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We present a technique for addressing single nitrogen-vacancy (NV) center spins in diamond over

macroscopic distances using a tunable dielectric microwave cavity. We demonstrate optically

detected magnetic resonance (ODMR) for a single negatively charged NV center (NV–) in a

nanodiamond (ND) located directly under the macroscopic microwave cavity. By moving the

cavity relative to the ND, we record the ODMR signal as a function of position, mapping out the

distribution of the cavity magnetic field along one axis. In addition, we argue that our system could

be used to determine the orientation of the NV– major axis in a straightforward manner. VC 2014
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4896858]

Over the past decade, nitrogen-vacancy (NV) color cen-

ters in diamond (Figure 1(a)) have attracted a great deal of in-

terest due to their outstanding quantum properties.1

Experiments have demonstrated long ground-state spin coher-

ence times of the negatively charged NV center (NV–) even at

room temperature.2 This makes NV– centers in diamond ideal

candidates for room-temperature qubits3,4 and for ultrasensi-

tive quantum sensors for detecting magnetic5–11 and electric

fields12 at the nanoscale even in biological settings.9,13,14

Both quantum information processing and quantum sens-

ing with NV– spins require the (coherent) manipulation and

addressing of individual spins typically through the applica-

tion of microwave (MW) radiation at a frequency that is reso-

nant with the ground-state spin transition. The NV– exhibits a

zero-field spin resonance at 2.87 GHz, which occurs between

the ms¼ 0 and ms¼61 spin sublevels of its spin triplet

ground state (see Figure 1(b)). The most commonly used

approaches for applying microwaves at this frequency are on-

chip microstrip lines (thin wires), coplanar waveguides, or

free-space loop antennas. On-chip solutions rely on near-field

coupling and require the NV– spin to be in close proximity

(on the order of 10 lm) to the wire or microstrip line. Besides

the inhomogeneity of the field, these on-chip solutions can

easily lead to significant sample heating and undesired sample

drift. Loop antennas typically work in the far field but require

orders of magnitude larger amount of radiated MW power.

In order to address single NV– spins in diamond, we

designed a so-called dielectric-loaded microwave resonator

(DLR) with high quality (Q) factor (see Figure 1(c)). DLRs

of this kind are typically used in low-temperature electron

paramagnetic resonance experiments for measuring the com-

plex permittivity of extremely low-loss dielectrics,15–17 but

are also employed for testing local Lorentz invariance in fun-

damental experiments.18 In industrial settings, DLRs find

applications in radar, proximity detection, information trans-

mission, remote guiding, navigation, and positioning.19,20 In

order to find an appropriate design for our DLR, we

employed the numerical method of lines21 or finite element

analysis. The design was guided by the desire to have com-

pact cavity dimensions and the requirement for the field to

couple evanescently to the NV– spins located in close vicin-

ity under the cavity.

We found the best configuration to be an open cylindri-

cally symmetric cavity with a pure transverse electric (TE)

mode with two non-vanishing magnetic-field components,

Hr and Hz. In contrast to whispering gallery modes, the TE-

field confinement into the dielectric is not as high and exhib-

its less spurious modes, leading to a higher Q-factor.22 We

denote the different cavity modes by TEm,n,p, where 2m is

the number of azimuthal nodes, n is the number of radial

nodes, and p is the number of nodes along the z-axis (sym-

metry axis) of the cylinder. For pure TE-modes, the

FIG. 1. (a) Diamond lattice structure with an embedded NV center. (b)

Level scheme for the NV– center including the hyperfine splitting of the tri-

plet ground state (3A). Optical pumping of the spin into the mS¼ 0 state

occurs via an intersystem crossing to the singlet manifold. (c) Dielectric cav-

ity with adjustable plunger. The outer diameter of the cavity is 32 mm, its

height amounts to 20 mm. (d) Transmission spectrum of the cavity with a

Full-Width Half-Maximum (FWHM) of 3.5 MHz corresponding to a

Q-factor of around 1000. The spectrum was recorded using a Fieldfox

N9918A (Agilent Technologies). (e) Numerically calculated cavity fre-

quency as a function of plunger position. The mode of interest TE0,1,3 tunes

easily across the NV– ground-state spin transition.
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azimuthal mode number vanishes, i.e., m¼ 0. Due to the par-

ticular boundary conditions, they only have three non-

vanishing components of the electromagnetic field, EH, Hr,

and Hz. By inserting a dielectric rod made of high-

permittivity, low-loss microwave material, the field can be

confined to an area of roughly 10� 10 mm2. From the few

suitable materials available,23 we chose TiO2 for which the

fundamental mode has a frequency of 2.2 GHz. For address-

ing the NV– spin transition, we then use the higher-order

TE0,1,3-mode resonating at 2.7 GHz. Frequency tuning is

achieved by mechanical insertion of a metallic plunger,

which directly affects the electric field and shifts the reso-

nance frequency up to a value of 3.1 GHz (Figure 1(e)). The

(loaded) Q-factor of this cavity mode is about 1000 (see

Figure 1(d)). Note that for perfect input coupling we would

expect the circulating intra-cavity power to be enhanced by a

factor Q compared to the incoming MW power. However, in

the current cavity the coupling coefficient is rather small

(about 1%).

The magnetic field of the DLR cavity has cylindrical

symmetry. Both the radial magnetic field strength, Hr, and

the vertical magnetic field strength, Hz, are displayed in

Figure 2. Figures 2(a) and 2(b) show two-dimensional plots

of the respective field strength in a plane that contains the

symmetry axis of the cavity: The x-axis corresponds to the

radial distance from the symmetry axis and the values on

the y-axis indicate the height above the bottom edge of the

cavity. We note that the radial field component Hr has a

maximum right at the bottom edge at r� 7 mm, indicating

a strong evanescent component. The vertical field Hz is

well-contained within the cavity. Figures 2(c) and 2(d)

show the expected variation of the radial and vertical field

in a plane 1 mm below the cavity. The plots are normalized

to the local overall field strength
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

r þ H2
z

p
. The graphs

clearly show that in the center of the cavity the Hz compo-

nent dominates (due to symmetry) whereas right under the

dielectric at r� 7 mm, the radial field is the dominant

component.

We now move on to demonstrate optically detected

magnetic resonance (ODMR) of a single NV– spin located

just below the cavity. The HPHT nanodiamonds (NDs)

(MSY 0.1 lm, Microdiamant) are placed on a glass coverslip

approximately 1 mm below the cavity which is mounted on a

x-y-z mechanical stage (see Figure 3(a)). The ND fluores-

cence upon excitation with a 532 nm laser is collected using

a home-built confocal microscope24 and sent to either a spec-

trometer or to avalanche photodetectors. Once a suitable sin-

gle NV– center is identified, we obtain an ODMR signal by

applying microwave radiation through our microwave cavity

and recording the corresponding fluorescence as a function

of microwave frequency. The microwave signal is generated

using a standard microwave generator (SMIQ 06B, Rohde &

Schwarz) and amplified (25S1G4A, Amplifier Research)

before applying it to the cavity. A typical ODMR signal is

displayed in Figure 3(b), clearly demonstrating the coupling

of a single NV– spin to the macroscopic microwave resona-

tor. Note that the contrast of the ODMR signal was opti-

mized by adjusting the cavity resonance frequency to the

actual transition frequency of the selected NV– center.

Depending on the ND, we found a maximum achievable con-

trast of up to 12%. Next, we recorded a saturation curve for

the ms¼ 0 ! ms ¼ 61 transition 3(c) giving a saturation

power of about 5 dBm for this particular NV– spin.

In order to demonstrate the spatial variation of the mag-

netic field, we recorded an ODMR signal as a function of rel-

ative position between the ND and the center axis of the

cavity by mechanically adjusting the cavity position. In the

low-power (or linear) regime, the contrast of the ODMR sig-

nal measures the local microwave power seen by the NV–

FIG. 2. (a) Radial magnetic field strength Hr in a two-dimensional cut along

the vertical symmetry axis (y-axis of the graph) of the microwave cavity. (b)

Analogous plot for the strength of the vertical magnetic field Hz. Shaded

areas indicate the dielectric material of the cavity. (c) and (d) Field inten-

sities Hr and Hz along the radial direction in a plane 1 mm below the cavity.

Both fields are normalized to the local overall field strength
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

r þ H2
z

p
. In

the center of the trap, only Hz is non-vanishing whereas directly under the

dielectric (shaded region) Hr is the dominant field component.

FIG. 3. (a) Experimental setup for measuring ODMR with the dielectric

MW cavity. The ND fluorescence is collected from below using a confocal

setup. The collected photons are sent to either a spectrometer or to avalanche

photodetectors. (b) Single-spin ODMR signal for a ND in the dielectric MW

cavity. (c) Saturation curve for the ODMR contrast as a function of micro-

wave power (produced by the signal generator). The inset shows an autocor-

relation signal with clear antibunching demonstrating that the ND contains a

single NV– center.
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spin. Figure 4 shows the result of such a measurement taken

along the x-axis in consecutive 1-mm steps, while the z- and

y-coordinate of the resonator were kept fixed with respect to

the ND position. In the figure, we plot the depth of the

ODMR resonance as a function of position, normalized to 1.

The plot displays the expected variation in ODMR contrast

and exhibits a maximum contrast of about 6% when the ND

is right below the dielectric of the cavity structure at r �
7 mm. The finite contrast at r¼ 0 indicates that the NV– spin

has a non-vanishing in-plane component. Since we do not

know the major axis of the NV– center, we cannot extract the

full information about the cavity magnetic field from

Figure 4. Using a ND with a known spin orientation, how-

ever, magnetic-field tomography is possible. The cavity pre-

sented here could also be used as a tool to determine the

major axis of a single NV– center in a straightforward man-

ner: By measuring the ODMR contrast in the center of the

cavity and in two additional points along the circumference

just below the dielectric slab at r � 7 mm, the direction of

the NV– spin can be calculated–provided the ratio Hz(r¼ 0)/

Hr(r¼ 7 mm) is known.

The main advantages of our technique are the large area

over which the spins can be addressed and the absence of

undesired sample heating allowing for stable long-term

observations. Our measurements once again demonstrate the

potential of NV– centers as robust technologically viable

magnetic-field sensors. In addition, the DLR cavity can serve

as a tool for identifying the orientation of NV– spins. In the

future, we plan to use the device for coherent time-resolved

spin manipulation.
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