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A decoupling approach to classical data
transmission over quantum channels

Frédéric Dupuis, Oleg Szehr, and Marco Tomamichel

Abstract—Most coding theorems in quantum Shannon theory
can be proven using the decoupling technique: to send data
through a channel, one guarantees that the environment gets
no information about it; Uhlmann’s theorem then ensures that
the receiver must be able to decode. While a wide range
of problems can be solved this way, one of the most basic
coding problems remains impervious to a direct applicationof
this method: sending classical information through a quantum
channel. We will show that this problem can, in fact, be solved
using decoupling ideas, specifically by proving a “dequantizing”
theorem, which ensures that the environment is only classically
correlated with the sent data.

Our techniques naturally yield a generalization of the Holevo-
Schumacher-Westmoreland Theorem to the one-shot scenario,
where a quantum channel can be applied only once.

Index Terms—Coding, Decoupling, HSW Theorem, Smooth
entropies.

I. I NTRODUCTION

One of the most fruitful ideas that arose in quantum
Shannon theory in the past few years is that ofdecoupling: the
fact that, in quantum mechanics, the absence of correlations
between two systems implies perfect correlations of those
two systems with a third one. More precisely, the core idea
is as follows: suppose that we have a tripartite pure state
|ρ〉ABC , and that we know that the reduced state onAB
is a product state, i.e. trC [|ρ〉〈ρ|] = ρA ⊗ ρB. Then, we
know from the unitary equivalence of purifications that there
exists a partial isometryVC→CACB

with the property that
V |ρ〉 = |ψ〉ACA

⊗ |ϕ〉BCB
. In other words, ifA andB are

completely uncorrelated, thenC contains perfect correlations
with bothA andB. Furthermore, this observation remains true
if the state onA andB is only close to a product state, as can
be shown via Uhlmann’s theorem [23].

This observation can be used to prove coding theorems
for quantum Shannon theory problems. To see this, suppose
that we have a channelTA→B, with a Stinespring dilation
(UT )A→BE , and that we want to use this channel to send
quantum information from Alice (who has access to the input
A) to Bob (who receives the output systemB). Let ψM (with
purification |ψ〉MR) be the state of the message Alice wants
to send, and letWM→A be the encoding isometry she uses
to map her state to the channel input. After encoding the
state and sending it through the channel, we haveϕRBE :=
UTWψW †U †

T . Now, suppose that the encoding operation is
such thatϕRE = ψR⊗ϕE . Then, the argument in the previous
paragraph tells us that there exists an isometryVB→ME′ such
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that V ϕRBEV
† = ψMR ⊗ ξEE′ for some stateξ. If we then

trace outEE′, we see thatV acted as a decoder to recover
the initial stateψMR. One can also show that the condition
thatR andE be decoupled is not only sufficient but necessary
in order to be able to transmit arbitrary quantum information.
This simplifies our task as information theorists: as long as
we can design an encoderW that ensures that this decoupling
condition is fulfilled, we know that a decoder must exist, and
do not need to explicitly construct it. Furthermore, our aim
becomes todestroy correlations rather than to ensure their
presence, which seems to be a rather less delicate task at first
glance.

To enforce the decoupling condition, a number ofdecou-
pling theoremshave arisen [12], [1], [7], [8]. The version
from [7], [8], whose approach we will broadly follow here,
goes as follows. Let̄TA→E be a complementary channel for
TA→B and let ρAR be a quantum state. We consider the
state(T̄ ⊗ IR)

(
(UA ⊗ 1R)ρAR(U

†
A ⊗ 1R)

)
on ER, where

UA is chosen randomly according to the Haar measure on
U(A). It turns out that this state is decoupled (i.e. that it is
close to T̄ (1/dA) ⊗ ρR in trace distance) if the state and
the channel fulfill a certain entropic criterion, namely that
Hε

min(A|R)ρ+Hε
min(A

′|E)τ & 0 (thesesmooth min-entropies
will be defined in the next section). Roughly speaking, the
first term measures how hard the stateρAR is to decouple,
and the second term measures the “decoupling power” of the
channelT̄ ; if the decoupling power of the channel exceeds
the difficulty of decoupling the state, decoupling does indeed
happen.

By appropriately applying the outlined procedure, one can
get a variety of coding theorems. This general approach has
now become a staple of quantum Shannon theory, and has
been used in quantum state merging [12], state transfer (also
known as “Fully Quantum Slepian-Wolf”) [1], for sending
quantum information through quantum channels [10], for
quantum broadcast channels [9], quantum channels with side-
information [6], among other examples.

The common point in all of the previous papers is that they
use this argument to sendquantuminformation. For sending
classical information, on the other hand, the argument does
not work directly. The reason for this is that if one sends
classical information, the channel environment (the system
E above) can also receive a copy of the message without
impairing the protocol. However, it turns out that for the
protocol to work,E can only share classical correlations
with the message; in particular,E cannot contain any phase
information about the message, otherwise Bob cannot decode.
Hence, while the vast majority of quantum Shannon theory
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can now be done using decoupling methods, classical coding
over quantum channels, the so-called Holevo-Schumacher-
Westmoreland theorem (HSW theorem) [11], [18], remains a
notable outlier. The purpose of this paper is to close this gap
and provide a decoupling proof, based on the above argument,
of the HSW theorem.

The results presented here have a somewhat similar flavor
to those presented in [16], but a rather different emphasis.
In both papers, the idea that the environment cannot have
information about the phase of the classical message arises
as a central theme. In [16], this occurs in the context of using
complementary bases to get coding theorems from privacy
amplification and information reconciliation, whereas here it
arises as a natural analog of the concept of decoupling.

The paper will be structured as follows. Section II will
explain the notation and basic concepts needed for this paper,
Section III will give a dequantizing theorem, which will be
the analog of the decoupling theorem that we will need for
the classical case, and Section IV will show how to use it to
derive coding theorems for sending classical information over
quantum channels. Finally, we discuss the results in Section
V.

II. PRELIMINARIES AND NOTATION

A. Quantum States and Maps

Let H be a finite dimensional, complex Hilbert space. The
set of linear operators onH will be denoted byL(H), the
set of Hermitian operators byL†(H) and the set of positive-
semidefinite operators is given byP(H). The set of quantum
states is given byS=(H) := {ρ ∈ P(H) | tr ρ = 1} and the set
of subnormalized quantum states isS≤(H) := {ρ ∈ P(H) |
tr ρ ≤ 1}. A subscript letter following some mathematical ob-
ject denotes the physical system to which it belongs. However,
when it is clear which systems are described we might drop the
subscripts to shorten the notation. Given two physical systems
A andB, the joint bipartite systemAB is represented by a
tensor product spaceHA ⊗HB =: HAB.

We will denote by 1A the identity operator onHA

and by πA := 1A/dA the completely mixed state onA,
where dA = dimHA. For dA ≥ dB the statesTAB :=
1
dB

∑dB

i |i〉〈i|A ⊗ |i〉〈i|B andΦAB := 1
dB

∑dB

i,j |i〉〈j|A ⊗ |i〉〈j|B
in S=(HAB) represent maximal classical and, respectively,
quantum correlations between the systemsA andB.

Suppose|ψ〉AB is a pure state of the bipartite system
AB (i.e. the system is in the stateψAB = |ψ〉〈ψ|AB ) and
dA ≥ dB. Then there exist lists of orthonormal vectors
{|i〉A}i=1,...,dB

∈ HA and {|i〉B}i=1,...,dB
∈ HB such that

|ψ〉AB =
∑

i λi|i〉A|i〉B, whereλi ≥ 0 and
∑

i λ
2
i = 1 [15].

The corresponding basis{|i〉}i=1,...,dB
is calledSchmidt basis

and the numbersλi areSchmidt coefficients.
A quantum stateρAB ∈ S≤(HAB) is said to be classical

with respect to a fixed basis{|i〉}i=1,...,dA
of HA if ρAB ∈

span
R
{|i〉〈i|i=1,...,dA

}⊗L†(HB). If in additionρAB is not clas-
sical onHB we call it a hybrid classical-quantum or shortly
CQ-state. Moreover, we call a stateρXX′B ∈ S≤(HXX′B)
coherent classicalon X and X ′ if it commutes with the
projectorPXX′ =

∑
x |x〉〈x|X ⊗ |x〉〈x|X′ .

TA B UTA

B

X

E
′

Fig. 1: Diagram illustrating the purification of a CQ-channel.
The environment (depicted with a dashed box) of a CQ-
channel can be split into two parts, a registerX that contains
a copy of the input and a systemE′.

Linear maps fromL(HA) to L(HB) will be denoted by cal-
ligraphic letters, e.g.TA→B ∈ Hom(L(HA),L(HB)). Quan-
tum operations are in one-to-one correspondence with trace
preserving completely positive maps (TPCPMs). The TPCPM
we will encounter most often is the partial trace (over the
systemB), denoted trB(·), which is defined to be the adjoint
mapping ofTA→AB(ξA) = ξA ⊗ 1B for ξA ∈ L†(HA) with
respect to the Schmidt scalar product〈A,B〉 := tr(A†B).
This means tr((ξA ⊗ 1B)ζAB) = tr(ξA tr B(ζAB)) for any
ζAB ∈ L†(HAB). Given a bipartite stateξAB , we write
ξA := tr BξAB for the reduced density operator onA and
ξB := tr AξAB, respectively, onB. If ξAB is pure, we call
|ξ〉 AB a purification forξA andξB.

The mapC(·)A =
∑

i |i〉〈i|A(·)|i〉〈i|A classicalizes an ar-
bitrary density operator onA by removing all off-diagonal
elements. WhenC is applied to part of a bipartite stateρAB, we
get the CQ stateρclAB := (CA ⊗ IB)(ρAB). Here,IB denotes
the operator identity onB, which we will only write explicitly
if it is not clear from the context.

The Choi-Jamiołkowski representation [3], [13] of
TA→B ∈ Hom(L(HA),L(HB)) is given by the operator
ωA′B := (TA→B ⊗ IA′)(ΦAA′), where HA′ is a copy of
HA. We say that TA→B ∈ Hom(L(HA),L(HB)) has
classical-quantum (CQ) structure if its Choi-Jamiołkowski
representation is a CQ-state. For a mapT with Choi-
Jamiołkowski ωA′B we define the mapT cl to be the
unique map whose Choi-Jamiołkowski representation is
ωcl
A′B = CA′(ωA′B).
In our context it will also be important to purify quantum

channels. Given a TPCPMTA→B ∈ Hom(L(HA),L(HB)),
we define the unitary(UT )A→BE to be any particular Stine-
spring dilation ofT . The purifying systemE will be called the
environmentof the channel. For a channelTA→B, we define
the complementary channelT̄A→E : X 7→ trB[UTX(UT )

†] to
be the channel to the environment.

The purification of a CQ-channelT with T (ξA) =∑
i tr (|i〉〈i|AξA)ρ[i]B is given byUT |i〉 A = |i〉 X ⊗ |ρ[i]〉 BE’.

Thus, the environment of such a channel can conceptually
be split into two parts: a registerX , which contains a copy
of the input to the channel and a systemE′ which stems
from the purification of the operatorsρ[i]B . See Figure 1 for
an illustration of this. The Choi-Jamiołkowski representation
of a complementary channel of a CQ-channel can be written as
ωA′E′X , where the systemsX andA′ are classically coherent.
Furthermore, we will frequently be considering channels that
are complementary to CQ channels; we will call such channels
“complementary CQ channels”.

The swap operatorFAA′ acting on the bipartite spaceHAA′
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is given byFAA′ :=
∑

i,j |i〉〈j|A ⊗ |j〉〈i|A’ . It is easy to verify
that for anyMA, NA′ ∈ L(HA) the swap operator satisfies
tr(MANA′) = tr

(
(MA ⊗NA′)FAA′

)
.

For any operator inξA ∈ L(HA) we denote by||ξA||1 and
||ξA||2 the Schatten 1 and 2-norms ofξA, respectively. These
norms are unitarily invariant and satisfy||ξA||2 ≤ ||ξA||1 ≤√
dA||ξA||2. The metric induced onL(H) via the Schatten 1-

norm isD(ρ, σ) := ‖ρ− σ‖1. Another measure of closeness
between states onP(H) is the fidelity,F (ρ, σ) := ‖√ρ√σ‖1.

B. Permutation operators

The symmetric groupSd is the set of all bijective maps of
{1, ..., d} to itself together with the concatenation of maps
as the group multiplication. Elementsπ of Sd are called
permutations. LetH be a Hilbert space together with a fixed
basis{|i〉}i=1,...,d. For π ∈ Sd, we define the permutation
operatorP (π) on H such thatP (π)|i〉 = |π(i)〉. The group
of all such matrices will be denoted byP. Typically in this
paper{|i〉}i=1,...,d will be the Schmidt basis of a given density
matrix. The above permutation matrices then act by reordering
the elements of this basis.

Given a random variableX : P → Ω (Ω some measurable
space), we shall writeEP[X ] := 1

d!

∑
P∈P

X(P ) for the
expectation value ofX with respect to the uniform probability
distribution onP.

C. Smooth entropies

Entropies are used to quantify the uncertainty an observer
has about a quantum state. Moreover, conditional entropies
quantify the uncertainty of an observer about one subsystemof
a bipartite state when he has access to another subsystem. The
most commonly used quantity is the von Neumann entropy.
Given a stateρAB ∈ S=(HAB), we denote byH(A|B)ρ :=
H(ρAB)−H(ρB) the von Neumann entropy ofA conditioned
on B, whereH(ρ) := −tr

(
ρ log ρ

)
.

While the von Neumann entropy is appropriate for analyzing
processes involving a large number of copies of an identical
system, the min-entropy is relevant when a single system is
considered [17].

Min-Entropy [17] Let ρAB ∈ S≤(HAB), then the min-
entropy ofA conditioned onB of ρAB is defined as

Hmin(A|B)ρ := max
σB∈S=(HB)

sup{λ ∈ R | ρAB ≤ 2−λ
1A⊗σB}.

More generally, the smooth conditional min-entropy is defined
as the largest conditional min-entropy one can get within a
distance of at mostε from ρ. Here closeness is measured
with respect to thepurified distance, P (ρ, σ), which is defined
as [22]

P (ρ, σ) :=
√
1− F̄ (ρ, σ)2,

whereF̄ (ρ, σ) is thegeneralized fidelity; F̄ (ρ, σ) := F (ρ, σ)+√
(1− tr ρ)(1− tr σ) for ρ, σ ∈ S≤(H). The purified distance

constitutes a metric [22] onS≤(H) and satisfies the Fuchs-van

de Graaf inequalities

1

2
‖ρ− σ‖1 +

1

2
|tr ρ− tr σ| ≤ P (ρ, σ)

≤
√
‖ρ− σ‖1 + |tr ρ− tr σ|. (1)

We say thatρ is ε-close toρ̃, denotedρ̃ ≈ε ρ, if P (ρ, ρ̃) ≤ ε.

Smooth Min-Entropy [17], [22] Let ε ≥ 0 and letρAB ∈
S≤(HAB) with

√
trρ > ε, then theε-smooth min-entropyof

A conditioned onB of ρAB is defined as

Hε
min(A|B)ρ = max

ρ̃
Hmin(A|B)ρ̃,

where we maximize over all̃ρ ≈ε ρ.

Next, we define the smooth max-entropy.

Smooth Max-Entropy [17], [22] Let ε ≥ 0, let ρAB ∈
S≤(HAB) and letρABC ∈ S≤(HABC) be an arbitrary purifi-
cation of ρAB. The ε-smooth max-entropyof A conditioned
on B of ρAB is defined as

Hε
max(A|B)ρ = −Hε

min(A|C)ρ.

The fully quantum asymptotic equipartition property (QAEP)
states that in the limit of an infinite number of identical
states the smooth min- and max-entropies converge to the von
Neumann entropy [21], [20]: LetρAB ∈ S=(HAB), then

H (A|B)ρ = lim
n→∞

1

n
Hε

min(A
n|Bn)ρ⊗n

= lim
n→∞

1

n
Hε

max(A
n|Bn)ρ⊗n . (2)

In that sense, the smooth conditional min- and max-entropies
can be seen as one-shot generalizations of the von Neumann
entropy.

D. Uhlmann’s theorem and existence of a decoding operation

To prove a coding theorem it is necessary to establish the
existence of a decoding operation. That is, given a quantum
state that results from the execution of some quantum channel,
we would like to recover the message originally encoded
into the input of the channel. It turns out that this can be
achieved if and only if the environment of the channel and
some reference system purifying the original message are left
uncorrelated after the execution of the channel. In this situation
the existence of a decoding operation follows from Uhlmann’s
Theorem [23], which we shall state here for completeness.

Theorem 2.1 (Uhlmann’s Theorem):Let ρA, σA ∈ S(HA)
be two quantum states with respective purifications|φ〉AB and
|ψ〉AC. Then,

F (ρA, σA) = max
VB→C

|〈ψ|V |φ〉|,

where the maximization goes over all partial isometries from
B to C.
Since our decoupling results involve the Schatten 1-norm
rather than the Fidelity it will be useful to transform the above
theorem into a statement formulated in terms of Schatten 1-
norms. The following Corollary [5] follows from Uhlmann’s
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Fig. 2: Illustration of the dequantizing theorem. The top
diagram illustrates the situation in which we apply the de-
quantizing theorem: we apply a random permutationP to ρAR

following by the channel. The bottom diagram illustrates the
“ideal” state we would like to get at the end: a state containing
only classical correlations betweenR andE.

Theorem with an application of the Fuchs van de Graaf
Inequalities (cf. Equation (1)).

Corollary 2.2: Let ρAB, σAB ∈ S(HAB) be pure quantum
states and assume that||ρA − σA||1 ≤ ε. Then there exists
some isometryUB→C such that||UρAB U † − σAB ||1 ≤ 2

√
ε.

III. D EQUANTIZING THEOREM

In this section, we will derive the dequantizing theorem
which will be the core technical ingredient for our coding
theorems. Our aim will be to derive conditions under which
the output of a channel contains only classical correlations
with a reference system. More precisely, we will prove the
following:

Theorem 3.1 (Dequantizing Theorem):Let TA→EX be a
complementary CQ channel, and letωA′EX ∈ S≤(HA′EX)
be its Choi-Jamiołkowski representation. LetρAR be a pure
state onHAR, and letρclAR := CA(ρAR). Then

EPA∈P

∣∣∣
∣∣∣T
(
PA(ρAR − ρclAR) P

†
A

)∣∣∣
∣∣∣
1

≤
√

1

dA − 1
2−Hmin(A’ |EX)ω−Hmin(A|R)ρ , (3)

where the permutation operators act by permuting the
Schmidt-basis vectors ofρAR.

In other words, Theorem 3.1 gives a bound on how close the
stateT (PAρARP

†
A) is from a state containing only classical

correlations betweenR andE (namely,T (PAρ
cl
ARP

†
A)). See

Figure 2 for an illustration.
The rest of this section is devoted to the proof of Theorem

3.1 and is organized in three subsections. In the first one
we calculate the above expectation value with the Schatten
1-norm replaced by the Schatten 2-norm. We conclude the
proof of the above theorem in the second subsection showing

how the statement found about the Schatten 2-norm can be
transformed into the one above. In the third subsection we
reformulate the upper bound of Theorem 3.1 using the smooth
conditional min-entropy. This enables us to make statements
about independent, identically distributed channels via the
QAEP, Equation (2).

A. Dequantizing with Schatten 2-Norms

We first prove a statement that holds for general hermiticity
preserving, linear mapsNA→B ∈ Hom(L(HA),L(HB)) with
Choi-Jamiołkowski representationωA′B ∈ L†(HA′B). In
Proposition 3.3 below, we will compute the expectation value

E
P

∣∣∣
∣∣∣N
(
PA(ρAR − ρclAR)P

†
A

)∣∣∣
∣∣∣
2

2

=
dA

dA − 1

∣∣∣∣ρAR − ρclAR

∣∣∣∣2
2

∣∣∣∣ωA′B − ωcl
A′B

∣∣∣∣2
2
,

where the permutation operators act by permuting the basis
vectors of the Schmidt-basis1. To prove this, we first need the
following lemma:

Lemma 3.2:Let HA be a Hilbert space with orthonormal
basis {|i〉}i=1,...,dA

and let P be the corresponding set of
permutation operators. Then for anyi 6= j one has that

EP∈P

(
P⊗2 (|i〉〈j|A ⊗ |j〉〈i|A’ ) (P

†)⊗2
)

=
1

dA(dA − 1)
(FAA′ − dA TAA′) .

Proof: There aredA! permutation operators inP. For
arbitrary but fixedi 6= j and k 6= l there are(dA − 2)!
permutation operators with(PA)

⊗2 |i〉A⊗|j〉A′ = |k〉A⊗|l〉A′ .
On the other hand there is no permutation such that fori 6= j
the operator(PA)

⊗2 maps|i〉A ⊗ |j〉A′ to |k〉A ⊗ |l〉A′ with
k = l. We conclude that

E
P

(
(PA)

⊗2 (|i〉〈j|A ⊗ |j〉〈i|A’ ) (P
†
A)

⊗2
)

=
(dA − 2)!

dA!

dA∑

k 6=l

|k〉〈l|A ⊗ |l〉〈k|A’ .

Proposition 3.3 (Distance from classicality):Let
NA→B ∈ Hom(L(HA),L(HB)) be a linear map with
Choi-Jamiołkowski representationωA′B ∈ L†(HBA′), and let
|ρ〉AR =

∑
i

√
λi|ii〉AR. Then

E
P

∣∣∣
∣∣∣N
(
PA(ρAR − ρclAR)P

†
A

)∣∣∣
∣∣∣
2

2

=
dA

dA − 1

∣∣∣∣ρAR − ρclAR

∣∣∣∣2
2

∣∣∣∣ωA′B − ωcl
A′B

∣∣∣∣2
2
,

where the operatorsP permute the Schmidt-basis vectors of
ρA.

Proof: Rewriting the Schatten 2-norm in terms of the
trace, we get

1An extension of this result to an arbitrary basis is known [19].
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E
P

∣∣∣
∣∣∣N (PA ⊗ 1R (ρAR − ρclAR) P

†
A ⊗ 1R)

∣∣∣
∣∣∣
2

2

= E
P

tr
(
N (PA ⊗ 1R (ρAR − ρclAR) P

†
A ⊗ 1R)

2
)

= E
P

tr


N




dR∑

i6=j

√
λiλj PA|i〉〈j|AP †

A ⊗ |i〉〈j|R




2



=

dR∑

i6=j

λiλj

[
E
P

tr
(
N
(
PA|i〉〈j|AP †

A

)
N
(
PA|j〉〈i|AP †

A

))]

=

dR∑

i6=j

{
λiλj ·

tr
(
N⊗2

(
E
P

(
P⊗2
A (|i〉〈j|A ⊗ |j〉〈i|A’ )(P

†
A)

⊗2
))

FBB′

)}

(4)

=

dR∑

i6=j

λiλj
dA(dA − 1)

tr
(
N⊗2 ((FAA′ − dA TAA′))FBB′

)
(5)

=
||ρAR − ρclAR||22
dA(dA − 1)

·
(
tr
(
N⊗2 (FAA′)FBB′

)
− tr

(
(N cl)⊗2 (FAA′)FBB′

))
.

(6)

Equation (4) is by an application of the swap trick and
in equation (5) we applied Lemma 3.2. To simplify (6) we
evaluate the term tr

(
N⊗2 (FAA′)FBB′

)
using the inverse

Choi-Jamiołkowski isomorphism:

tr
(
N⊗2 (FAA′)FBB′

)

= d2A tr
(
tr AA’

(
ω⊗2
AB (FAA′ ⊗ 1BB′)

)
FBB′

)

= d2Atr
(
ω⊗2
AB (FAA′ ⊗ 1BB′) (1AA′ ⊗ FBB′)

)
(7)

= d2A tr
(
ω2
AB

)
.

In Equation (7) we used the fact that the adjoint mapping of
the partial trace is tensoring with the identity. Analogously,
one has

tr
(
(N cl)⊗2 (FAA′)FBB′

)
= d2A tr

(
(ωcl

AB)
2
)

and the second factor of (6) becomes

tr
(
N⊗2 (FAA′)FBB′

)
− tr

(
(N cl)⊗2 (FAA′)FBB′

)

= d2A
(
tr
(
ω2
AB

)
− tr

(
(ωcl

AB)
2
))

= d2A
∣∣∣∣ωAB − ωcl

AB

∣∣∣∣2
2
.

B. Dequantizing with the Schatten 1-norm

In this subsection we derive Theorem 3.1 with an applica-
tion of Proposition 3.3. We use the following lemma.

Lemma 3.4:For any ξAR ∈ S≤(HAR), there exists an
operatorζR ∈ S=(HR) with

1

tr[ξAR]
tr

((
(1A ⊗ ζ

−1/2
R )ξAR

)2)
≤ 2−Hmin(A|R)ξ .

Proof: ChooseζR such that it maximizes the min-entropy,
i.e. it satisfiesξAR ≤ 2−Hmin(A|R)ξ1A ⊗ ζR. Hence,
√
ξAR(1A ⊗ ζ

− 1

2

R )ξAR(1A ⊗ ζ
− 1

2

R )
√
ξAR ≤ 2−Hmin(A|R)ξξAR

Taking the trace on both sides concludes the proof.
Proof of Theorem 3.1:We first introduce some notation.

We abbreviate the difference betweenρAR and its classicalized
version by writingρ̄AR := ρAR − ρclAR. By Lemma 3.4 there
are operatorsσEX andτR such that

1

tr[ωA′EX ]
tr

((
(1A′ ⊗ σ

−1/2
EX )ωA′EX

)2)
≤ 2−Hmin(A’ |EX)ω

and

1

tr[ρAR]
tr

((
(1A ⊗ τ

−1/2
R )ρAR

)2)
≤ 2−Hmin(A|R)ρ .

SinceT̄A′→EX is a complementary channel of a CQ-channel
we can assume thatσEX has CQ-structure, i.e.σEX =∑

x σ
x
E ⊗ |x〉〈x|X . Furthermore the operatorρAR is given

in its Schmidt-basis, such thatτR can be written asτR =∑
x rx|x〉〈x|R. (Both facts follow from Lemma A.1 in Ap-

pendix A with ε = 0.)
We introduce a systemP with (dA!)-dimensional Hilbert

space,HP , and canonical basis vectors|P 〉P that correspond
to the permutation operators ofP ∈ P. We define the operator

ζPREX :=

E
P

(
dR∑

x=1

rx|P 〉〈P |P ⊗ |x〉〈x|R ⊗ σ
P (x)
E ⊗ |P (x)〉〈P (x)|X

)
,

which can be inverted on its support to yield

ζ−1
PREX := dA!

∑

P∈P

( dR∑

x=1

r−1
x |P 〉〈P |P ⊗ |x〉〈x|R ⊗
(
σ
P (x)
E

)−1

⊗ |P (x)〉〈P (x)|X
)
.

We note that the operatorζ
1

4 ζ−
1

4 is a projector and

E
P

|P 〉〈P |P ⊗ T̄ (PA ⊗ 1Rρ̄ARP
†
A ⊗ 1R)

= (ζ
1

4 ζ−
1

4 )
[
E
P

|P 〉〈P |P ⊗ T̄ (PA ⊗ 1Rρ̄ARP
†
A ⊗ 1R)

]
(ζ−

1

4 ζ
1

4 )

(8)

Using these operators, we write

E
P

∣∣∣
∣∣∣T̄ (PAρ̄ARP

†
A)
∣∣∣
∣∣∣
1

= E
P

∣∣∣
∣∣∣|P 〉〈P |P ⊗

(
T̄ (PAρ̄ARP

†
A)
)∣∣∣
∣∣∣
1

=
∣∣∣
∣∣∣E
P

|P 〉〈P |P ⊗
(
T̄ (PAρ̄ARP

†
A)
)∣∣∣
∣∣∣
1

≤
√

tr (ζPREX)
∣∣∣
∣∣∣ζ− 1

4

(
E
P

|P 〉〈P |P ⊗ T̄ (PAρ̄ARP
†
A)
)
ζ−

1

4

∣∣∣
∣∣∣
2
.

(9)

Inequality (9) follows from Equation (8) together with
an application of the Hölder-type inequality||ABC||1 ≤
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∣∣∣∣|A|4
∣∣∣∣ 14
1

∣∣∣∣|B|2
∣∣∣∣ 12
1

∣∣∣∣|C|4
∣∣∣∣ 14
1

, [2]. The trace term on the right
hand side of Inequality (9) can be evaluated directly to be

tr (ζPREX) =

dR∑

x=1

rxE
P

tr
(
σ
P (x)
E

)
=

1

dA
.

Thus, it is sufficient to evaluate the term with the Schatten
2-norm. For notational convenience we introduce the map
T̃ (·) := (σEX)−

1

4 T̄ (·)(σEX)−
1

4 with Choi-Jamiołkowski
representationω̃A′EX and the operator̃ρAR := (1A ⊗
τR)

− 1

4 ρ̄AR(1A⊗ τR)− 1

4 . Using the fact that̄T is the comple-
mentary channel of a CQ-channel one can verify that

ζ−
1

4

(
E
P

|P 〉〈P |P ⊗ T̄ (PA ρ̄AR P
†
A)
)
ζ−

1

4

=
1√
dA!

∑

P∈P

|P 〉〈P |P⊗
(
(σEX⊗τR)−

1

4 T̄ (PA ρ̄ARP
†
A)(σEX⊗τR)−

1

4

)

=
1√
dA!

∑

P∈P

|P 〉〈P |P ⊗ T̃ (PA ρ̃AR P
†
A).

Using this, we find
∣∣∣
∣∣∣ζ− 1

4

(
E
P

|P 〉〈P |P ⊗ T̄ (PA ρ̄AR P
†
A)
)
ζ−

1

4

∣∣∣
∣∣∣
2

2

= E
P

∣∣∣
∣∣∣T̃ (PA ρ̃AR P

†
A)
∣∣∣
∣∣∣
2

2

=
dA

dA − 1

∣∣∣∣ω̃A′EX − ω̃cl
A′EX

∣∣∣∣2
2

∣∣∣∣ρ̃AR − ρ̃clAR

∣∣∣∣2
2

≤ dA
dA − 1

tr
(
ω̃2
A′EX

)
tr
(
ρ̃2AR

)

≤ dA
dA − 1

2−Hmin(A’ |EX)ω−Hmin(A|R)ρ ,

where we apply Proposition 3.3 to obtain the second equality
and use the special choice ofσEX andτR (cf. Lemma 3.4) for
the last inequality. Plugging this into Equation (9) concludes
the proof.

C. A smoothed version of the dequantizing theorem

The reason for introducing smooth versions of the min- and
max-entropy is that these quantities can vary a lot with small
variations in the underlying states while the quantities that
we are bounding with them do not. This is such a case; it
is therefore desirable to have a version of the dequantizing
theorem which involves the smooth entropies. The smooth
quantities have the additional advantage that they converge
to the corresponding von Neumann quantities in the i.i.d. case
(cf. Equation 2). We therefore prove the following:

Theorem 3.5:Let T̄A→EX be a complementary chan-
nel of a CQ-channel, letωA′EX ∈ S≤(HEXA′) be the
Choi-Jamiołkowski representation of̄T , and let |ρ〉AR =∑

i

√
λi|ii〉AR. Let ε, ε′ be such that

√
tr(ρ) > ε ≥ 0 and√

tr(ω) > ε′ ≥ 0. Then,

E
P

∣∣∣
∣∣∣T̄
(
PA(ρAR − ρclAR)P

†
A

)∣∣∣
∣∣∣
1

≤
√

1

dA − 1
2−Hε′

min(A’ |EX)ω−Hε
min(A|R)ρ + 8ε+ 8ε′,

where the permutation operators act by permuting the
Schmidt-basis vectors ofρA.

Proof: Let ω̂A′EX ∈ S≤(HA′EX) be a state that
saturates the bound in the definition of the smooth min-
entropy, i.e.P (ωA′EX , ω̂A′EX) ≤ ε′ and Hmin(A’ |EX)ω̂ =
Hε′

min(A’ |EX)ω. Analogously,ρ̂AR satisfiesP (ρ̂AR, ρAR) ≤ ε
andHmin(A|R)ρ̂ = Hε

min(A|R)ρ.
Using inequality (1), we find that

‖ωA′EX − ω̂A′EX‖1 ≤ 2ε′ ‖ρAR − ρ̂AR‖1 ≤ 2ε. (10)

We decomposêω − ω into positive operators with orthogonal
support writingω̂ − ω = ∆+ −∆− and conclude from (10)
that ||∆+||1 ≤ 2ε′ and ||∆−||1 ≤ 2ε′.

Similarly, we decompose(ρAR − ρclAR) − (ρ̂AR − ρ̂clAR) =
Γ+−Γ− with the operatorsΓ+ andΓ− again chosen to be pos-
itive and with orthogonal support. From the second inequality
in (10), we conclude that||Γ+||1 ≤ 4ε and ||Γ−||1 ≤ 4ε.

Let T̂ , D+ and D− be the unique Choi-Jamiołkowski
preimages of̂ωA′EX , ∆+ and∆− respectively. We note that
from the fact thatωA′EX is classically coherent between
A′ and X it follows that ω̂A′EX also shares this property
(See Appendix A, Lemma A.1). Furthermore the stateρAR

is classically coherent betweenA andR, such that the state
ρ̂AR has the same Schmidt-basis asρAR (Lemma A.1). We
therefore can apply Theorem 3.1 on the statesω̂ and ρ̂ to find

√
1

dA − 1
2−Hε′

min(A’ |EX)ω−Hε
min(A|R)ρ

=

√
1

dA − 1
2−Hmin(A’ |EX)ω̂−Hmin(A|R)ρ̂

≥ E
P

∣∣∣
∣∣∣T̂
(
PA(ρ̂AR − ρ̂clAR) P

†
A

)∣∣∣
∣∣∣
1
.

Applying the triangle inequality twice shows that for any
permutation operator we have
∣∣∣
∣∣∣T̂
(
PA(ρ̂AR − ρ̂clAR)P

†
A

)∣∣∣
∣∣∣
1

≥
∣∣∣
∣∣∣T̄
(
PA(ρAR − ρclAR)P

†
A

)∣∣∣
∣∣∣
1

−
∣∣∣
∣∣∣
(
T̄ − T̂

)(
PA(ρ̂AR − ρ̂clAR)P

†
A

)∣∣∣
∣∣∣
1

−
∣∣∣
∣∣∣T̄
(
PA

(
(ρAR − ρclAR)− (ρ̂AR − ρ̂clAR)

)
P †
A

)∣∣∣
∣∣∣
1

(11)

The first term on the right hand-side of Inequality (11)
corresponds to the unsmoothed dequantizing theorem. For the
remaining two terms we find upper bounds:

E
P

∣∣∣
∣∣∣
(
T̄ − T̂

)(
PA(ρ̂AR − ρ̂clAR)P

†
A

)∣∣∣
∣∣∣
1

≤
∑

a∈{+,−}

E
P

tr
(
Da

(
PAρ̂ARP

†
A

))

+
∑

a∈{+,−}

E
P

tr
(
Da

(
PAρ̂

cl
ARP

†
A

))

= 2
∑

a∈{+,−}

E
P

tr
(
Da

(
PA ρ̂A P

†
A

))

≤ 2 (tr(∆+) + tr(∆−)) ≤ 8ε′

(12)
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We bound the third term in a similar way. We have

E
P

∣∣∣
∣∣∣T̄
(
PA

(
(ρAR − ρclAR)− (ρ̂AR − ρ̂clAR)

)
P †
A

)∣∣∣
∣∣∣
1

≤
∑

a∈{+,−}

E
P

tr
(
T̄
(
PAΓaP

†
A

))

6 tr(Γ+) + tr(Γ−) ≤ 8ε.

(13)

Substituting the expressions (12) and (13) into Inequal-
ity (11) shows that

E
P

∣∣∣
∣∣∣T̂
(
PA(ρ̂AR − ρ̂clAR) P

†
A

)∣∣∣
∣∣∣
1

≥ E
P

∣∣∣
∣∣∣T̄
(
PA(ρAR − ρclAR) P

†
A

)∣∣∣
∣∣∣
1
− 8ε− 8ε′

and an application of Theorem 3.1 concludes the proof.

IV. FROM DEQUANTIZING TO CODING

In the following subsections we show how the dequantizing
theorem (Theorem 3.5) yields a one-shot coding theorem for
classical information. Then, in the last subsection, we apply
this coding theorem to the iid scenario and obtain the HSW
theorem as a corollary.

A. Sending classical information through a quantum channel

Consider the following scenario: Alice wants to send a
classical messageM to Bob using a quantum channelTA→B.
For this purpose she encodes her message using an encoding
TPCPM EM→A into the inputA of the channel. Having re-
ceived the output of the channelB, Bob will apply a decoding
TPCPMDB→M̂ aiming to recover the original message. Since
we are interested in the transmission of classical data through
a quantum channel, the operationE can be assumed to be
classical, whileT is a CQ-channel.

Alice’s messageM is assumed to exhibit perfect correla-
tions with some classical reference systemR. This means that
the joint state of the message and the reference can be rep-
resented by the operatorϕcl

MR =
∑dM

i=1 λi|ii〉〈ii|MR for some
probability distributionλ. The aim is that after decoding, Bob
holds a system̂M which contains Bob’s decoded message.
Naturally, we want̂M to contain the same message asM with
high probability, which is equivalent to saying that̂M is almost
perfectly correlated to the reference systemR. (See Figure 3
for an illustration of this scenario.) Mathematically, this means
that we want the probability of errorpe to be bounded as

2pe =
∥∥∥(DB→M̂

◦ TA→B ◦ EM→A)(ϕ
cl
MR) − ϕcl

M̂R

∥∥∥
1

≤ ε.

In other words, the state after encoding, the channel, and
decoding is withinε in trace distance to a state that is perfectly
correlated between̂M and the copy of the message inR.

B. The purified picture

To apply the dequantizing theorem, it is necessary to work
with pure states and operations. Hence, for our derivation
we will consider the setup depicted in Figure 3, but where
all states and operations are replaced with the corresponding
purifications.

E T DA E M̂M

R

ϕcl
MR

Fig. 3: Diagram illustrating the transmission of classical data
through a quantum channel. The stateϕcl

MR represents perfect
classical correlations of a messageM and a referenceR. The
aim is to obtain after decoding a system̂M with nearly perfect
classical correlations toR.

The present subsection shows how the dequantizing theorem
(Theorem 3.1) can be used to show the existence of a decoding
operation; in the following subsection, we will apply the
theorem to get the encoder.

First, we purify the stateϕcl
MR from above to|ϕ〉MR =∑

i

√
λi|ii〉MR. Next, we will assume that the encoderE is

actually a partial isometryVM→A; this is slightly less general,
but it will turn out to be enough for our purposes. Then,
we replaceT by its Stinespring dilationUT

A→BXE , where
X contains a copy of the classical input, as explained in the
preliminaries (Section II). Likewise, the decoderD becomes
the partial isometryUD

B→M̂ED

, with an “environment” system
ED. See Figure 4 for an illustration of the purified picture.

Now, we will show that if dequantizing holds, then a suitable
decoder must exist. Consider the two statesρ and ρ̂ in Figure
4, which are the states immediately before and immediately
after the decoder, and look at the reduced states onR, E and
X . Since these subsystems are untouched by the decoder, we
have thatρRXE = ρ̂RXE , and ρRXEB and ρ̂

RXEM̂ED
are

both purifications of this state. The decoder is then simply
the partial isometry that relates them and which is guaranteed
to exist by the unitary equivalence of purifications. Hence,as
long asρRXE is of the right form, we know that a suitable
decoder must exist.

We must now find out what this “right form” is. Note that
since the encoder is classical, and the channel is CQ, one can
show thatρ

RXEM̂ED
must have the form

|ρ〉RXEM̂ED
=
∑

i

√
λi|i〉R ⊗ |π(i)〉X ⊗ |ψi〉EM̂ED

,

for some set of states{|ψi〉} and some permutationπ. Fur-
thermore, we know that the error probability must be low; this
means that|ρ〉 must be close to a state of the form

|ξ〉
RXEM̂ED

=
∑

i

√
λi|i〉R ⊗ |π(i)〉X ⊗ |i〉

M̂
⊗ |θi〉EED

,

where here the decoder output̂M is perfectly correlated with
the message inR (and{|θi〉} is some set of states). Tracing
out M̂ED in ξ, we get

ξRXE =
∑

i

λi|iπ(i)〉〈iπ(i)|RX ⊗ θiE .

Note that thisξ has only classical correlations between the
three systems — this is the “right form” that we need for the
channel output.
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V UT

UD

A

B

X

E

M̂

ED

M

R

|ϕ〉MR
ρRXEB

ρ̂RM̂XEED

Fig. 4: Diagram illustrating the completely purified scenario.
SinceT is a CQ-channel the corresponding environment can
be split up in two partsX andE.

Hence, we have reduced the problem to finding an encoder
that ensures that the output of the channel has almost only
classical correlations, and this is precisely what the dequan-
tizing theorem does.

C. A one-shot classical coding theorem

We now put the pieces together and derive a coding the-
orem based on the argument in the previous subsection. We
need to obtain an encoding operation with the property that
tr B(T̄ ◦E(ϕMR)) ≈

∑
i λi|iπ(i)〉〈iπ(i)|RX⊗θiE . On the other

hand, note that by sending theclassicallycorrelated stateϕcl
MR

through the channel (as opposed to|ϕ〉MR), we automatically
get a state of this form, regardless of the encoder. Our strategy
will therefore be to show that

T̄ (E(ϕMR)) ≈ T̄
(
E(ϕcl

MR)
)
. (14)

We are now in a position to use the dequantizing theorem.
The encoder is constructed as follows: we first embed the
messageM into the input space of the channelA. (We could
denote this using a partial isometry, but to avoid cluttering
the notation we will simply considerHM to be a subspace of
HA from now on.) We then apply a permutation on the basis
elements ofA, as in Theorem 3.5. We will then show that,
if we average over the choice of permutations, this strategy
works. It then follows that a suitable permutation exists.

Applying Theorem 3.5 to the scenario at hand, we get that
there is a permutation operator such that
∣∣∣
∣∣∣T̄ (PA(ϕMR − ϕcl

MR)P
†
A)
∣∣∣
∣∣∣
1

≤
√

1

dA − 1
2−Hε

min(A|EX)ω−Hmin(M|R)ϕ + 8ε.

This gives precise bounds for (14) above. We now get the
decoder using Corollary 2.2: there exists a TPCPMD

B→M̂
such that
∣∣∣
∣∣∣D
(
UT PA(ϕMR − ϕcl

MR)P
†
AU

†
T

)∣∣∣
∣∣∣
1

≤ 2

√√
1

dA − 1
2−Hε

min(A|EX)ω−Hmin(M|R)ϕ + 8ε.

Tracing out the systemsX andE, we get

∣∣∣
∣∣∣D ◦ T (PAϕMRP

†
A)− ϕcl

M̂R

∣∣∣
∣∣∣
1

≤ 2

√√
1

dA − 1
2−Hε

min(A|EX)ω−Hmin(M|R)ϕ + 8ε.

By the duality of the smooth min- and max-
entropies [22], we have−Hmin(M |R)ϕ = Hmax(M)ϕ
and−Hε

min(A|EX)ω = Hε
max(A|B)ω , yielding the following

theorem:
Theorem 4.1:Let TA→B be a quantum channel with

Choi-Jamiołkowski representationωAB, and let |ϕ〉MR =∑
i

√
λi|ii〉MR, whereλi is a probability distribution. Then,

we have that there exists a permutationPA on the basis
elements ofA such that
∣∣∣
∣∣∣D ◦ T (PAϕMRP

†
A)− ϕcl

M̂R

∣∣∣
∣∣∣
1

≤ 2

√√
1

dA − 1
2H

ε
max

(A|B)ω+Hmax(M)ϕ + 8ε. (15)

Hence, if the right-hand side of the above inequality is small
enough, then the scheme succeeds. We formulate this fact as
the following corollary of the preceding theorem:

Corollary 4.2: Let TA→B be a quantum channel with Choi-
Jamiołkowski representationωAB, and let M be a set of
messages with|M| ≤ dA andp a probability distribution on
M. Then, there exists an encoder and a decoder forTA→B

with error probabilitype ≥ 0 if

Hmax(M)p ≤
log dA −Hε

max(A|B)ω − 1 + 2 log
(
p2e − 8ε

)
.

for some constantε, 0 ≤ ε ≤ p2

e

8 .
Proof: The abvoe inequality ensures that the right-hand

side of (15) is at most2pe.

D. The i.i.d scenario and the HSW theorem

Applying the above to a channel of the formT ⊗n
A→B allows

us to easily recover the HSW theorem. Recall that the HSW
theorem states that there exists a family of codes forT with
increasing block lengthn with a vanishing error probability as
n→ ∞ as long as the rateQ is less thanI(X,B)τ , whereτ
is a state of the formτXB =

∑
x px|x〉〈x|X ⊗ T (σx

A), where
px forms a probability distribution. (The rate of a code for
n uses of a channel is1n logK, whereK is the number of
possible messages sent.) The only challenge facing us when
attempting to prove this is to relate the quantitylog dA to
nH(X)τ . We do this using the idea oftypes, explained very
briefly in Appendix B. The result is the following theorem:

Theorem 4.3 (Holevo [11], Schumacher-Westmoreland [18]):
Let TA→B be a CQ channel, letq be a probability distribution
over the setX, and letτXB :=

∑
x∈X

q(x)|x〉〈x|X ⊗ T (σx
A),

where{σx
A : x ∈ X} is a set of states onA. Then, there exists

a family of codes forT ⊗n whose rate approachesI(X ;B)τ .
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Proof: Let p ∈ Pn(X) be the most likely type under the
distribution qn, and letA′ be a system withHA′ ⊆ H⊗n

A of
dimension|t(p)| defined as

HA′ := span{|~x〉An : ~x ∈ t(p)}.
Now, consider the channelT ′

A′→B⊗n defined as follows:

T ′(ξA′) =
∑

~x∈t(p)

〈~x|ξ|~x〉T ⊗n(σ~x),

whereσ~x = σx1
⊗ · · · ⊗ σxn

. Furthermore, letω′
A′Bn be the

Choi-Jamiołkowski state ofT ′, and let us apply Corollary 4.2
to the uniform distribution over some message setM and
channelT ′. We get that there exists an encoder and a decoder
such that

log |M| 6 log dA′ −Hε′

max(A
′|Bn)ω − o(n)

= log |t(p)| −Hε′

max(A
′|Bn)ω − o(n)

From the properties of types, we have that|t(p)| >

|Pn(X)|−12nH(X)τ . Also, note that

ωA′Bn = Πt(p)τ
⊗n
XBΠt(p)/tr[Πt(p)τ

⊗n
XB ].

Using Lemma A.2, we get that

Hε
max(A

′|Bn)ω′ 6 Hε
max(X

n|Bn)τ⊗n + log tr[Πt(p)ρ
⊗n
XB].

Hence, we now have that

log |M| 6 log |t(p)|
−Hε

max(X
n|Bn)τ⊗n − log tr[Πt(p)τ

⊗n
XB ]− o(n).

Choosinglog |M| = nQ for a transmission rate ofQ and
using the above bound on|t(p)| and the fact that the most
likely type p satisfies tr[Πt(p)τ

⊗n
XB ] > |Pn(X)|−1, this bound

becomes:

Q 6 H(X)τ − 1

n
Hε

max(X
n|Bn)τ⊗n − o(1).

Taking the limit asn → ∞, we get that this bound is
satisfied whenever

Q < H(X)τ −H(X |B)τ = I(X ;B)τ ,

where we have used the fully quantum asymptotic equiparti-
tion property of [21] to bound theHmax term above. Since
this is true for anyε > 0, the theorem holds.

V. CONCLUSION AND FURTHER WORK

In this article, we show that it is possible to derive direct
bounds for the capacity of classical-quantum channels using
decoupling-like techniques, therefore adding the transmission
of classical data to the list of problems that are amenable tothe
decoupling approach to coding. Our derivation also naturally
leads to bounds in the one-shot setting, where the channel is
only used once and we allow a finite error probability.

We want to emphasize, however, that the bounds resulting
from our calculation are somewhat weaker than the best known
one-shot direct bounds, found for example in Mosonyi and
Datta [14] and Wang and Renner [24]. Furthermore, our one-
shot result only applies to uniform inputs of the channel

and the method of types is needed to shape the input into
this form in order to achieve the HSW capacity. The latter
weakness could potentially be overcome inside the decoupling
framework, using an analogue of Theorem 3.14 in [7].

APPENDIX A
TECHNICAL FACTS ABOUT THE SMOOTH ENTROPIES

Here we establish some useful properties of the (smooth)
min-entropy of classically coherent states. In particularfor a
stateρXX′AB that is classically coherent betweenX andX ′

we show that the stateσX′B that optimizes

Hmin(XA|X ′B)ρ

= max
σX′B

sup
{
λ ∈ R : ρ̃XX′AB ≤ 2−λ

1XA ⊗ σX′B

}

can be chosen to have CQ-structure. Furthermore we show
how the min-entropy of a classically coherent state behavesun-
der smoothing. The following lemma is a direct consequence
of the results obtained in [22].

Lemma A.1:Let ρXX′AB be coherent classical onX and
X ′. Then, there exists a statẽρXX′AB ∈ Bε(ρXX′AB) that is
coherent classical onX andX ′ and a stateσX′B ∈ S≤(HX′B)
that is classical onX ′ such that

Hε
min(XA|X ′B)ρ

= sup
{
λ ∈ R : ρ̃XX′AB ≤ 2−λ

1XA ⊗ σX′B

}
.

Proof: Let ρ̂XX′AB ∈ Bε(ρXX′AB) be a state
that maximizes the smooth min-entropy, namely it satis-
fies Hε

min(XA|X ′B)ρ = Hmin(XA|X ′B)ρ̂. Then, the state
ρ̃XX′AB = PXX′ ρ̄XX′ABPXX′ satisfies the criteria.

First, note that we haveP (ρ̃XX′AB, ρXX′AB) ≤
P (ρ̂XX′AB, ρXX′AB) ≤ ε due to the monotonicity of the
purified distance under projections [22]. Second, by definition
of the smooth min-entropy, there exists an operatorσ̂X′B such
that, forλ = Hε

min(XA|X ′B), we have

ρ̂XX′AB ≤ 2−λ
1XA ⊗ σ̂X′B .

Thus,

ρ̃XX′AB ≤ 2−λ PXX′

(
1XA ⊗ σ̂X′B

)
PXX′

= 2−λ
∑

x

|x〉〈x|X ⊗ 1A ⊗ |x〉〈x|X′ ⊗ 〈x|σ̂X′B|x〉

≤ 2−λ
1XA ⊗

∑

x

|x〉〈x|X′ ⊗ 〈x|σ̂X′B|x〉
︸ ︷︷ ︸

=:σX′B

. (16)

Finally, we note that tr(σX′B) ≤ 1 and, thus, Eq. (16) implies
thatHε

min(XA|X ′B)ρ ≥ λ, which concludes the proof.
Lemma A.2:Let ρAB ∈ S≤(HAB), let ΠA be an operator

such that0 6 ΠA 6 1A, and let ε > 0. Furthermore, let
ρ′AB := ΠAρABΠA. Then,Hε

max(A|B)ρ′ 6 Hε
max(A|B)ρ.

Proof: Let ρ̃AB ∈ Bε(ρ) andσB be such that

2H
ε
max

(A|B)ρ = F (ρ̃AB,1A ⊗ σB)
2.

Let ρ̃′ := Πρ̃Π ∈ Bε(ρ
′), and letωB be such that

2Hmax(A|B)ρ̃′ = F (ρ̃′AB,1A ⊗ ωB)
2.
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Then, we immediately have that

2H
ε
max

(A|B)ρ = F (ρ̃AB,1A ⊗ σB)
2

> F (ρ̃AB,1A ⊗ ωB)
2

> F (ρ̃AB,Π
2
A ⊗ ωB)

2

= tr

[√
(ΠA ⊗√

ωB)ρ̃AB(ΠA ⊗√
ωB)

]2

= tr

[√
(1A ⊗√

ωB)ΠAρ̃ABΠA(1A ⊗√
ωB)

]2

= F (ΠAρ̃ABΠA,1A ⊗ ωB)
2

= F (ρ̃′AB,1A ⊗ ωB)
2

= 2Hmax(A|B)ρ̃′

> 2H
ε
max

(A|B)ρ′ .

Taking logarithms then yields the lemma.

APPENDIX B
THE METHOD OF TYPES

The “method of types” is a technique that is used extensively
in classical information theory and that we need here to
make statements about discrete memoryless channels. For a
complete introduction to this method, we refer the reader to
[4]; we will only give here the facts needed for our paper.
The basic idea goes as follows. LetX be a finite set, and let
~x = x1 . . . xn ∈ X

n be a sequence ofn symbols fromX. For
any x ∈ X, let p~x(x) be the relative frequency of the symbol
x in ~x (i.e. the number of occurences ofx in ~x divided byn).
We call the distributionp~x the type of ~x, and, given a type
p, we definet(p) to be the set of all sequences of typep.
Furthermore, we definePn(X) to be the set of all types over
X

n.
We now list some basic properties of types:
• |Pn(X)| =

(n+|X|−1
|X|−1

)
.

• For any typep ∈ Pn(X), we have that

|Pn(X)|−12nH(p) 6 |t(p)| 6 2nH(p).

• For any typep ∈ Pn(X) and any probability distribution
q overX, we have that

|Pn(X)|−12−nD(p‖q) 6
∑

~x∈t(p)

qn(~x) 6 2−nD(p‖q).

• For any probability distributionq and anyn, the most
likely type p has total probability

∑

~x∈t(p)

qn(~x) > |Pn(X)|−1.

Note that|Pn(X)| is polynomial inn and becomes negligible
in most expressions involving exponentials of entropies.

To use these concepts in quantum information, we will
define type projectors. Let X be a |X|-dimensional quantum
system, with a basis vector|x〉 for eachx ∈ X. Let p ∈ Pn(X);
we define the type projectorΠt(p) as

Πt(p) =
∑

~x∈t(p)

|~x〉〈~x|,

where|~x〉 = |x1〉 ⊗ · · · ⊗ |xn〉 for ~x = x1 . . . xn.
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