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A decoupling approach to classical data
transmission over quantum channels

Frédéric Dupuis, Oleg Szehr, and Marco Tomamichel

Abstract—Most coding theorems in quantum Shannon theory that VorpeV = Yyr ® Egp for some state. If we then
can be proven using the decoupling technique: to send data trace outEE’, we see thal/ acted as a decoder to recover
through a channel, one guarantees that the environment gets the initial statey;z. One can also show that the condition
no information about it; Uhimann’s theorem then ensures tha that R andE b d' led i t onl fficient but
the receiver must be able to decode. While a wide range [1atftan € decoupled 1S not only sufficient but necessary
of pr0b|ems can be solved this way, one of the most basic|n Order to be able to transmit arb|trary quantum |nf0rmt|0
coding problems remains impervious to a direct applicationof This simplifies our task as information theorists: as long as
this method: sending classical information through a quantim  we can design an encod#r that ensures that this decoupling
channel. We will show that this problem can, in fact, be sohé  ,nqition is fulfilled, we know that a decoder must exist, and
using decoupling ideas, specifically by proving a "dequanting do not need to explicitly construct it. Furthermore, our aim
theorem, which ensures that the environment is only classadly P y ; : ! .
correlated with the sent data. becomes todestroy correlations rather than to ensure their

Our techniques naturally yield a generalization of the Holeo-  presence, which seems to be a rather less delicate tasktat firs
Schumacher-Westmoreland Theorem to the one-shot scenario glance.
where a quantum channel can be applied only once. To enforce the decoupling condition, a numberdafcou-

Index Terms—Coding, Decoupling, HSW Theorem, Smooth pling theoremshave arisen [12], [1], [7], [8]. The version
entropies. from [7], [8], whose approach we will broadly follow here,

goes as follows. LeT4 . be a complementary channel for
|. INTRODUCTION Ta—p and letpar be a quantt;m state. We consider the
state (T ® Zr)((Ua ® 1r)par(U} ® 1g)) on ER, where

ShOne ofththe mofr: fI’UItfth| ideas thaih‘;:zie ml' ql{[?ntu 4 is chosen randomly according to the Haar measure on
annon theory in In€ past Iew years I oupiingthe .U(A). It turns out that this state is decoupled (i.e. that it is
fact that, in quantum mechanics, the absence of corretathﬂ

bet i ¢ imoli foct lati t th ose to 7 (1/da) ® pr in trace distance) if the state and
teweertl 0 S¥ﬁ en:rs]_ :jmp|es Mper ec cqrr?aiﬁns 0 'do e channel fulfill a certain entropic criterion, namely ttha
wo systems with a third one. More precisely, the core idea. (A'|E), > 0 (thesesmooth min-entropies

B (A|R),+HE,

H . H H in P min

is as follows: suppose that we have a tripartite pure stqm‘- Il be defined in the next section). Roughly speaking, the
first term measures how hard the stater is to decouple,

|p)aBc, and that we know that the reduced state 4B
is a product state, i.e. dflp)pl] = pa @ pp. Then, we .4 he sacond term measures the “decoupling power” of the

knpw from th? umtary equivalence Of purifications that therchannel7_'; if the decoupling power of the channel exceeds
exists a partial isometryeo_,c,c, With the property that

Vip) = [0) 40, ® [@)ne,. In other words, ifA and B are the difficulty of decoupling the state, decoupling does adle

: .~ _happen.
completely uncorrelated, theti contains perfect correlations PP

: : _ ) By appropriately applying the outlined procedure, one can
ywth both A and B. Furt_hermore, this observation remains tru et a variety of coding theorems. This general approach has
if the state ond and B is only close to a product state, as cal

be shown via Uhimann's theorem [23] ow become a staple of quantum Shannon theory, and has

been used in quantum state merging [12], state transfer (als

This observation can be used to prove coding theorems 1 as “Fully Quantum Slepian-Wolf") [1], for sending
for quantum Shannon theory problems. To see this, supp ntum information through quantum channels [10], for

that we have a channdly_,s, with a Stlnespnng dilation uantum broadcast channels [9], quantum channels with side
(Ur)a~pe, and that we want to use this channel to sengle, ;o avion [6], among other examples.

guantum |nf0rmat|0n_ from Alice (who has access to th_e INPUt+he common point in all of the previous papers is that they
4) Fq qu (who receives the output syste). Let wM.(W'th use this argument to serglantuminformation. For sending
purification|v) 1) be the state of the message Alice wantg,qgjeq information, on the other hand, the argument does

to send, and ety 4 be the encgdlng Isometry she_ US€Rot work directly. The reason for this is that if one sends
to map her state to the channel input. After encoding tr&

- fassical information, the channel environment (the syste
state andeeTndmg it through the channel, we have "~ E above) can also receive a copy of the message without
Ur Wy WTUZ. Now, suppose that the encodl_ng operatlpn |i?npairing the protocol. However, it turns out that for the
such thatopp = Y@ pp. Then, the argument in the PreVIoUSyrotocol to work, E can only share classical correlations
paragraph tells us that there exists an isomelgy, 1/ such with the message; in particulaF; cannot contain any phase

F. Dupuis is with ETH Zirrich, O. Szehr is with TU Miinchen and minformation about the message, otherwise Bob cannot decode
Tomamichel is with CQT, National University of Singapore. Hence, while the vast majority of quantum Shannon theory
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can now be done using decoupling methods, classical coding - B

over quantum channels, the so-called Holevo-Schumacper- 4 T B A—yT Ly
Westmoreland theorem (HSW theorem) [11], [18], remains a | & 1

notable outlier. The purpose of this paper is to close this ga IR

and provide a decoupling proof, based on the above argumég. 1: Diagram illustrating the purification of a CQ-channel.
of the HSW theorem. The environment (depicted with a dashed box) of a CQ-

The results presented here have a somewhat similar flagbannel can be split into two parts, a regisiéithat contains

to those presented in [16], but a rather different emphasiscopy of the input and a systefi.

In both papers, the idea that the environment cannot have

information about the phase of the classical message arises

as a central theme. In [16], this occurs in the context ofgisin Linear maps fromC(# 4) to £L(H ) will be denoted by cal-
complementary bases to get coding theorems from privaligraphic letters, e.g7a.p € Hom(L(Ha), L(Hp)). Quan-
amplification and information reconciliation, whereasenhér tum operations are in one-to-one correspondence with trace
arises as a natural analog of the concept of decoupling. Preserving completely positive maps (TPCPMs). The TPCPM

The paper will be structured as follows. Section Il wilwe will encounter most often is the partial trace (over the
explain the notation and basic concepts needed for thisrpajystemB), denoted tg(-), which is defined to be the adjoint
Section 1l will give a dequantizing theoremwhich will be mMapping of Ta, ap(£a) = €4 ® 1 for €4 € LT(H4) with
the analog of the decoupling theorem that we will need fégspect to the Schmidt scalar prodyet, B) := tr(A'B).
the classical case, and Section IV will show how to use it tbhis means (4 ® 1p)Cap) = tr({a tre(Cap)) for any
derive coding theorems for sending classical informatioero Cas € L'(Hap). Given a bipartite state€.p, we write
quantum channels. Finally, we discuss the results in Sectioa = treéap for the reduced density operator ot and
V. &g = traap, respectively, onB. If £4p5 is pure, we call
|€) ag @ purification foré4 and¢p.

The mapC(-)a = >, |iXi|a(-)|i)i|a classicalizes an ar-
bitrary density operator oMl by removing all off-diagonal
A. Quantum States and Maps elements. Whed is applied to part of a bipartite state 5, we

Let 7 be a finite dimensional, complex Hilbert space. Thget the CQ state®; := (Ca ® Zp)(pag). Here, I denotes
set of linear operators o will be denoted byL(#), the the operator identity o3, which we will only write explicitly
set of Hermitian operators bg(#) and the set of positive- if it is not clear from the context.
semidefinite operators is given (). The set of quantum The Choi-Jamiotkowski representation [3], [13] of
states is given bf_(H) := {p € P(H) |trp =1} andthe set Tap € Hom(L(H),L(Hp)) is given by the operator
of subnormalized quantum statesSs (H) := {p € P(H) | wap = (Tasp ®@Za)(Paa), where Ha is a copy of
tr p < 1}. A subscript letter following some mathematical obH4. We say that7Ty.p € Hom(L(Ha),L(Hp)) has
ject denotes the physical system to which it belongs. Howevelassical-quantum (CQ) structure if its Choi-Jamiotkoivsk
when it is clear which systems are described we might drop tfepresentation is a CQ-state. For a md@p with Choi-
subscripts to shorten the notation. Given two physicalesyst Jamiotkowski w3 we define the map7< to be the
A and B, the joint bipartite systemiB is represented by a uniqgue map whose Choi-Jamiotkowski representation is

Il. PRELIMINARIES AND NOTATION

tensor product spacH 4 ® Hp =: Hap. wi g =Ca(wap).

We will denote by 1,4 the identity operator onH 4 In our context it will also be important to purify quantum
and by s := 14/da the completely mixed state od, channels. Given a TPCPNIy ,p € Hom(L(HA), L(HB)),
whered, = dimH,4. For dy > dp the statesT,p := We define the unitaryUr)a_,pr to be any particular Stine-

% ?B liXi|a @ |i)i|g and® 45 := % ZZ? iXila ® |i)jls spri_ng dilation of7". The purifying systent’ will be called t_he
in S_(Hap) represent maximal classical and, respectivelghvironmentof the channel. For a chann@l,, 5, we define
quantum correlations between the systefnand B. the complementary chann@h_, g : X — trp[Ur X (U7)'] to
Suppose|y)) 4 is a pure state of the bipartite systenbe the channel to the environment.
AB (i.e. the system is in the stateap = [v)X1|ag) and The purification of a CQ-channel™ with T(£4) =
da > dp. Then there exist lists of orthonormal vectors , tr (|iilaa)pll is given by UT|i) o = |i) x ® |pl?) ge.
{li)a}i=1,..d5 € Ha and{|i)p}i=1,....ap € Hp such that Thus, the environment of such a channel can conceptually
[Y)ap = > ; Aili)ali)p, where); > 0 and ", A\? =1 [15]. be split into two parts: a registeX, which contains a copy
The corresponding bas{$i) }i—1,....4,, is calledSchmidt basis of the input to the channel and a systefit which stems
and the numberg; are Schmidt coefficients from the purification of the operator,ég]. See Figure 1 for
A quantum statepap € S<(Hap) is said to be classical an illustration of this. The Choi-Jamiotkowski represeiota
with respect to a fixed basifi)}i=1,.. 4, Of Ha if pap € of acomplementary channel of a CQ-channel can be written as
span {|iXili=1,..a, L (Hp). If in additionpap is notclas- wa g x, Where the system& and A’ are classically coherent.
sical onHp we call it a hybrid classical-quantum or shortlyFurthermore, we will frequently be considering channets th
CQ-state Moreover, we call a statexx'p € S<(Hxx'p) are complementaryto CQ channels; we will call such channels
coherent classicalbn X and X’ if it commutes with the “complementary CQ channels”.
projectorPxx: = > |z z|x ® |x)z|x/. The swap operataf4 4. acting on the bipartite spagé -



is given by Faar := 3", - [i)jla @ |j)ila- It is easy to verify de Graaf inequalities
that for any M., Na € L(H4) the swap operator satisfies

1 1
tr(MANA/) = tr((MA (24 NA/)FAA’)- 5 Hp — O'Hl + §|trp — tr0'| < P(p, 0')
For any operator if4 € £(H4) we denote by|£a[: and
|€4]2 the Schatten 1 and 2-norms &f, respectively. These < \/||P —of, +rp—trof. 1)

norms are unitarily invariant and satisfifal: < |€a]1 <

Vda|éal2. The metric induced o (#) via the Schatten 1-

norm is D(p, o) := ||p — o|l»- Another measure of closenessSmooth Min-Entropy [17], [22] Let ¢ > 0 and letpap €

between states oR(H) is the fidelity, F(p, o) := ||\/pv/0|1. S<(Hap) with /Irp > ¢, then thes-smooth min-entropypf
A conditioned onB of pp is defined as

We say thap is e-close top, denoteds ~. p, if P(p,p) <e.

B. Permutation operators Hgin(AlB), = mg‘XHmin(A|B)ﬁa

The symmetric groug, is the set of all bijective maps of yhere we maximize over afi
{1,...,d} to itself together with the concatenation of maps _
as the group multiplication. Elements of S, are called Next, we define the smooth max-entropy.

permutations. Le# be a Hilbert space together with a fixedsy,qoth Max-Entropy [17], [22] Let ¢ > 0, let pap €

basis {|i)}i=1,...4. For # € S4, we define the permutationSS(HAB) and letpapc € S<(Hapc) be an arbitrary purifi-

operatorP(m) on # such thatP(r)[i) = |r(i)). The group cation of p,5. The e-smooth max-entropgf A conditioned
of all such matrices will be denoted B§. Typically in this , B of pap is defined as

paper{|i)}i=1,....a Will be the Schmidt basis of a given density
matrix. The above permutation matrices then act by reanderi Hipao(AB), = —Hgin(A|C),.
the elements of this basis.

Given a random variabl& : P — Q (2 some measurable
space), we shall writdBp[X] = > .. X(P) for the
expectation value oK with respect to the uniform probability
distribution onP.

R p-

The fully quantum asymptotic equipartition property (QAEP
states that in the limit of an infinite number of identical
states the smooth min- and max-entropies converge to the von
Neumann entropy [21], [20]: Letap € S—(Hap), then

1
H(A|B), = lim —H,(A"|B"),en

. n—,oo N
C. Smooth entropies — fim lHﬁqax(A"IB")pm. B
Entropies are used to quantify the uncertainty an observer noeen
has about a quantum state. Moreover, conditional entroplesthat sense, the smooth conditional min- and max-entsopie
quantify the uncertainty of an observer about one subsysfencan be seen as one-shot generalizations of the von Neumann
a bipartite state when he has access to another subsystem.€rHropy.
most commonly used quantity is the von Neumann entropy.
Given a statepap € S=(Hap), we denote byH (A|B), := p_ yhimann's theorem and existence of a decoding operation
H(pag)— H(pgp) the von Neumann entropy of conditioned
on B, where H (p) := —tr(plogp).

While the von Neumann entropy is appropriate for analyzi

To prove a coding theorem it is necessary to establish the
istence of a decoding operation. That is, given a quantum

processes involving a large number of copies of an identi pte that results from the execution of some quantum channe

system, the min-entropy is relevant when a single systemW§ WOUI(_j like to recover the message or|g|nally_ encoded
considered [17]. into the input of the channel. It turns out that this can be

achieved if and only if the environment of the channel and
Min-Entropy [17] Let pap € S<(Hap), then the min- some reference system purifying the original message #re le

entropy of A conditioned onB of p,p is defined as uncorrelated after the execution of the channel. In thigasibn
\ the existence of a decoding operation follows from Uhimann’
Hpin(A|B), == Juax )SUP{)\ €R[pap <27"1a®0op}. Theorem [23], which we shall state here for completeness.
oB = B

Theorem 2.1 (Uhimann’s Theorem)et p4,04 € S(Ha)
More generally, the smooth conditional min-entropy is dedin be two quantum states with respective purificatigfis,s and
as the largest conditional min-entropy one can get within |&) ac. Then,
distance of at most from p. Here closeness is measured

with respect to theurified distanceP(p, o), which is defined
as [22]

F(pa,o4) = nax WV,

where the maximization goes over all partial isometriesnfro
P(p,0) :=1/1— F(p,0)?, Bto C.

Since our decoupling results involve the Schatten 1-norm
whereF (p, o) is thegeneralized fidelityF (p, o) := F(p,o)+ rather than the Fidelity it will be useful to transform theoab
V([ —trp)(1—tro) for p,o € S<(H). The purified distance theorem into a statement formulated in terms of Schatten 1-
constitutes a metric [22] 06< (#) and satisfies the Fuchs-vamorms. The following Corollary [5] follows from Uhlmann’s




how the statement found about the Schatten 2-norm can be
transformed into the one above. In the third subsection we
reformulate the upper bound of Theorem 3.1 using the smooth
conditional min-entropy. This enables us to make statesnent
about independent, identically distributed channels Via t
QAEP, Equation (2).

| A. Dequantizing with Schatten 2-Norms

We first prove a statement that holds for general hermiticity
preserving, linear map§ 4.5 € Hom(L(H.4), L(Hp)) with
Choi-Jamiotkowski representations .z € L (Ha ). In
Proposition 3.3 below, we will compute the expectation galu

Iﬁ@ HN (PA(/)AR - P%R)ij) Hz

Fig. 2: lllustration of the dequantizing theorem. The top da
diagram illustrates the situation in which we apply the de- da—1

quantizing theorem: we apply a random permutaffotd par  where the permutation operators act by permuting the basis

following by the channel. The bottom diagram illustrates thectors of the Schmidt-basdisTo prove this, we first need the
“ideal” state we would like to get at the end: a state cont@ni fo|iowing lemma:

only classical correlations betwednhand E.

lpar = o3l lwas — sl

Lemma 3.2:Let H 4 be a Hilbert space with orthonormal
basis {|i)}i=1,..a, and letP be the corresponding set of

. L rmutation operators. Then for any j one has that
Theorem with an application of the Fuchs van de Gragi'e P ¥

Inequalities (cf. Equation (1)).

®2 (15\/ TR 92
Corollary 2.2: Let pap, oap € S(Hap) be pure quantum Eper (P** ([i)ila @ iXila) (PT)*?)

1

states and assume thjis —oa|; < e. Then there exists = (Faa —daTan).
some isometry/p_,¢ such that|lUpag UT — oap|1 < 2+/E. da(da —1)
Proof: There ared4! permutation operators if?. For
[11. DEQUANTIZING THEOREM arbitrary but fixedi # j and k # [ there are(ds — 2)!

In this section, we will derive the dequantizing theorerR€rmutation operators witfP)*?|i) 4@ |j) ar = [k)a®|l) a.
which will be the core technical ingredient for our coding®n the other hand there is no permutation such that forj
theorems. Our aim will be to derive conditions under whici1e operatorP4)®? maps|i)a ® |j)as to [k)a @ [1) 4 with
the output of a channel contains only classical correlatioh = . We conclude that

with a reference system. More precisely, we will prove the

following. g Precney P E ((P4)® (ilila ® ikilx) (P5)*)
Theorem 3.1 (Dequantizing Theorem)et 74 ,px be a (da —2)! da

complementary CQ channel, and ety px € S<(Ha px) = Ail' Z [EXa & |1)Kk|a -

be its Choi-Jamiotkowski representation. Letr be a pure dat k1

state onH 4r, and letp% ; := Ca(par). Then .

Proposition 3.3 (Distance from classicality):et
Nasp € Hom(L(Ha),L(Hp)) be a linear map with
Choi-Jamiotkowski representationy z € LT (Hpa), and let

EPAePHT (PA(PAR — P4R) ij) Hl

< \/ 1 27Hmin(Ay|EX)w*Hmin(A|R)p (3)

da—1 ’ |p>AR:Zi\//\i|ii>AR- Then

where the permutation operators act by permuting the 9
Schmidt-basis vectors gfsr. Ig HN (PA(pAR — pi{R)Pj,) H

In other words, Theorem 3.1 gives a bound on how close the 2

ty .. . dA cl 2 cl 2

state T (PaparP)) is from a state containing only classical =T loar — parl;, |was —wiipll;,
correlations betweei and E (namely,T(PApi}RPL)). See A
Figure 2 for an illustration. where the operator® permute the Schmidt-basis vectors of

The rest of this section is devoted to the proof of Theorepy.
3.1 and is organized in three subsections. In the first one Proof: Rewriting the Schatten 2-norm in terms of the
we calculate the above expectation value with the Schattieace, we get
1-norm replaced by the Schatten 2-norm. We conclude the
proof of the above theorem in the second subsection showin@an extension of this result to an arbitrary basis is known].[19



Proof: Choose&l i such that it maximizes the min-entropy,
i.e. it satisfiestap < 2~ Hm(AR)<1 4 ® (5. Hence,

V Ear(la ® Cgé)éAR(ﬂA ® CE%) Ear < 27Hmin(A|R)§€AR

) Taking the trace on both sides concludes the proof. =
dr Proof of Theorem 3.1:We first introduce some notation.
= Iﬁ@ tr | NV (Z VAA; PaliYjlaPh @ |i><j|R> We abbreviate the difference betweens and its classicalized
i#j version by writingpar := par — p% . By Lemma 3.4 there
are operatorggpx andrg such that

2
E |N(Ps @1k (par — pin) Ph e 1n)|

=Etr (N(PA @1 (par — i) Ph @ ﬂR)Q)

dr

_ ;Am [Etr (W (PalifjlaPh) & (PaliilaP}) )] L, ( o O_E%Q)WAIEX)Q) p—
dr rMwa ex]

= Z {)\i)\j . and
oy

tr (N2 (1% (P§2(|z'><j|A 2 |j><i|/x)(Pil)®2)) FBB') } ﬁtr (((]IA ®TR1/2)PAR)2> < 9~ HuinAIR),

4) Since T, gx is a complementary channel of a CQ-channel
dr we can assume thatgpx has CQ-structure, i.ecpx =
= Z dA P tr (N®? ((Faar —daTan)) Fp) (5) Y. 0% © |z)z|x. Furthermore the operatgrap is given
in its Schmidt-basis, such thatz can be written asyr =

B ||pAR — p4Rl3 . > . rzlz)z|r. (Both facts follow from Lemma A.1 in Ap-
© da(da—1) pendix A withe = 0.)
(tr (N2 (Fanr) Fpr) —tr (N)E2 (Faar) Fpp)). We introduce a systen® with (d4!)-dimensional Hilbert

©6) space,H p, and canonical basis vectol®) p» that correspond
to the permutation operators &f € P. We define the operator
Equation (4) is by an application of the swap trick and
in equation (5) we applied Lemma 3.2. To simplify (6) we (pPreEx =
evaluate the term (W®? (Faa/) Fpp/) using the inverse dr
Choi-Jamiotkowski isomorphism: (Z 72| PXP|p ® |x)x|r ® og@ ® |P(x))P( )|X> ,
x=1

tr (./\/®2 (FAA’)FBB/)

which can be inverted on its support to yield
— &4 tr (tran (W52 (Faa ® 1pp:)) Fop) PP y

:dit (wAB(FAA’®]lBB’)(]1AA’®FBB’)) (7) dr
—1 — -1
=ditr (wip)- CPREX = dA!Pze;P(mZ:l% |PXP|p @ |z)z|r ©
In Equation (7) we used the fact that the adjoint mapping of P(z)\
the partial trace is tensoring with the identity. Analodgus (GE ) ® |P(I)><P(I)|X) ’

one has
tr (W)®2 (Faar) Fppr) = di tr (wiip)?)
and the second factor of (6) becomes
tr (N2 (Faa) Fpp) —tr (N2 (Faa) Fp)
= d3 (tr (whp) —tr ((Wip)?))

= &% Jwar — wisll-

We note that the operatdri (% is a projector and
Iﬂ@ |PYPlp® T(Pa ® LpparPh @ 1R)
= (Ci¢TH) [In@ |PYPlp @ T(Pa ® LrparP) ® ]lR)} (CT3¢H)
8
Using these operators, we write
[ | E HT PAﬁARP,L H
-E H PYPle® (T(PaparPl) H
B. Dequantizing with the Schatten 1-norm [PXPlp & ( (Paparba )

In this subsection we derive Theorem 3.1 with an applica= HE |PXPlp® (T(PAPARPA )H1

tion of Proposition 3.3. We use the following lemma. L _ L
_1 _ T _1

Lemma 3.4:For any éap € S<(Hag), there exists an = VI (CprEx) HC * (Iﬁ@ |P><P|P®T(PAPARPA))C I,

operator(r € S—(Hg) with (9)

<((11A®C§1/2)§AR)2) < 9~ Huin(AIR)e Inequality (9) follows from Equation (8) together with

1
—tr
trlar] an application of the Holder-type inequalityABC|,



H|A|4H% H|B|2H1% H|C’|4H%, [2]. The trace term on the right where the permutation operators act by permuting the
hand side of Inequality (9) can be evaluated directly to be Schmidt-basis vectors gf,.

dn Proof: Let Wagx € S<(Harpx) be a state that
tr(Cprex) = Y 1o Bir (Ug(w)) - di saturates the bound in the definition of the smooth min-
= F A entropy, i.eP(wapx,Wapx) < ¢ and Hy, (A |EX); =

Thus, it is sufficient to evaluate the term with the Schattef{min(A'[EX).. A”a|0890U5|yﬁAR satisfiesP(par, par) < €
2-norm. For notational convenience we introduce the mz%‘dein(NR)ﬁ: Hin(AIR),-

T() = (opx)"1T()(opx)~T with Choi-Jamiotkowski ~ USing inequality (1), we find that
representationva gx and the operatopar = (1la ® ~ < 9. —~
. — % ’ — ’ 2 — < 2e. 10
TrR) % par(la®7R)" 7. Using the fact thaf is the comple- lwarmx = ©arpxlly <27 llpar = parly < 26 (10)
mentary channel of a CQ-channel one can verify that We decomposé — w into positive operators with orthogonal
_ support writingo — w = Ay — A_ and conclude from (10)
_1 _ f _1
¢ (BIPKPl @ T(Papan P)) ¢ that A |, < 2 and|A_|, < 22"
1 PP Similarly, we decomposéoar — p%ig) — (Par — P4g) =
T dal Z [PXPlpe ', —T'_ with the operator$',. andI"_ again chosen to be pos-
" PeP

- ) itive and with orthogonal support. From the second inedyali
((aEX@TR)_ZT(PA parPy)(0px ®TR)_Z) in (10), we conclude thall", |, < 4e and[I'_|; < 4e.

1 ~ 3 ; Let 7, D+ and D_ be the unique Choi-Jamiotkowski

N > IPXPle®@ T (Papar P}). preimages ofis px, A, and A_ respectively. We note that

PeP from the fact thatwa gx is classically coherent between

Using this, we find A’ and X it follows that W4/ gpx also shares this property

(See Appendix A, Lemma A.1). Furthermore the statg;
is classically coherent betweet and R, such that the state
2 par has the same Schmidt-basis @asg (Lemma A.1). We
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H<7% (I% |PYPlp®@ T (Pa par PI&)) =

~ 2

=E HT(PA PAR P,Z)H therefore can apply Theorem 3.1 on the statesndp to find

P 2
— da ~, ~cl 205 ~C 2 1 N
= g 1eaex = Spxs [par — Ainl; \/d 0 (R 0~ o AR,

=
da ~2 ~9
< di 1 tr ((UA/EX)tr (pAR) _ \/d 1 1 o H, (R [EX)o — oy (AIR);
T

dA —H.. (A —H..
— 92 min(A [EX)wo — Hpin (A[R) ~ ~ ~c
" & | (Paoan 74 ),
where we apply Proposition 3.3 to obtain the second equal
and use the special choice®f x andrg (cf. Lemma 3.4) for
the last inequality. Plugging this into Equation (9) conlgs
the proof. [ ]

i . . . . .
A%plymg the triangle inequality twice shows that for any
permutation operator we have

|7 (Pa@sn - 2iwm3)],

C. A smoothed version of the dequantizing theorem > HT (PA(pAR - pﬂR)PI‘) Hl

The reason for introducing smooth versions of the min- and N R el +
max-entropy is that these quantities can vary a lot with bmal H (T o T) (PA (Par — pAR)PA) H1
variations in the underlying states while the quantitieat th H - ( cl ~ ~cl T)H

: : o L= P - - - P 11
we are bounding with them do not. This is such a case; it T \Pa((par = pir) = (Par = Pan)) Pa 1 (11)
is therefore desirable to have a version of the dequantizingrpe first term on the fight hand-side of Inequality (11)

theorem which involves the smooth entropies. The smoqgiresponds to the unsmoothed dequantizing theorem. Eor th
guantities have the additional advantage that they COBVeHmaining two terms we find upper bounds:

to the corresponding von Neumann quantities in the i.i.deca
(cf. Equation 2). We therefore prove the following: = ~ f
Theorem 3.5:.Let T4 ,gx be a complementary chan- Iﬁ@ H (T T) (PA(pAR pAR)PA)H1
nel of a CQ-channel, letvagx € S<(Hpxa’) be the < Etr(D. (PapanPt
Choi-Jamiotkowski representation of, and let |p)ar = - Z }IF’ ( ( APAR A))

> VAilit) ag. Let e,e” be such thaty/tr(p) > ¢ > 0 and et

tr(w) > ¢’ > 0. Then, + Bt (D“ (PA’A)?‘}RPI‘))
ae{+,~} (12)
IIE; HT (PA(pAR - P(ZIR)PD Hl =2 Z }I[E;tr (Da (PA pA PI;))

1 AV aE{-l—,—
—HE! (N [EX), —HE, (AR ’
= \/dA —p 2 AR +8e + 8¢’ <2 (tr(Ay) +tr(AL)) < 8¢



We bound the third term in a similar way. We have M A 2 B 7
- | R | : L< ] L] LZ]
E |7 (Pa ((par— hr) — (har — 94r) P1) |,
cl
< Y Eu(7(Parap})) PMR
a€{+.-} (13) R
Str(Ty) +tr(l-) < 8e. Fig. 3: Diagram illustrating the transmission of classical data
Substituting the expressions (12) and (13) into Inequdhrough a quantum channel. The stafg ;, represents perfect
ity (11) shows that cl_asgcal corrglaﬂons of a messalg@agg a.referencﬂ. The
aim is to obtain after decoding a systdmwith nearly perfect
E Hff (PA(ﬁAR — 54y pj‘) H classical correlations te.
P 1

>EH7_'(P —p9 PT)H — 8 — &' _ o
TP a(Par = Pir) Pa 1 The present subsection shows how the dequantizing theorem
and an application of Theorem 3.1 concludes the proom (Theorem 3.1) can be used to show the existence of a decoding
operation; in the following subsection, we will apply the
IV. FROM DEQUANTIZING TO CODING theorem to get the encoder.

i H cl —

In the following subsections we show how the dequantizirg;lz'\r/s)\i'_ we purllIly t?e StatgﬁMR from t";:b(t)‘{; t0|¢>1‘4(f% =~
theorem (Theorem 3.5) yields a one-shot coding theorem i ”1|“>1‘4Rt‘. | ext, Wte Wi a.s?rL]J_m.e l.a hl el encogens |
classical information. Then, in the last subsection, wel\ap actually a partial isometry), , 4 this is slightly less general,

this coding theorem to the iid scenario and obtain the stet rlte v:/:::etyrrnboui:StoSt::)neeSer;iC;]ugf(ljirgtzo%;purposﬁh;zen,
theorem as a corollary. P y pring A-BXE)

X contains a copy of the classical input, as explained in the

preliminaries (Section Il). Likewise, the decodBrbecomes

A. Sending classical information through a quantum channg|e partial isometry/? — | with an “environment” system
Consider the following scenario: Alice wants to send &,. See Figure 4 for an ilfustration of the purified picture.

classical messagk/ to Bob using a quantum chanrigl . . Now, we will show that if dequantizing holds, then a suitable

For this purpose she encodes her message using an encodewder must exist. Consider the two staiemndp in Figure

TPCPM &y 4 into the inputA of the channel. Having re- 4, which are the states immediately before and immediately

ceived the output of the channBl Bob will apply a decoding after the decoder, and look at the reduced stateR 0B and

TPCPMD,,_, ;; aiming to recover the original message. Sinc&. Since these subsystems are untouched by the decoder, we

we are interested in the transmis_sion of classical dataitfiro have thatprxr = prxE., and prxep and ﬁRXEﬁED are

a quantum channel, the operatiéncan be assumed to beboth purifications of this state. The decoder is then simply

classical, while7 is a CQ-channel. the partial isometry that relates them and which is guaeghte
Alice’s messagel/ is assumed to exhibit perfect correlato exist by the unitary equivalence of purifications. Hera=,

tions with some classical reference syst&8niThis means that long asprxr is of the right form, we know that a suitable

the joint state of the message and the reference can be ré@geoder must exist.

resented by the operatefy,, = Zf;‘”l Ailii)(ii|wr for some We must now find out what this “right form” is. Note that

probability distribution). The aim is that after decoding, Bobsince the encoder is classical, and the channel is CQ, one can

holds a systemV/ which contains Bob’s decoded messagehow thatp, y p37g,, Must have the form

Naturally, we want)/ to contain the same messageldswith ‘

high probability, which is equivalent to saying that is almost |P>RXEA7ED = Z \/)\_i|i>R ® |m(i))x ® |W>EA?ED,

perfectly correlated to the reference syst&m(See Figure 3 i

for an illustration of this scenario.) Mathematically,dlmeans for some set of state§|)')} and some permutation. Fur-

that we want the probability of errgr. to be bounded as  thermore, we know that the error probability must be lows thi

means thatp) must be close to a state of the form

2. = [[(Dp_ 570 Tasm o Enrmsa)(Wiin) — ¢kg|, < &

In other words, the state after encoding, the channel, an|(§>RXEMED

decoding is withire in trace distance to a state that is perfectly P )
correlated between! and the copy of the message it where here the decoder outplut is perfectly correlated with
the message iR (and {|¢%)} is some set of states). Tracing

B. The purified picture out MEp in £, we get

To apply the dequantizing theorem, it is necessary to work Erxe = Y _ Nilim(i))im (i) rx @ 0.
with pure states and operations. Hence, for our derivation i

we will consider the setup depicted in Figure 3, but whenfdote that this¢ has only classical correlations between the
all states and operations are replaced with the correspgndihree systems — this is the “right form” that we need for the
purifications. channel output.



| v Tracing out the systemX and E, we get
% UD

il | 4 x

V UT | | < 2 \/ 1 27Hr€nin(A‘Ex)w7Hmin(M‘R)<p

u B S da—1 + 8e¢.

By the duality of the smooth min- and max-
entropies [22], we have—Hpi,(M|R), = Hmax(M),

HD @) T(PA@I\IRP,Z) — (pgj\%Rul

g

‘ and—H:, (A|EX), = HE,(A|B)., yielding the following
lo)arr PRXEB theorem:

~ Theorem 4.1:Let T4, be a quantum channel with

PRMXEED Choi-Jamiotkowski representation, s, and let |p)yr =

Fig. 4: Diagram illustrating the completely purified scenario2_; vV/Ailii)nr, Where); is a probability distribution. Then,
SinceT is a CQ-channel the corresponding environment ca¥e have that there exists a permutatiéh on the basis
be split up in two partsy and E. elements of4 such that

) . H'DOT(PAQO]WRP);)—QD%RH
Hence, we have reduced the problem to finding an encoder !
that ensures that the output of the channel has almost only - 2\/\/

: . Sl . He o (A|B) ot Hax (M),
classical correlations, and this is precisely what the dequ 2Hihax (A1B)wtHmax (Mo 4 82 (15)

tizing theorem does.

da—1

Hence, if the right-hand side of the above inequality is $mal
C. A one-shot classical coding theorem enough, then the scheme succeeds. We formulate this fact as

We now put the pieces together and derive a coding tH&€ following corollary of the preceding theorem: _
orem based on the argument in the previous subsection. Ww&orollary 4.2: Let 74, p be a quantum channel with Choi-
need to obtain an encoding operation with the property thmiotkowski representatiow 5, and let M be a set of
trg(Tof(par)) ~ 32, Aslim(i)Xin (i) rx ®0%. On the other Messages withM | < d4 andp a probability distribution on
hand, note that by sending thiassicallycorrelated states,,,, V- Then, there exists an encoder and a decodefTior
through the channel (as opposed#).;r), we automatically With error probabilityp. > 0 if
get a state of this form, regardless of the encoder. Oureglyat
will therefore be to show that Humax(M)p <

T (E(emr)) = T (E(5R))- (14) logda — Hypax(A|B)w — 1+ 2log (pi - 86)-

We are now in a position to use the dequantizing theorem.
The encoder is constructed as follows: we first embed th¥
messagé\/ into the input space of the channél (We could
denote this using a partial isometry, but to avoid cluttgri
the notation we will simply conside} ,, to be a subspace of
‘H 4 from now on.) .We then apply a perml_Jtation on the basﬁ_ The i.i.d scenario and the HSW theorem
elements of4, as in Theorem 3.5. We will then show that,
if we average over the choice of permutations, this strategyAPPlying the above to a channel of the foffif”"; ; allows
works. It then follows that a suitable permutation exists.  Us to easily recover the HSW theorem. Recall that the HSW

Applying Theorem 3.5 to the scenario at hand, we get th#eorem states that there exists a family of codes7fowith

some constand, 0 < e < %.
Proof: The abvoe inequality ensures that the right-hand
nside of (15) is at mos2p.. ]

there is a permutation operator such that increasing block length with a vanishing error probability as
n — oo as long as the rat@ is less than/ (X, B),, wherer
HT(PA(cpMR - @%R)PZ)H is a state of the formxp = > po|z)z|x ® T(0%), where
! p, forms a probability distribution. (The rate of a code for
< \/ 1 92— Hiin(AlEX)w — Hpyin(MIR)o 1 8¢ n uses of a channel i% log K, where K is the number of
T Vda—-1 possible messages sent.) The only challenge facing us when

This gives precise bounds for (14) above. We now get thtempting to prove this is to relate the quantibgd, to
decoder using Corollary 2.2: there exists a TPCBY 7 nH(X),. We do this using the idea dfpes explained very
such that briefly in Appendix B. The result is the following theorem:

ol A Theorem 4.3 (Holevo [11], Schumacher-Westmoreland [18]):
HD (UTPA(@MR - gDI\fIR)PAUT) Hl Let T4 be a CQ channel, let be a probability distribution

\/\/ . over the setX, and letrxp := > q(z)|z)z|x ® T (0%),

92— Hein(AIEX)w—Hpyin(MIR) 1 8¢ where{oc7 : x € X} is a set of states oA. Then, there exists
AT a family of codes for7®™ whose rate approaché¢X; B)..

<2




Proof: Let p € P, (X) be the most likely type under theand the method of types is needed to shape the input into
distribution ¢, and letA’ be a system with{ 4, C H%™ of this form in order to achieve the HSW capacity. The latter
dimension|t(p)| defined as weakness could potentially be overcome inside the deaogipli
. . framework, using an analogue of Theorem 3.14 in [7].

Ha :=span{|Z)an : T € t(p)}. 9 9 [7]
Now, consider the channél}, . .. defined as follows: APPENDIX A
| TECHNICAL FACTS ABOUT THE SMOOTH ENTROPIES
T'(Ea) = Y (BT (02),

Zet(p) Here we establish some useful properties of the (smooth)
min-entropy of classically coherent states. In particdidara
statepx x4 that is classically coherent betweéh and X’

we show that the statey:p that optimizes

whereoz = 0;, ® - -+ ® 0, . Furthermore, lety;, 5. be the
Choi-Jamiotkowski state of’, and let us apply Corollary 4.2
to the uniform distribution over some message $dtand
channel7’. We get that there exists an encoder and a decodery, . (X A|X'B)

such that g

= max sup {)\ eR: ﬁXX’AB S 2_>\]1XA X O'X/B}
log M| <logdar — Hy,, (A'|B™)e, — o(n) e
_ e fpny can be chosen to have CQ-structure. Furthermore we show
= log[t(p)] — Hpou (A1 B")es — 0(n) how the min-entropy of a classically coherent state behanes
der smoothing. The following lemma is a direct consequence

From the properties of types, we have thatp)| > Of the results obtained in [22].

|fpn(:{)|—12nH(X)T' Also, note that Lemma A.1l:Let PXX'AB be coherent classical o an_d
o o X'. Then, there exists a stafe; x a5 € B°(pxxap) that is
warpn = Wy ey /L) TX 5] coherent classical o andX’ and astatex 5 € S<(Hx'5)

Using Lemma A.2, we get that that is classical onX’ such that

Hﬁlax(A/|Bn)W' < Hﬁlax(Xn|Bn)T®" + IOg tr[Ht(p)p;eénB] Hriun(XAlX/B)P
Hence, we now have that =sup{AER: pxxap <2 Mxa®0x5}.

log | M| < log [t(p)] Proof_: _Let Pxx'AB € BE(pXX/AB) be a _state_
. S an that maximizes the smooth min-entropy, namely it satis-
= Hypax (X" |B")7en —logtrlllyp)7x ] —0(n). fies HE, (XA|X'B), = Humin(XA|X'B);. Then, the state
Choosinglog |[M| = nQ for a transmission rate of) and Axx'aB = Pxx/pxx'apPxx: satisfies the criteria.
using the above bound of(p)| and the fact that the most First, note that we haveP(pxx ap,pxx/ap) <
likely type p satisfies 1, 7%n] = [P.(X)|"}, this bound P(Pxx'aB,pxx'ap) < e due to the monotonicity of the
becomes: purified distance under projections [22]. Second, by dédimit
of the smooth min-entropy, there exists an operatgrs such

1 n n
Q< H(X)r = —Hyyox (X"[B")7en — o(1). that, for A = H<,, (X A|X'B), we have
Taking the limit asn — oo, we get that this bound is PxxaB <2 M xa®@6x/B.

satisfied whenever

Q< H(X),—H(X|B); =I(X;B).,

Thus,

, _ pxxap <2 Pxx/(lxa®Gx8)Pxx
where we have used the fully quantum asymptotic equiparti-

tion property of [21] to bound thed,,.. term above. Since = TAZ |Xelx ® 14 ® |z)z]xr @ (z[ox pl7)
this is true for any > 0, the theorem holds. ] *
<2 Mxa® Y |o)alx ® (@lGxplz) . (16)

V. CONCLUSION AND FURTHER WORK z

In this article, we show that it is possible to derive direct =iox'p

bounds for the capacity of classical-quantum channelsgusiginally, we note that tirx/5) < 1 and, thus, Eq. (16) implies
decoupling-like techniques, therefore adding the trassion that HE,, (X A|X'B), > A, which concludes the proof. m

of classical data to the list of problems that are amenaltlesto | emma A.2:Let psp € S<(Hap), let I14 be an operator

decoupling approach to coding. Our derivation also naurakych thato < T4 < 14, and lete > 0. Furthermore, let
leads to bounds in the one-shot setting, where the channe)):iLXSB ‘= Tapaplla. Then HE,, (A|B), < HE, (A|B),.

max

only used once and we allow a finite error probability. Proof: Let jap € B.(p) andop be such that
We want to emphasize, however, that the bounds resulting

from our calculation are somewhat weaker than the best known
one-shot direct bounds, found for example in Mosonyi ar]_de -t ~

tp :=1Ipll € B
Datta [14] and Wang and Renner [24]. Furthermore, our one- P P ‘
shot result only applies to uniform inputs of the channel Hmax(AIB)y — P(fl) 5 14 @ wp)?

9Hax (AIB

Jo = F(pap,1a @ op).
('), and letwp be such that
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