model

fm(z) = fm(z|θm) =
m+2∑
k=1

πm,k MVNp(z|µm,k,Σm,k).

Set πm,k =
∫
Am,k

f0(z)dz for k = 1, 2, . . . ,m and πm,k = Pf0(Am,0)/2 =
∫
Am,k

f0(z)dz/2

for k = (m + 1), (m + 2). Then
∑m+2

k=1 πm,k =
∫
Rp f0(z)dz = 1. Define g(d) =∑m

k=1 πm,k(cm,k + d) +
∫
Am,0

zf0(z)dz, where cm,k is the center of Am,k for k = 1, 2, . . . ,m.

g(hm1p/2) =
m∑
k=1

πm,k(cm,k + hm1p/2) +

∫
Am,0

zf0(z)dz

=
m∑
k=1

∫
Am,k

(cm,k + hm1p/2)f0(z)dz +

∫
Am,0

zf0(z)dz

≥
m∑
k=1

∫
Am,k

zf0(z)dz +

∫
Am,0

zf0(z)dz =

∫
Rp

zf0(z)dz = 0.

Similarly g(−hm1p/2) ≤ 0. Since g(·) is continuous, there exists dm ∈ [−hm/2, hm/2]p

such that g(dm) = 0. Set µm,k = (cm,k + dm) for k = 1, 2, . . . ,m. Also set µm,m+1 =
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2
∫
Am,0

zf0(z)dz/
∫
Am,0

f0(z)dz and µm,m+2 = 0 when
∫
Am,0

f0(z)dz > 0, and µm,0 = 0 oth-

erwise. Then
∑m+2

k=1 πm,kµm,k = g(dm) = 0. Also set Σm,k = σ2
mIp for k = 1, 2, . . . ,m with

σm → 0, and Σm,m+1 = Σm,m+2 = σ2
0Ip.

Consider a sequence {δm}∞m=1 satisfying δm > 6p1/2hm and δm → 0. Fix ε ∈ Rp.

Define Cδm(ε) = [ε − δm1p/2, ε + δm1p/2]. For m sufficiently large Cδm(ε) ⊆ ∪mk=1Am,k,

Cδm(ε) ∩ Am,0 = φ and the set {k : 1 ≤ k ≤ m,Am,k ⊂ Cδm(ε)} is non-empty. For

k = 1, . . . ,m, when Am,k ⊂ Cδm(ε), πm,k ≥ infz∈Cδm (ε) f0(z)hpm. Therefore,

fm(ε) ≥
∑

{k:1≤k≤m,Am,k⊂Cδm (ε)}
πm,k MVNp(ε|µm,k, σ

2
mIp)

≥ inf
z∈Cδm (ε)

f0(z)
∑

{k:Am,k⊂Cδm (ε)}
hpm MVNp(ε|cm,k + dm, σ

2
mIp)

≥ inf
z∈Cδm (ε)

f0(z)

{
1− 6p3/2hmδ

p−1
m

(2π)p/2σpm
− 8pσm

(2π)1/2δm

}
,

where the last step follows from Lemma 1 and Lemma 2 of Norets and Pelenis (2012). Let

hm, δm, σm further satisfy hm/σ
p
m → 0, σm/δm → 0. Then for any η > 0 there exists an M1

large enough such that for all m > M1

fm(ε) ≥ inf
z∈Cδm (ε)

f0(z) · (1− η).

Without loss of generality, we may assume f0(ε) > 0. Since f0(·) is continuous and δm → 0,

there also exists an M2 such that for all m > M2 we have infz∈Cδm (ε) f0(z) > 0 and

f0(ε)

infz∈Cδm (ε) f0(z)
≤ (1 + η).

Therefore, for all m > max{M1,M2}, we have

1 ≤ max

{
1,
f0(ε)

fm(ε)

}
≤ max

{
1,

f0(ε)

infz∈Cδm (ε) f0(z) · (1− η)

}
≤ (1 + η)

(1− η)
.

Thus, log max{1, f0(ε)/fm(ε)} → 0 as m → ∞. Pointwise convergence is thus established.

Next, we will find an integrable upper bound for log max{1, f0(ε)/fm(ε)}.
For point wise convergence we can assume ε /∈ Am,0 for sufficiently large m. But to

find integrable upper bound, we have to consider both the cases ε ∈ Am,0 and ε /∈ Am,0.

When ε ∈ Am,0, we have Pf0(Am,0) =
∫
Am,0

f0(z)dz ≥
∫
Am,0∩Cr(ε)

f0(z)dz ≥ λ{Am,0 ∩
Cr(ε)} infz∈Am,0∩Cr(ε) f0(z) ≥ (r/2)p infz∈Cr(ε) f0(z), since λ{Am,0 ∩ Cr(ε)} ≥ λ{C0(ε)} ≥
(r/2)p. Using part 4 of Conditions 1 and Lemma 1 and Lemma 2 of Norets and Pelenis

(2012) again, if ε /∈ Am,0, for m sufficiently large∑
{k:Am,k⊂Cr(ε)}

hpm MVNp(ε|µm,k, σ
2
mIp) ≥

∑
{k:Am,k⊂C1(ε)}

hpm MVNp(ε|µm,k, σ
2
mIp)
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≥
∫
C1(ε)

MVNp(z|ε, σ2
mIp)dz−

3p3/2(r/2)p−1hm
(2π)p/2σpm

≥
{

1

2p
− 8pσm

2p(2π)1/2r
− 3p3/2hmr

p−1

2p−1(2π)p/2σpm

}
≥ 1

2p+1
,

This implies

fm(ε) =
m∑
k=1

Pf0(Am,k) MVNp(ε|µm,k, σ
2
mIp) +

m+2∑
k=m+1

(1/2)Pf0(Am,0) MVNp(ε|µm,k, σ
2
0Ip)

≥
m∑
k=1

Pf0(Am,k) MVNp(ε|µm,k, σ
2
mIp) + (1/2)Pf0(Am,0) MVNp(ε|0, σ2

0Ip)

≥ {1− 1(ε ∈ Am,0)} inf
z∈Cr(ε)

f0(z)
∑

{k:Am,k⊂Cr(ε)}
λ(Am,k) MVNp(ε|µm,k, σ

2
mIp)

+ 1(ε ∈ Am,0)(1/2)Pf0(Am,0) MVNp(ε|0, σ2
0Ip)

≥ (1/2){1− 1(ε ∈ Am,0)} inf
z∈Cr(ε)

f0(z)

+ 1(ε ∈ Am,0) (1/2)(r/2)p MVNp(ε|0, σ2
0Ip) inf

z∈Cr(ε)
f0(z)

≥ (1/2)(r/2)p MVNp(ε|0, σ2
0Ip) inf

z∈Cr(ε)
f0(z).

The last step followed by choosing σ2
0 large enough so that (r/2)p supε∈Rp MVNp(ε|0, σ2

0Ip) <

(r/2)p σ−p0 < 2−(p+1) < 1. Therefore,

log max

{
1,
f0(ε)

fm(ε)

}
≤ log max

{
1,

f0(ε)

(1/2)(r/2)p MVNp(ε|0, σ2
0Ip) infz∈Cr(ε) f0(z)

}
≤ log

[
1

(1/2)(r/2)p MVNp(ε|0, σ2
0Ip)

max

{
(1/2)(r/2)p MVNp(ε|0, σ2

0Ip),
f0(ε)

infz∈Cr(ε) f0(z)

}]
≤ −log

{
(1/2)(r/2)p MVNp(ε|0, σ2

0Ip)
}

+ log

{
f0(ε)

infz∈Cr(ε) f0(z)

}
.

The first and the second terms are integrable by part 2 and part 3 of Conditions 1, re-

spectively. Since
∫
f0(ε)log{f0ε/fm(ε)}dε ≤

∫
f0(ε)log max{1, f0ε/fm(ε)}dε, the proof of

Lemma 9 is completed applying dominated convergence theorem (DCT).

Let η > 0 be given. According to Lemma 9, there exists θ?m = (π?
1:(m+2),µ

?
1:(m+2),Σ

?
1:(m+2))

with Σ?
k = σ2?

m Ip for k = 1, . . . ,m and Σ?
k = σ2?

0 Ip for k = (m + 1), (m + 2) such that

dKL{f0(·), fm(·|θ?m)} < η/2. We have, for any θm,∫
f0(ε) log

{
f0(ε)

fm(ε|θm)

}
dε =

∫
f0(ε) log

{
f0(ε)

fm(ε|θ?m)

}
dε +

∫
f0(ε) log

{
fm(ε|θ?m)

fm(ε|θm)

}
dε.

Let the second term in the above expression be denoted by g(θm). The priors puts

positive mass on arbitrarily small open neighborhoods around θ?m. The result will follow if

there exists an open neighborhood N (θ?m) around θ?m such that supθm∈N (θ?m)
g(θm) < η/2.
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Since g(θ?m) = 0, it suffices to show that the function g(θm) is continuous at θ?m. Now g(θ) is

continuous at θ?m if for every sequence {θm,n}∞n=1 with θm,n → θ?m, we have g(θm,n)→ g(θ?m).

For all ε ∈ Rp, we have log{fm(ε|θ?m,n)/fm(ε|θm)} → 0 as θm,n → θ?m. Continuity of g(θm)

at θ?m will follow from DCT if we can show that |fm(ε|θ?m)/fm(ε|θm,n)| has an integrable

with respect to f0 upper bound.

Since θm,n → θ?m, for any arbitrarily small open neighborhood N (θ?m) around θ?m, we

must have θm,n ∈ N (θ?m) for all n sufficiently large. Let θm = (π1:(m+2),µ1:(m+2),Σ1:(m+2)) ∈
N (θ?m). Since the eigenvalues of a real symmetric matrix depend continuously on the ma-

trix, we must have (λ1(Σk), λp(Σk)) ⊂ (σ2?
m , σ

2?
m ) for k = 1, . . . ,m and (λ1(Σk), λp(Σk)) ⊂

(σ2?
0 , σ

2?
0 ) for k = (m + 1), (m + 2), where σ2?

m < σ2?
m < σ2?

m and σ2?
0 < σ2?

0 < σ2?
0 . Let

σ2? = min{σ2?
m , σ

2?
0 } and σ2? = max{σ2?

m , σ
2?
0 }. Then (λ1(Σk), λp(Σk)) ⊂ (σ2?, σ2?) for

k = 1, . . . , (m+ 2). Similarly, for some finite µ?, we must have µm,k ∈ (−µ?1p, µ?1p) = Nµ?
for k = 1, . . . , (m + 2). For any real positive definite matrix Σ, we have zTΣ−1z ≤
λ−1

1 (Σ) ‖z‖2. Therefore, for any ε ∈ Rp and for all k = 1, . . . , (m + 2), we must have

(ε − µm,k)
TΣ−1

m,k(ε − µm,k) ≤ σ−2?{1(ε ∈ Nµ?)2pµ?p + 1(ε /∈ Nµ?) ‖ε + sign(ε)µ?‖2}, where

sign(ε) = {sign(ε1), . . . , sign(εp)}T. Therefore, for any θm ∈ N (θ?m), we have

[1(ε ∈ Nµ?)MVNp(2µ
?1p|0, σ2?Ip) + 1(ε /∈ Nµ?)MVNp{ε + sign(ε)µ?|0, σ2?Ip}]/σ?

≤ fm(ε|θm) ≤ 1/σ?.

The upper bound is a constant and the logarithm of the lower bound is integrable since, by

part 2 of Conditions 1, the second order moments of ε exist. An f0 integrable upper bound

for the function supθm∈N (θ?m)
|fm(ε|θm)| thus exists. Finally, DCT applies because∫

f0(ε)

∣∣∣∣log

{
fm(ε|θ?m)

fm(ε|θm,n)

}∣∣∣∣ dε ≤ sup
θm∈N (θ?m)

∫
f0(ε)

∣∣∣∣log

{
fm(ε|θ?m)

fm(ε|θm)

}∣∣∣∣ dε
≤ 2 sup

θm∈N (θ?m)

∫
f0(ε) |fm(ε|θm)| dε.

The conclusion of part 2 of Lemma 2 follows since the prior probability of having (m + 2)

mixture components is positive for all m ∈ N.

S.7.2 Proof of Lemma 3

Given q, let Πq denote a prior on Nq = {q + 1, q + 2, . . . } such that Πq(J) > 0 ∀J ∈ Nq. Let

|| · ||2 denote the Euclidean norm. Let R+ = (0,∞). Given J ∼ Πq, also let Πβ|J be a prior

on R+J such that Πβ|J{Nδ(β0)} > 0 for any δ > 0 and any β0 ∈ RJ , where Nδ(β0) = {β :

β ∈ R+J , ||β−β0||2 < δ}. Define Sq,J = {vs : vs = Bq,Jβ =
∑J

j=1 bq,jβj for some β ∈ R+J}.
Then ΠV = Πq × Πβ|J is the induced prior on Sq = ∪∞J=q+1Sq,J .

Define ψ(v0, h) = supX,X′∈[A,B],|X−X′|≤h |v0(X) − v0(X ′)|. Let bαc = min{n : n ∈ N, n ≥
α}. For any X, (i) bq,j(X) ≥ 0 ∀j, (ii)

∑J
j=1 bq,j(X) = 1, (iii) bq,j is positive only inside the
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interval [tj, tj+q+1], and (iv) for j ∈ {(q+1), (q+2), . . . , (q+K)}, for any X ∈ (tj, tj+1), only

(q + 1) B-splines bq,j−q(X), bq,j−q+1(X), . . . , bq,j(X) are positive. Using these local support

properties of B-splines, the results on page 147 of de Boor (2000) can be modified to show

that, for any v0 ∈ C+[A,B],

inf
vs∈Sq,J

||v0 − vs||∞ ≤ b(q + 1)/2c ψ(v0,∆max)→ 0 as ∆max → 0.

Also, if q ≥ (α− 1), we can modify the results on page 149 of de Boor (2000) to show that,

for any v ∈ Cα+[A,B],

inf
vs∈Sq,J

||v0 − vs||∞ ≤ c(q)c(q − 1) . . . c(q − α0 + 1) ||v(α0)
0 ||∞ ∆α0

max,

where c(q) = b(q + 1)/2c. For any two functions g1 and g2, sup |g1g2| ≤ sup |g1| sup |g2|.
Taking g1(X,X ′) = {v(α0)

0 (X)− v(α0)
0 (X ′)}/(X −X ′)(α−α0) and g2(X,X ′) = (X −X ′)(α−α0),

we have ||v(α0)
0 ||∞ ≤ ||v0||α(B − A)(α−α0). Therefore,

inf
vs∈Sq,J

||v0 − vs||∞ ≤ c(q, α0) (B − A)(α−α0) ||v0||α ∆α0
max.

Furthermore, when the knot points {tq+1+j}Kj=0 are equidistant

inf
vs∈Sq,J

||v0 − vs||∞ ≤ c(q, α0)||v(α)
0 ||∞

(B − A)α

Kα0
≤ c(q, α)||v0||αK−α.

Given any v0 ∈ C+[A,B](or Cα
+[A,B]) and δ > 0, find J ∈ Nq and β0 ∈ R+J such that

||v0 −Bq,Jβ0||∞ = infvs∈Sq,J ||v0 − vs||∞ < δ/2. Next consider a neighborhood Nη(β0) such

that for any β ∈ Nη(β0), we have ||Bq,Jβ−Bq,Jβ0||∞ < δ/2. Then for any β ∈ Nη(β0), we

have ||Bq,Jβ − v0||∞ ≤ ||Bq,Jβ −Bq,Jβ0||∞ + ||Bq,Jβ0 − v0||∞ < δ. Also ΠV(||v − v0||∞ <

δ) ≥ Πq(J) Πβ|J{Nη(β0)} > 0. Proof of Lemma 3 then follows as a special case taking

β = exp(ξ) and taking Πq and Πβ|J to be the priors on J and β induced by P0(K) and

P0(ξ|K, σ2
ξ ), respectively.

S.7.3 Proof of Lemma 4

We first prove some additional lemmas to used in the proof of Lemma 4.

Lemma 10. ΠV(||v−v0||∞ < δ) > 0 ∀δ > 0 implies that ΠV(||g◦v−g◦v0||∞ < δ) > 0 ∀δ > 0

for every continuous function g : R→ R.

Proof. Let v : [A,B] → [C1, D1] and v0 : [A,B] → [C2, D2]. Then (v − v0) : [A,B] →
[C1 −D2, D1 − C2] = [C,D], say. Then g : [C,D] → R is a uniformly continuous function.

Therefore, given any δ > 0, there exists a η > 0 such that |g(Z1) − g(Z2)| < δ whenever

|Z1 − Z2| < η. Now let ||v − v0||∞ = supX∈[A,B] |v(X) − v0(X)| < η. This implies, for all

X ∈ [A,B], |v(X) − v0(X)| < η. Therefore, for all X ∈ [A,B], |g{v(X)} − g{v0(X)}| < δ,

and hence ||g ◦ v − g ◦ v0||∞ ≤ δ. Hence the proof.
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Corollary 1. In particular, taking g(Z) = Z1/2 ∀Z > 0 and g(Z) = 0 otherwise, we have

ΠV(||v1/2−v1/2
0 ||∞ < δ) = ΠV(||s−s0||∞ < δ) > 0 ∀δ > 0 for all v0 ∈ C+[A,B](or Cα+[A,B]).

Let Pε,K{(µ,Σ)|π1:K ,µ1:K ,Σ1:K} =
∑K

k=1 πkδ(µk,Σk)
(µ,Σ), where δθ denotes a point

mass at θ. We have, with the the hyper-parameters implicit, P0(π1:K ,µ1:K ,Σ1:K) =

P0π(π1:K)P0µ(µ1:K |π1:K)P0Σ(Σ1:K). Denoting Pε,K{(µ,Σ)|π1:K ,µ1:K ,Σ1:K} simply by Pε,K(µ,Σ).

Let c be a generic for constants that are not of direct interest. For any square matrix A of

order p, let λ1(A) ≤ · · · ≤ λp(A) denote the ordered eigenvalues of A. The following lemma

proves some properties of Pε,K and fε.

Lemma 11. 1.
∫
‖µ‖2

2 dPε,K(µ,Σ) <∞ a.s. 2.
∫
λ−1

1 (Σ)dPε,K(µ,Σ) <∞ a.s.

3.
∫
|Σ|−1/2 dPε,K(µ,Σ) <∞ a.s.

Proof. 1. The prior P0µ(µ1:K |π1:K) is of the form (15), that is, P0µ(µ1:K |π1:K) = MVNKp(0,Σ
0−

Σ0
1,RΣ−1

R,RΣ0
R,1), where Σ0 is a Kp × Kp block-diagonal matrix independent of π1:K ,

all k principal blocks of order p × p being Σ0. The matrix Σ0
1,RΣ−1

R,RΣ0
R,1 depends

on π1:K and is nonnegative definite so that its diagonal elements are all nonnegative.

Let Σ0 = ((σ0,ij)) and Σ0
1,RΣ−1

R,RΣ0
R,1 = ((σR,ij)). Then,

∫
‖µk‖

2
2 dP0µ(µ1:K |π1:K) ={∑p

j=1 σ0,jj −
∑kp

j=(k−1)p+1 σR,jj

}
≤
∑p

j=1 σ0,jj = trace(Σ0). Therefore,∫ ∫
‖µ‖2

2 dPε,K(µ,Σ)dP0(π1:K ,µ1:K ,Σ1:K) =
K∑
k=1

∫
πk ‖µk‖

2
2 dP0µ(µ1:K |π1:K)dP0π(π1:K)

≤ trace(Σ0) <∞.

2. We have
∫ ∫

λ−1
1 (Σ)dPε,K(µ,Σ)dP0(π1:K ,µ1:K ,Σ1:K) =

∫
λ−1

1 (Σ)dP0Σ(Σ).

When Σ ∼ IWp(ν0,Ψ0), we have Ψ
−1/2
0 Σ−1Ψ

−1/2
0 ∼ Wp(ν0, I) and trace(Ψ−1

0 Σ−1) =

trace(Ψ
−1/2
0 Σ−1Ψ

−1/2
0 ) ∼ χ2

pν0
. Here Wp(ν,Ψ) denotes a Wishart distribution with degrees

of freedom ν and mean νΨ. For any two positive semidefinite matrices A and B, we

have λ1(A)trace(B) ≤ trace(AB) ≤ λp(A)trace(B). Therefore, λ1(Ψ−1
0 )E{trace(Σ−1)} ≤

E{trace(Ψ−1
0 Σ−1)} = pν0. Hence,

∫
λ−1

1 (Σ)dP0Σ(Σ) = Eλp(Σ
−1) ≤ E{trace(Σ−1)} <∞.

When Σ = Ω + ΛΛT with Ω = diag(σ2
1, . . . , σ

2
p), we have trace(Σ−1) = trace{Ω−1 −

Ω−1Γ(Ip+ΓTΩ−1Γ)−1ΓTΩ−1} ≤ trace(Ω−1) =
∑p

j=1 σ
−2
j , where Γ is a p×p matrix satisfying

ΓΓT = ΛΛT. Thus,
∫
λ−1

1 (Σ)dP0Σ(Σ1:K) = Eλp(Σ
−1) ≤ E{trace(Σ−1)} ≤

∑p
j=1 Eσ

−2
j <

∞ whenever σ2
j ∼ Inv-Ga(a, b) with a > 1.

3. When Σ ∼ IWp(ν0,Ψ0), we have λ
p/2
1 (Ψ−1

0 )E{trace(Σ−1)}p/2 ≤ E{trace(Ψ−1
0 Σ−1)}p/2 <

∞. Hence,
∫
|Σ|−1/2 dP0Σ(Σ) =

∫ ∏p
j=1 λ

1/2
j (Σ−1)dP0Σ(Σ) ≤

∫
λ
p/2
p (Σ−1)dP0Σ(Σ) =

Eλ
p/2
p (Σ−1) ≤ E{trace(Σ−1)}p/2 <∞.

For any two positive semidefinite matrix A and B, we have |A + B| ≥ |A|. There-

fore, when Σ = Ω + ΛΛT, we have
∫
|Σ|−1/2 dP0Σ(Σ1:K) ≤

∫
|Ω|−1/2 dP0Σ(Σ1:K) =∫ ∏p

j=1 σ
−1
j dP0Σ(Σ1:K) =

∏p
j=1 Eσ

−1
j <∞, whenever σ2

j ∼ Inv-Ga(a, b) independently.
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The following lemma proves a property of fε =
∫ ∫

fcε(ε|µ,Σ)dPε,K(µ,Σ)dP0(K). Here

P0(K) denotes the prior on K, the number of mixture components.

Lemma 12. Let f0ε ∈ F̃ε and fε ∼ Πε and D(τ ) = diag(τ1, τ2, . . . , τp). Then

lim
τ→1

∫
f0ε(ε) log

[
fε(ε)

|D(τ )|−1 fε{D(τ )ε}

]
dε = 0.

Proof. We have |D(τ )|−1 fcε{D(τ )ε} → fcε(ε) as τ → 1. Since τ → 1, without loss of

generality, we may assume |D(τ )| > 1/2. Define c =
∫
|Σ|−1/2 dPε,K(µ,Σ). Then c < ∞.

Also
∫
|D(τ )|−1 fcε{D(τ )ε|θ}dPε,K(µ,Σ) ≤

∫
2(2π)−p/2 |Σ|−1/2 dPε,K(µ,Σ) < 2c < ∞.

Applying DCT, |D(τ )|−1 fε{D(τ )ε} → fε(ε) as τ → 1. Therefore, for any ε ∈ R,

log

[
fε(ε)

|D(τ )|−1 fε{D(τ )ε}

]
→ 0 as τ → 1.

To find an integrable with respect to f0ε upper bound for log [|D(τ )| fε(ε)/fε{D(τ )ε}], we

use Lemma 11. To do so, we can ignore the prior P0(K) since the upper bounds obtained

in Lemma 11 do not depend on the specific choice of K. We have, using part 3 of Lemma 11,∫
|Σ|−1/2 exp

[
−1

2
{D(τ )ε− µ}TΣ−1{D(τ )ε− µ}

]
dPε,K(µ,Σ)

≤
∫
|Σ|−1/2 dPε,K(µ,Σ) ≤ c.

Since τ → 1, without loss of generality we may also assume τk < 2 for all k. Therefore,

|log fε{D(τ )ε}|

≤ log(2π)p/2 +

∣∣∣∣log

∫
|Σ|−1/2 exp

[
−1

2
{D(τ )ε− µ}TΣ−1{D(τ )ε− µ}

]
dPε,K(µ,Σ)

∣∣∣∣
≤ log(2π)p/2 + |log c|

− log

∫
c−1 |Σ|−1/2 exp

[
−1

2
{D(τ )ε− µ}TΣ−1{D(τ )ε− µ}

]
dPε,K(µ,Σ)

≤ log{c(2π)p/2}+ |log c|

+
1

2

∫
log |Σ| dPε,K(µ,Σ) +

1

2

∫
{D(τ )ε− µ}TΣ−1{D(τ )ε− µ}dPε,K(µ,Σ)

≤ log{c(2π)p/2}+ |log c|

+
1

2

∫
log |Σ| dPε,K(µ,Σ) +

1

2

∫
‖D(τ )ε− µ‖2

2 λ
−1
1 (Σ)dPε,K(µ,Σ)

≤ log{c(2π)p/2}+ |log c|

+
1

2

∫
log |Σ| dPε,K(µ,Σ) +

∫
{‖D(τ )ε‖2

2 + ‖µ‖2
2}λ

−1
1 (Σ)dPε,K(µ,Σ)

≤ log{c(2π)p/2}+ |log c|+ 1

2

∫
log |Σ| dPε,K(µ,Σ)
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+ ‖2ε‖2
2

∫
λ−1

1 (Σ)dPε,K(µ,Σ) +

∫
‖µ‖2

2 dPε,K(µ,Σ)

∫
λ−1

1 (Σ)dPε,K(µ,Σ),

where the third step followed from application of Jensen’s inequality on g(Z) = −log Z. The

regularity assumptions on f0ε and Lemma 11 imply that the RHS above is f0ε integrable.

The conclusion of Lemma 12 follows from an application of DCT again.

To prove Lemma 4, let fU|S denote the density of U = S(X)ε, where S = diag(s1, . . . , sp).

Then fU|X = fU|S(X). We have fU|S(U) = |S|−1 fε(S−1U). This implies∫
f0U|S0(U)log

f0U|S0(U)

fU|S(U)
dU =

∫
f0U|S0(U)log

f0U|S0(U)

fU|S0(U)
dU +

∫
f0U|S0(U)log

fU|S0(U)

fU|S(U)
dU

=

∫
f0ε(ε)log

f0ε(ε)

fε(ε)
dε +

∫
f0ε(ε)log

fε(ε)

|S|−1 |S0| fε(S−1S0ε)
dε.

Let δ > 0 be given. By part 2 of Lemma 2, Πε{fε : dKL(f0ε, fε) < δ/2} > 0. Let

s = (s1, . . . , sp)
T and s0 = (s01, . . . , s0p)

T. By Lemma 12, there exists η > 0 such that

‖s0 − s‖∞ < η implies
∫
f0ε(ε) log[fε(ε)/{|S|−1 |S0| fε(S−1S0ε)}] dε < δ/2 for every fε ∼

Πε. Using a straightforward multivariate extension of Corollary 1, we have ΠV(||s0− s||∞ <

η) > 0. Combining these results, ΠU|V{supX∈X dKL(f0U|X, fU|X) < δ} ≥ Πε{dKL(f0ε, fε) <

δ/2} ΠV(||s0 − s||∞ < η) > 0. Hence the proof of part 2 of Lemma 4.

Part 1 of Lemma 4 follows trivially from part 2 of Lemma 4 since ||s0− s||∞ < η implies

‖s0(X)− s(X)‖∞ < η for any X ∈ X .

To prove part 3 of Lemma 4, note that

dKL(f0,X,U, fX,U) =

∫
X×Rp

f0,U|X(U|X)f0,X(X) log
f0,U|X(U|X)f0,X(X)

fU|X(U|X)fX(X)
dXdU

=

∫
X
f0,X(X)

∫
Rp
f0,U|X(U|X) log

f0,U|X(U|X)

fU|X(U|X)
dUdX +

∫
X
f0,X(X) log

f0,X(X)

fX(X)
dX

≤ sup
X∈X

dKL{f0,U|X(U|X), fU|X(U|X)}+ dKL(f0X, fX).

Part 3 of Lemma 4 now follows from part 2 of Lemma 4 and part 1 of Lemma 2.

S.7.4 Proof of Theorem 1

Let dH(f0, f) = [
∫
{f 1/2

0 (Z)−f 1/2(Z)}2dZ]1/2 denote the Hellinger distance between any two

densities f0 and f . From Chapter 1 of Ghosh and Ramamoorthi (2010), we have

d2
H(f0, f) ≤ ||f0 − f ||1 ≤ 2 d

1/2
KL(f0, f). (S.8)

Using (S.8), we have,

||f0W − fW||1 =

∫
|f0W(W)− fW(W)|dW
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=

∫ ∣∣∣∣∫ f0X(X)f0W|X(W)dX−
∫
fX(X)fW|X(W)dX

∣∣∣∣ dW
≤

∫ ∣∣∣∣∫ f0X(X)f0W|X(W)dX−
∫
fX(X)f0W|X(W)dX

∣∣∣∣ dW
+

∫ ∣∣∣∣∫ fX(X)f0W|X(W)dX−
∫
fX(X)fW|X(W)dX

∣∣∣∣ dW
≤

∫ ∫
|f0X(X)− fX(X)|f0W|X(W)dXdW

+

∫ ∫
fX(X)|f0W|X(W)− fW|X(W)|dXdW

=

∫
|f0X(X)− fX(X)|dX +

∫
fX(X)

∫
|f0W|X(W)− fW|X(W)|dWdX

=

∫
|f0X(X)− fX(X)|dX +

∫
fX(X)

∫
|f0U|X(W −X)− fU|X(W −X)|dWdX

≤ ||f0X − fX||1 + sup
X∈X
||f0U|X − fU|X||1

≤ 2 d
1/2
KL(f0X, fX) + 2 sup

X∈X
d

1/2
KL(f0U|X, fU|X).

The proof of Theorem 1 follows by combining part 1 of Lemma 2 and part 2 of Lemma 4.

S.8 Additional Figures

We first present, in Subsection S.8.1, some additional figures summarizing the results of the

simulation experiments for diagonal covariance matrices discussed in Section 6 of the main

paper. Then in Subsection S.8.1, we present figures that summarize the results of simulation

experiments for covariance matrices with AR structure. Finally in Subsection S.8.3, we

present some additional figures summarizing the results of the EATS data set analyzed in

Section 7 of the main paper.
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S.8.1 Additional Figures Summarizing the Results of the Simula-

tion Experiments for Diagonal Covariance Structure
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Figure S.5: Trace plots and frequency distributions of the number of nonempty clusters
produced by the MIW (mixtures with inverse Wishart priors) method for the conditionally

heteroscedastic error distribution f
(2)
ε with sample size n = 1000, mi = 3 replicates for each

subject and identity matrix (I) for the component specific covariance matrices. See Section
6 for additional details. The results correspond to the simulation instance that produced the
median of the estimated integrated squared errors (ISE) out of a total of 100 simulated data
sets, when the number of mixture components for fX and fε were kept fixed at KX = 6 and
Kε = 5. The upper panels are for the fX and the lower panels are for the density of the
scaled errors fε. The true number of mixture components were KX = 3 and Kε = 3. As
can be seen from Figure 5, a mixture model with 2 nonempty clusters can approximate the
true density of the scaled errors well.
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Figure S.6: Trace plots and frequency distributions of the number of nonempty clusters
produced by the MLFA (mixtures of latent factor analyzers) method for the conditionally

heteroscedastic error distribution f
(2)
ε with sample size n = 1000, mi = 3 replicates for each

subject and identity matrix (I) for the component specific covariance matrices. See Section
6 for additional details. The results correspond to the simulation instance that produced the
median of the estimated integrated squared errors (ISE) out of a total of 100 simulated data
sets, when the number of mixture components for fX and fε were kept fixed at KX = 6 and
Kε = 5. The upper panels are for the fX and the lower panels are for the density of the
scaled errors fε. The true number of mixture components were KX = 3 and Kε = 3. As
can be seen from Figure 6, a mixture model with 2 nonempty clusters can approximate the
true density of the scaled errors well.
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S.8.2 Additional Figures Summarizing the Results of the Simula-

tion Experiments for AR Covariance Structure
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Figure S.7: Results for the variance functions s2(X) produced by the univariate density
deconvolution method for each component of X for the conditionally heteroscedastic error

distribution f
(2)
ε with sample size n = 1000, mi = 3 replicates for each subject and component

specific covariance matrices with autoregressive structure (AR). The results correspond to
the data set that produced the median of the estimated integrated squared errors (ISE) out
of a total of 100 simulated data sets for the MIW (mixtures with inverse Wishart priors)
method. For each component of X, the true variance function is s2(X) = (1 + X/4)2. See
Section 2.2.2 and Section S.3 for additional details. In each panel, the true (lighter shaded
green lines) and the estimated (darker shaded blue lines) variance functions are superimposed
over a plot of subject specific sample means vs subject specific sample variances. The figure
is in color in the electronic version of this article.
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Figure S.8: Results for the fX produced by the MIW (mixtures with inverse Wishart priors)

method for the conditionally heteroscedastic error distribution f
(2)
ε with sample size n =

1000, mi = 3 replicates for each subject and component specific covariance matrices with
autoregressive structure (AR). The results correspond to the data set that produced the
median of the estimated integrated squared errors (ISE) out of a total of 100 simulated data
sets. See Section 6 for additional details. The upper triangular panels show the contour plots
of the true two dimensional marginal densities. The lower triangular diagonally opposite
panels show the corresponding estimates. The numbers i, j at the bottom right corners of
the off-diagonal panels show that the marginal densities fXi,Xj are plotted in those panels.
The diagonal panels show the true (lighter shaded green lines) and the estimated (darker
shaded blue lines) one dimensional marginals. The figure is in color in the electronic version
of this article.
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Figure S.9: Results for the fX produced by the MLFA (mixtures of latent factor analyzers)

method for the conditionally heteroscedastic error distribution f
(2)
ε with sample size n =

1000, mi = 3 replicates for each subject and component specific covariance matrices with
autoregressive structure (AR). The results correspond to the data set that produced the
median of the estimated integrated squared errors (ISE) out of a total of 100 simulated data
sets. See Section 6 for additional details. The upper triangular panels show the contour plots
of the true two dimensional marginal densities. The lower triangular diagonally opposite
panels show the corresponding estimates. The numbers i, j at the bottom right corners of
the off-diagonal panels show that the marginal densities fXi,Xj are plotted in those panels.
The diagonal panels show the true (lighter shaded green lines) and the estimated (darker
shaded blue lines) one dimensional marginals. The figure is in color in the electronic version
of this article.
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Figure S.10: Results for the density of the scaled errors fε produced by the MIW (mixtures
with inverse Wishart priors) method for the conditionally heteroscedastic error distribution

f
(2)
ε with sample size n = 1000, mi = 3 replicates for each subject and component specific

covariance matrices with autoregressive structure (AR). The results correspond to the data
set that produced the median of the estimated integrated squared errors (ISE) out of a
total of 100 simulated data sets. See Section 6 for additional details. The upper triangular
panels show the contour plots of the true two dimensional marginal densities. The lower
triangular diagonally opposite panels show the corresponding estimates. The numbers i, j
at the bottom right corners of the off-diagonal panels show that the marginal densities fεi,εj
are plotted in those panels. The diagonal panels show the true (lighter shaded green lines)
and the estimated (darker shaded blue lines) one dimensional marginals. The figure is in
color in the electronic version of this article.
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Figure S.11: Results for the density of the scaled errors fε produced by the MLFA (mixtures
of latent factor analyzers) method for the conditionally heteroscedastic error distribution

f
(2)
ε with sample size n = 1000, mi = 3 replicates for each subject and component specific

covariance matrices with autoregressive structure (AR). The results correspond to the data
set that produced the median of the estimated integrated squared errors (ISE) out of a
total of 100 simulated data sets. See Section 6 for additional details. The upper triangular
panels show the contour plots of the true two dimensional marginal densities. The lower
triangular diagonally opposite panels show the corresponding estimates. The numbers i, j
at the bottom right corners of the off-diagonal panels show that the marginal densities fεi,εj
are plotted in those panels. The diagonal panels show the true (lighter shaded green lines)
and the estimated (darker shaded blue lines) one dimensional marginals. The figure is in
color in the electronic version of this article.
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Figure S.12: Trace plots and frequency distributions of the number of nonempty clusters
produced by the MIW (mixtures with inverse Wishart priors) method for the conditionally

heteroscedastic error distribution f
(2)
ε with sample size n = 1000, mi = 3 replicates for each

subject and component specific covariance matrices with autoregressive structure (AR). See
Section 6 for additional details. The results correspond to the simulation instance that
produced the median of the estimated integrated squared errors (ISE) out of a total of 100
simulated data sets, when the number of mixture components for both fX and fε were kept
fixed at KX = 6 and Kε = 5. The upper panels are for the fX and the lower panels are for
the density of the scaled errors fε. The true number of mixture components were KX = 3
and Kε = 3. As can be seen from Figure S.10, a mixture model with 2 nonempty clusters
can approximate the true density of the scaled errors well.
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Figure S.13: Trace plots and frequency distributions of the number of nonempty clusters
produced by the MLFA (mixtures of latent factor analyzers) method for the conditionally

heteroscedastic error distribution f
(2)
ε with sample size n = 1000, mi = 3 replicates for each

subject and component specific covariance matrices with autoregressive structure (AR). See
Section 6 for additional details. The results correspond to the simulation instance that
produced the median of the estimated integrated squared errors (ISE) out of a total of 100
simulated data sets, when the number of mixture components for fX and fε were kept fixed
at KX = 6 and Kε = 5. The upper panels are for the fX and the lower panels are for the
density of the scaled errors fε. The true number of mixture components were KX = 3 and
Kε = 3. As can be seen from Figure S.11, a mixture model with 2 nonempty clusters can
approximate the true density of the scaled errors well.
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S.8.3 Additional Figures Summarizing the Results for the EATS

Data Set Analyzed in Section 7 of the Main Paper
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Figure S.14: Trace plots and frequency distributions of the number of nonempty clusters
produced by the MIW (mixtures with inverse Wishart priors) method for the EATS data
example. See Section 7 for additional details. The number of mixture components for both
fX and fε were kept fixed at KX = Kε = 7. The upper panels are for the fX and the lower
panels are for the density of the scaled errors fε.
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Figure S.15: Trace plots and frequency distributions of the number of nonempty clusters
produced by the MLFA (mixtures of latent factor analyzers) method for the EATS data
example. See Section 7 for additional details. The number of mixture components for both
fX and fε were kept fixed at KX = Kε = 7. The upper panels are for the fX and the lower
panels are for the density of the scaled errors fε.
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S.9 Additional Simulation Experiments

This section presents the results of additional simulation experiments for multivariate t and

multivariate Laplace distributed measurement errors. Cases when fX is multivariate t or

mixture of multivariate t are also considered. For easy reference, brief descriptions of these

distributions are provided below.

S.9.1 Multivariate t Distribution

A random variable Z following a Student’s t-distribution with degrees of freedom ν, mean

µ and variance νb/(ν − 2) can be represented as Z = µ + ν1/2b1/2X/Y 1/2, where Y and X

are independent, Y follows a chi-square distribution with ν degrees of freedom, denoted by

Y ∼ χ2
ν , and X follows a standard normal distribution. A natural extension to multivariate

set up is given by Z = µ + ν1/2Σ1/2X/Y 1/2, where Y ∼ χ2
ν and X ∼ MVNp(0, I) indepen-

dently. The random vector Z is then said to follow a multivariate t-distribution (Kotz and

Nadarajah, 2004) with degrees of freedom ν, mean µ and covariance νΣ/(ν−2), denoted by

MVTp(ν,µ,Σ). The above characterization can be used to sample from a MVTp(ν,µ,Σ)

density. The density of Z is given by

fZ(z) =
Γ{(ν + p)/2}

Γ(ν/2)(νπ)p/2 |Σ|1/2
· {1 + (z− µ)TΣ−1(z− µ)/ν}−(ν+p)/2.

The characteristic function is given by

φ(t) = exp(itTµ) · ||ν
1/2Σ1/2t||ν/2

2ν/2−1Γ(ν/2)
·Hν/2(||ν1/2Σ1/2t||), t ∈ Rp,

where Hα denotes a McDonald’s function of order α(> 1/2) and admits the integral repre-

sentation

Hα(t) = (2/t)α · Γ(α + 1/2)

π1/2

∫ ∞
0

(1 + u2)cos(tu)du, t > 0.

When Σ = I, the identity matrix, the components Zi and Zj are uncorrelated, but not

statistically independent. With µ = (µ1 . . . , µp)
T and Σ = ((σij)), the ith random variable

Zi marginally follows a univariate Student’s t-distribution with degrees of freedom ν, mean

µi and variance νσii/(ν − 2).

S.9.2 Multivariate Laplace Distribution

A random variable Z following a Laplace distribution with mean µ and variance b has the

density

fZ(z) = (2b)−1/2 exp(−21/2b−1/2 |z − µ|).

Z can be represented as Z = µ + Y 1/2b1/2X, where Y and X are independent and follow

standard exponential and standard normal distributions, respectively. A natural extension
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to multivariate set up is given by Z = µ + Y 1/2Σ1/2X, where Y follows a standard expo-

nential density and X ∼ MVNp(0, I) independently of Y . The random vector Z is then

said to follow a multivariate Laplace distribution (Eltoft, et al. 2006) with mean µ and

covariance Σ, denoted by MVLp(µ,Σ). The above characterization can be used to sample

from a MVLp(µ,Σ) density. The density of Z is then given by

fZ(z) =
2

(2π)p/2 |Σ|1/2
·
Kp/2−1{21/2h1/2(z)}
{h(z)/2}p/4−1/2

,

where h(z) = (z − µ)TΣ−1(z − µ) and Km denotes modified Bessel functions of the

second kind of order m. Using asymptotic formula for the Bessel functions, namely

Km(z) = {π/(2z)}1/2 exp(−z) as |z| → ∞, we have

fZ(z) ≈ π1/2

(2π)p/2 |Σ|1/2
· 2(p−1)/4

h(p−1)/4(z)
· exp{−21/2h1/2(z)}.

The characteristic function is given by φ(t) = exp(itTµ)(1 + tTΣt/2)−1 for t ∈ Rp. For

p > 1, the density has a singularity at µ. When Σ = I, the identity matrix, the components

Zi and Zj are uncorrelated, but not statistically independent. With µ = (µ1 . . . , µp)
T and

Σ = ((σij)), the ith random variable Zi marginally follows a univariate Laplace distribution

with mean µi and variance σii.

S.9.3 Summary of Results

The results of the simulation experiments the measurement errors are distributed according

to f
(3)
ε = MVT4(6,0,Σ) and f

(4)
ε = MVL4(0,Σ) probability laws independently of X are

presented in Table S.1. The results for conditionally heteroscedastic measurement errors

are presented in Table S.2. In both cases, X is distributed according to the mixture of

multivariate normals described in Section 6 of the main paper. As in the main paper, in

each case four different choices for the covariance matrix Σ were considered. The general

patterns of the estimated MISEs are similar to that observed in Table 2 of the main paper

where the true measurement error distributions were finite mixtures of multivariate normal

kernels. While in theory the MLFA model described in the main paper can approximate

distributions like the multivariate Laplace that puts significant mass around the origin, in

practice, since it assumes Ωk = Ω = diag{σ2
1, . . . , σ

2
p} for all k, it often smooths out the

spikes at the origin. A mild variation, referred to as the MLFA2 model, that instead assumes

Ωk = σ2
kIp and results in slight improvement in the MISE performance is also included

in Table S.1 and Table S.2. For the simulation experiments and the real data analysis

presented in the main text, the two versions of the MLFA model perform very similarly and

the latter version was not included. Results for conditionally heteroscedastic multivariate

Laplace errors with diagonal covariance structure are summarized in Figures S.16-S.22 with

observations similar to those discussed in Section 6 of the main paper.



True Error
Distribution

Covariance
Structure

Sample Size
MISE ×104

MLFA2 MLFA MIW Naive

(c) Multivariate t

I
500 1.06 1.38 3.98 12.32
1000 0.53 0.65 1.54 9.91

LF
500 6.62 8.26 7.57 47.22
1000 4.73 5.78 3.65 45.70

AR
500 12.69 13.56 6.14 40.76
1000 11.36 9.16 3.45 39.59

EXP
500 7.84 8.42 5.00 26.85
1000 6.26 6.64 2.38 26.04

(d) Multivariate
Laplace

I
500 1.08 1.32 3.08 8.22
1000 0.50 0.63 1.20 6.25

LF
500 4.41 5.57 5.66 32.31
1000 2.38 3.53 2.84 31.10

AR
500 8.38 8.72 5.14 27.30
1000 6.08 6.19 2.56 26.19

EXP
500 5.24 5.67 4.14 17.57
1000 3.58 4.17 1.98 16.86

Table S.1: Mean integrated squared error (MISE) performance of MLFA (mixtures of latent
factor analyzers) and MIW (mixtures with inverse Wishart priors) density deconvolution models
for homoscedastic errors compared with a naive method that ignores measurement errors for
different measurement error distributions. See Section 2 and Section S.9 for additional details.
The minimum value in each row is highlighted.

True Error
Distribution

Covariance
Structure

Sample Size
MISE ×104

MLFA2 MLFA MIW Naive

(c) Multivariate t

I
500 2.78 3.25 24.48 19.10
1000 1.39 1.53 13.40 17.75

LF
500 12.65 14.72 52.77 69.64
1000 6.71 8.43 25.66 66.49

AR
500 20.54 23.2 43.22 64.07
1000 13.53 18.41 21.42 59.81

EXP
500 11.56 14.12 37.68 43.57
1000 8.19 11.97 18.22 41.66

(d) Multivariate
Laplace

I
500 1.81 2.32 9.60 10.31
1000 0.97 1.20 4.20 8.86

LF
500 7.33 10.30 17.52 41.89
1000 3.99 5.28 7.65 40.93

AR
500 9.79 14.13 15.64 35.50
1000 5.54 9.32 6.59 34.91

EXP
500 7.26 9.90 13.93 23.71
1000 3.90 5.12 5.19 22.78

Table S.2: Mean integrated squared error (MISE) performance of MLFA (mixtures of latent
factor analyzers) and MIW (mixtures with inverse Wishart priors) density deconvolution models
for conditionally heteroscedastic errors compared with a naive method that ignores mea-
surement errors for different measurement error distributions. See Section 2 and Section S.9 for
additional details. The minimum value in each row is highlighted.



We also extend the simulation experiments to scenarios when X is distributed according

to (B) f
(3)
X = MVT4(6,µX,ΣX),µX = (2, 2, 2, 2)T, (C) f

(4)
X =

∑2
k=1 πX,kMVT4(6,µX,k,ΣX),

πX = (0.75, 0.25)T,µX,1 = (2, 4, 2, 2)T,µX,2 = (4, 2, 4, 2)T. In each case, four different

choices for ΣX are considered as in Section 6 of the main paper. We focus on the case when

the measurement errors are conditionally heteroscedastic. Results are presented in Tables

S.3 and S.4.

True Distribution
of Interest fX

True Error
Distribution fε

Covariance
Structure

Sample Size
MISE ×104

MLFA2 MIW Naive

(B) Multivariate t

(a) Multivariate
Normal

I
500 4.35 20.36 18.17
1000 2.36 13.14 12.65

LF
500 21.31 78.22 75.42
1000 15.57 52.73 67.77

AR
500 33.18 59.77 63.33
1000 29.29 51.11 53.40

EXP
500 19.58 40.72 44.83
1000 17.78 32.01 37.58

(b) Mixture of
Multivariate
Normals

I
500 5.16 27.21 38.03
1000 2.87 18.17 35.99

LF
500 27.89 73.75 159.29
1000 19.27 53.66 161.77

AR
500 38.41 81.77 159.34
1000 34.22 55.25 156.05

EXP
500 21.95 45.76 100.33
1000 18.14 37.72 99.09

(c) Multivariate t

I
500 4.16 27.73 23.42
1000 2.34 19.87 20.36

LF
500 22.83 91.04 90.39
1000 14.03 85.33 89.31

AR
500 40.60 76.40 86.87
1000 36.93 70.76 75.19

EXP
500 26.36 55.65 61.25
1000 18.51 40.46 49.52

(d) Multivariate
Laplace

I
500 3.93 16.48 16.14
1000 1.81 6.85 14.02

LF
500 16.36 47.19 70.22
1000 12.13 27.64 59.48

AR
500 29.46 42.44 63.79
1000 18.81 21.19 47.92

EXP
500 19.00 34.74 39.64
1000 13.30 16.24 32.76

Table S.3: Mean integrated squared error (MISE) performance of MLFA (mixtures of latent
factor analyzers) and MIW (mixtures with inverse Wishart priors) density deconvolution
models for conditionally heteroscedastic errors compared with a naive method that ig-
nores measurement errors for different measurement error distributions. See Section 2 and
Section S.9 for additional details. The minimum value in each row is highlighted.



True Distribution
of Interest fX

True Error
Distribution fε

Covariance
Structure

Sample Size
MISE ×104

MLFA2 MIW Naive

(C) Mixture of
Multivariate t

(a) Multivariate
Normal

I
500 4.84 13.68 12.43
1000 2.82 7.41 10.15

LF
500 21.62 30.01 47.95
1000 13.40 19.72 44.97

AR
500 22.56 29.35 43.99
1000 19.80 25.59 39.63

EXP
500 18.36 27.27 28.00
1000 13.41 17.73 25.14

(b) Mixture of
Multivariate
Normals

I
500 5.39 14.64 22.90
1000 2.80 10.77 21.55

LF
500 24.48 32.87 98.00
1000 15.62 20.52 98.79

AR
500 26.73 31.09 90.78
1000 23.44 29.06 91.24

EXP
500 19.56 25.39 58.83
1000 13.90 18.29 59.93

(c) Multivariate t

I
500 4.91 18.09 16.30
1000 2.89 11.59 14.00

LF
500 23.50 33.79 60.18
1000 15.85 25.83 58.20

AR
500 26.98 33.78 54.07
1000 22.04 29.77 51.64

EXP
500 18.62 24.00 36.26
1000 12.64 18.57 33.61

(d) Multivariate
Laplace

I
500 4.76 9.34 15.96
1000 2.33 5.04 13.96

LF
500 16.59 22.54 65.33
1000 11.69 13.41 59.25

AR
500 24.73 26.21 58.87
1000 15.71 17.48 47.62

EXP
500 14.26 19.12 34.53
1000 10.96 13.25 32.47

Table S.4: Mean integrated squared error (MISE) performance of MLFA (mixtures of latent
factor analyzers) and MIW (mixtures with inverse Wishart priors) density deconvolution
models for conditionally heteroscedastic errors compared with a naive method that ig-
nores measurement errors for different measurement error distributions. See Section 2 and
Section S.9 for additional details. The minimum value in each row is highlighted.
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Figure S.16: Results for the variance functions s2(X) produced by the univariate density
deconvolution method for each component of X for conditionally heteroscedastic multivariate

Laplace (f
(4)
ε ) distributed measurement errors with sample size n = 1000, mi = 3 replicates

for each subject and identity matrix (I) for the component specific covariance matrices. The
results correspond to the data set that produced the median of the estimated integrated
squared errors (ISE) out of a total of 100 simulated data sets for the MIW (mixtures with
inverse Wishart priors) method. For each component of X, the true variance function is
s2(X) = (1 +X/4)2. See Section 2.2.2 and Section S.3 for additional details. In each panel,
the true (lighter shaded green lines) and the estimated (darker shaded blue lines) variance
functions are superimposed over a plot of subject specific sample means vs subject specific
sample variances. The figure is in color in the electronic version of this article.
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Figure S.17: Results for the fX produced by the MIW (mixtures with inverse Wishart

priors) method for conditionally heteroscedastic multivariate Laplace (f
(4)
ε ) distributed mea-

surement errors with sample size n = 1000, mi = 3 replicates for each subject and identity
matrix (I) for the component specific covariance matrices. The results correspond to the data
set that produced the median of the estimated integrated squared errors (ISE) out of a total
of 100 simulated data sets. See Section 6 and Section S.9 for additional details. The upper
triangular panels show the contour plots of the true two dimensional marginal densities. The
lower triangular diagonally opposite panels show the corresponding estimates. The numbers
i, j at the bottom right corners of the off-diagonal panels show that the marginal densities
fXi,Xj are plotted in those panels. The diagonal panels show the true (lighter shaded green
lines) and the estimated (darker shaded blue lines) one dimensional marginals. The figure is
in color in the electronic version of this article.
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Figure S.18: Results for the fX produced by the MLFA2 (mixtures of latent factor analyz-

ers) method for conditionally heteroscedastic multivariate Laplace (f
(4)
ε ) distributed mea-

surement errors with sample size n = 1000, mi = 3 replicates for each subject and identity
matrix (I) for the component specific covariance matrices. The results correspond to the data
set that produced the median of the estimated integrated squared errors (ISE) out of a total
of 100 simulated data sets. See Section 6 and Section S.9 for additional details. The upper
triangular panels show the contour plots of the true two dimensional marginal densities. The
lower triangular diagonally opposite panels show the corresponding estimates. The numbers
i, j at the bottom right corners of the off-diagonal panels show that the marginal densities
fXi,Xj are plotted in those panels. The diagonal panels show the true (lighter shaded green
lines) and the estimated (darker shaded blue lines) one dimensional marginals. The figure is
in color in the electronic version of this article.
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Figure S.19: Results for the density of the scaled errors fε produced by the MIW (mixtures
with inverse Wishart priors) method for conditionally heteroscedastic multivariate Laplace

(f
(4)
ε ) distributed measurement errors with sample size n = 1000, mi = 3 replicates for

each subject and identity matrix (I) for the component specific covariance matrices. The
results correspond to the data set that produced the median of the estimated integrated
squared errors (ISE) out of a total of 100 simulated data sets. See Section 6 and Section S.9
for additional details. The upper triangular panels show the contour plots of the true two
dimensional marginal densities. The lower triangular diagonally opposite panels show the
corresponding estimates. The numbers i, j at the bottom right corners of the off-diagonal
panels show that the marginal densities fεi,εj are plotted in those panels. The diagonal panels
show the true (lighter shaded green lines) and the estimated (darker shaded blue lines) one
dimensional marginals. The figure is in color in the electronic version of this article.
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Figure S.20: Results for the density of the scaled errors fε produced by the MLFA2 (mixtures
of latent factor analyzers) method for conditionally heteroscedastic multivariate Laplace

(f
(4)
ε ) distributed measurement errors with sample size n = 1000, mi = 3 replicates for

each subject and identity matrix (I) for the component specific covariance matrices. The
results correspond to the data set that produced the median of the estimated integrated
squared errors (ISE) out of a total of 100 simulated data sets. See Section 6 and Section S.9
for additional details. The upper triangular panels show the contour plots of the true two
dimensional marginal densities. The lower triangular diagonally opposite panels show the
corresponding estimates. The numbers i, j at the bottom right corners of the off-diagonal
panels show that the marginal densities fεi,εj are plotted in those panels. The diagonal panels
show the true (lighter shaded green lines) and the estimated (darker shaded blue lines) one
dimensional marginals. The figure is in color in the electronic version of this article.
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Figure S.21: Trace plots and frequency distributions of the number of nonempty clusters
produced by the MIW (mixtures with inverse Wishart priors) method for conditionally het-

eroscedastic multivariate Laplace (f
(4)
ε ) distributed measurement errors with sample size

n = 1000, mi = 3 replicates for each subject and identity matrix (I) for the component
specific covariance matrices. See Section 6 and Section S.9 for additional details. The upper
panels are for the fX and the lower panels are for the density of the scaled errors fε. The
results correspond to the simulation instance that produced the median of the estimated in-
tegrated squared errors (ISE) out of a total of 100 simulated data sets, when the number of
mixture components for both fX and fε were kept fixed at KX = 5 and Kε = 6, respectively.
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Figure S.22: Trace plots and frequency distributions of the number of nonempty clusters
produced by the MLFA2 (mixtures of latent factor analyzers) method for conditionally het-

eroscedastic multivariate Laplace (f
(4)
ε ) distributed measurement errors with sample size

n = 1000, mi = 3 replicates for each subject and identity matrix (I) for the component
specific covariance matrices. See Section 6 and Section S.9 for additional details. The upper
panels are for the fX and the lower panels are for the density of the scaled errors fε. The
results correspond to the simulation instance that produced the median of the estimated
integrated squared errors (ISE) out of a total of 100 simulated data sets, when the number
of mixture components for fX and fε were kept fixed at KX = 7 and Kε = 5, respectively.



SUPPLEMENTARY MATERIALS S.56

S.10 Potential Impact on Nutritional Epidemiology

The joint distribution of long-term average intakes of different dietary components allows nu-

tritionists to study the dietary habits of the population of interest in fine detail. The plots of

pairwise marginal distributions presented in Figure 8, for instance, provide detailed informa-

tion on the joint consumption patterns of different pairs of dietary components. While such

graphical summaries of the joint distributions may not be available for more than two compo-

nents, numerical summaries of the joint distribution can provide answers to important ques-

tions such as what proportion of the population consume certain dietary components above,

between or below certain amounts etc. The last question is particularly important as it relates

to the proportion of the population that are deficient in certain dietary components. Focus-

ing again on a two-dimensional case for illustration, namely Fiber and Potassium, Figure

S.23 below shows their marginal and joint cumulative distribution function (CDF) on a set

of grid points from which such proportions can be readily obtained. Dietary components are

often reported in different measurement units. The figures presented in Section 7 are based

on a linear scale transformation Wij` = 20×{Wij`,obs−Wij`,obs,min}/{Wij`,obs,max−Wij`,obs,min}
so that the Wij` for different components are unitless and fall between 0 and 20 units. Figure

S.23 report the marginal and the joint CDF of fiber and potassium on a set of grid points in

their original measurement units. We can readily see that, considered jointly, approximately

59% of adult Americans consume less than 20.55 grams of fiber and 3338.55 milligrams of

potassium, whereas the corresponding marginal values are 71.2% and 67.6%, respectively.

The focus of the nutritional epidemiology examples considered in this article were on the

estimation of joint consumption patterns of a set of regularly consumed dietary components

whose reported intakes were all continuously measured. In contrast, for dietary compo-

nents that are consumed episodically, the reported intakes equal zero on non-consumption

days, and are positive on consumption days. The methodology developed in this article

paves the way to more sophisticated deconvolution methods that can accommodate such

zero inflated data. We are pursuing this problem as the subject of a separate study, with

promising preliminary results. This will be a crucial step forward towards providing a

highly flexible statistical framework for estimating the distribution of the U.S. Department

of Agriculture’s Healthy Eating Index (HEI, www.cnpp.usda.gov/HealthyEatingIndex.htm).

HEI is a measure of diet quality that involves six episodically and seven regularly con-

sumed dietary components and is used to assess compliance with the U.S. Dietary Guide-

lines for Americans (www.health.gov/dietaryguidelines) and monitor changes in dietary pat-

terns. Efficient estimation of the distribution of HEI will allow nutritionists to answer

public health questions that have important policy implications. We expect successful

implementation of our methods to eventually replace the currently popular NCI method

(www.riskfactor.cancer.gov/diet/usualintakes/method.html) for estimation of HEI.

www.cnpp.usda.gov/HealthyEatingIndex.htm
www.riskfactor.cancer.gov/diet/usualintakes/method.html
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Figure S.23: Results for Fiber and Potassium in their commonly used measurement units. The
top two panels show their marginal cumulative distribution functions. The bottom panel shows
their joint cumulative distribution function for a set of grid points. The figure is in color in the
electronic version of this article.
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