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Abstract. Ab initioand em pirical force field methods are used to simulate the
loading of a large graphene membraneunder an indenter analogous to an
atom ic force microscope tip. From these calculations we attem ptto resolve
am biguitiesaround determ ination ofthe elasticconstantsof graphene from
such indentationexperiments. W e investigate the effectof form ation of
wrinkles and more importantly theapplicability of modellingthe membrane as
acontinuous elastic sheet. By com paring both em piricalpotentialand large
scale Density Functional Theory calculationswe have also assessed the
performance of classicalpotentialsin describing bending in this system .W e
find thatthe in-plane Young’s modulus deduced from the indentation
simulationsusing the classicalexpression fora clamped elastic membrane
under a central pointload is notconsistentwith thatcalculated directly by

from the in-plane stress-straincurve.

PACS: 31.15.A-, 62.20.de, 62.20.F-, 68.65.Pq

1. Introduction

The discovery of graphene as a stable isolated 2D sheetin 2004 [1] can be considered a major land
mark of modern m aterial science. Its unique electrical[2], optical[3] and mechanical properties[4]
promise many diverse applications[5-8]. The characterization of graphene is essential to exploiting its
full potential and has been of considerable interest in recent literature[9-11]. One interesting aspect of
graphene is its considerable mechanical strength as it is thought to have one of the highest values of
effective Young’s modulus. This can be understood by the work of Griffith in 1921[12] who
concluded that the breaking strength of a brittle material is not determined only by the intrinsic
strength of its atomic bonds but the size of is defects and flaws. The first experimental determination
of graphene’s intrinsic strength did so in terms of the two-dimensional Young’s modulus, E*?P [41,
this quantity, in units of force per unitlength, can be converted to the conventional Young’s modulus,
in units of pressure, by assuming an effective thickness equal to the interlayer spacing in graphite[13].
The Young’s Modulus was obtained by indentation of a suspended graphene sheet with an atom ic
force microscope (AFM) in non-contact mode, with the results analysed by approximating the system

as an isotropic clamped circular membrane under central point loading using the model[4,14,15]:

3
F = GOZDna (5—)+ EZD(qaa)(s_) (1)

a a

where F is the applied force, § isthe indentation depth, O'OZD

is the pretension in the film, a is the
membrane diameter and g is a dimensionless constant, ¢ = 1/(1.05 - 0.15v — 0.161;2) with v

Poisson’s ratio.

At smallindentation, where the induced stress is com parable to the pretension in the membrane, the
first term in this model dominates. At large indentation, the second term dominates, pretension

supposedly has little influence and the membrane deforms. There are a number of assum ptions



underlying this model: the bending rigidity can be ignored; the membrane is isotropic both in-plane
and across its thickness the induced stress is isotropic that is radial and tangential components are
equal and are independent of radial distance from the film centre. The assumption thatout of plane
effects can be neglected for graphene membranes is based on previous ab initio work [16,17] that
suggested the energy change from out of plane stretching is three orders of magnitude smaller than
that of the in-plane stretching. Using this model, simulations yield a scatter of values for the Young’s
modulus from 247,268,552 Nm -t [18-20]. This disparity warrants testing of the continuum models
applicability in a more direct way.

It has been reported from classical force-field molecular dynamics simulation that graphene’s bending
rigidity is dependent on sheet deflection [21,22]. Additionally it has been suggested for the centre
point load indentation of a circle with a fixed edge there should be a natural formation of wrinkles in
the graphene beyond some critical indentation[23]. W rinkling in flat graphene has recently been
attributed to the presence of in-plane strain [24,25], however, there appears to be some discussion in
the literature about the existence of wrinkles during indentation[20,26], with Ilimited inform ation
concerning the influence on the calculated Young’s modulus. To our know ledge, there are no first
principles simulations of the load vs indentation relationship for out-of plane deform ation as in the
experiment of Lee et al [4]. Existing studies have focused either on continuum [23,27-29], em pirical
models[18-20,26], or ab initio models that consider only in-plane strains[30-32] ina smallunitcell.
This is likely due to the com putational expense associated with simulations on the scale of the

indentation experiments.

This paper presents first principles calculations of graphene’s elastic properties and mechanical
response to indentation with the membrane under either compressive or tensile strain prior to
indentation (pretension). These large, membrane calculations have been carried out atboth the
Density functional Theory level and using empirical potentials. The in-plane linear and non-linear
elastic constants are first calculated directly within the framework of Density Functional theory for a
small, 4 atom unitcellunder in-plane strain. The elastic properties under indentation are then
calculated over a range of membrane pretensions using a large sheet containing 2160 atoms. The
purpose of this is to replicate the experiments of Lee et al [4] to assess the validity of the classical
model in the presence of pretension (both compressive and tensile) and the resulting interesting
morphological effects, such as wrinkles and strain induced indentation. The model is assessed by

means of the derived value of Young’s Modulus and corresponding pretension.

2. Method

The relaxed unit cell used for the determination of in-plane elastic constants contains 4 atoms. The
dimensions of the cell are 2.5 x 4.2 x 20 A. The large membrane with 2160 atoms has dimensions
73.8 x 76.7 x 60 A . The DFT calculations are performed using the SIESTA code[33,34] with the
Perdew -Burke-Ernzerhof (PBE) generalized gradient approximation (GG A )[35] to the exchange-
correlation functional, using a double zeta plus polarisation basis set. For the 4 (2160) atom unitcell a
reciprocal-space k-point mesh and orbital confinement of 15 x 15 x 1 and 5mRy (1 x 1 x 1 and
10mRy) isused respectively. The density matrix convergence of 0.0001 and a stress tolerance of
0.05 GPa for cell relaxation is used for both unitcells. Orbital confinement is a particularly important
parameter as itdetermines the cut-off for the orbital radii, a smaller value corresponding to more
extended orbitals, but requiring greater computational effort. The values used here of 5 mRy for the
small cell and 10 mRy for the large are areasonable compromise between convergence and
computing time; 10 mRy confinement represents about the limit for obtaining reasonable results. For
the large membrane only the gamma-point is calculated in reciprocal space because we are effectively
modelling the system as an isolated membrane. The empirical force field calculations are performed
using the GULP software package[36-38] with Brenner potentials[39,40] for the intra atom ic forces
of the graphene. For the interaction of the indenter to the graphene a Lennard-Jones potential, U (r) =
4el[(a/T) tz (a /1) 6], is applied with arbitrary small potential well, ¢, positioned at, 6, ~6A and a

real space cut off of 8.894.



To calculate the Young’s modulus from the small cell directly, the variation in energy density under
applied in-plane strain is calculated in order to determine the second and third order elastic constants
(Cij,Cijk) of graphene. Because of its symmetry graphene has justtwo unique second order (C,,,C,,),
and three unique third order (C,,,,C,,,,C,,,) elastic constants. These values are calculated from the

energy density of the 4 atom cell as a function of uniaxial strain along the zigzag edge (zz), armchair
edge (ar) and a combination of both, namely hydrostatic planar (hp) strain. In each strained system the

atoms are allowed to relax with a force tolerance of 0.04eV/Ang, within the fixed cell.

To simulate a graphene sheet indented by an AFM analogous to the experiment of Lee et al[4] a
circle within an approximately square sheet is conically deformed in the z-axis, a diamond ‘indenter’
is then placed in the well of the indentation several angstroms above the cones centre. An em pirical
force field geometry optimisation is then performed using the bond order Brenner potential for the
intra-atom ic forces of the graphene with a long range Lennard-Jones potential between the indenter
and the graphene. During this indentation the graphene outside the indented circle and the diamond
indenter remain geometrically constrained. The depth of indentation is taken to be the distance along
the z-axis from the plane of the graphene outside the well to the lowest point of the indented
graphene. This replicates the conditions of a graphene sheet sitting atop a substrate well experiencing
an indentation from an AFM tip. This methodology was modified slightly for the DFT calculations of
the large membrane as it is prohibitively expensive to perform the full geometry optimisation at this
level. Instead optimised geometries from the em pirical calculation above are used with the lattice
constant stretched by 1 % and a single-point DFT calculation performed. From small cell calculations

we find that geometry optimisations with DFT and the Brenner potential differ by 1 % .

3. Results and discussion

The results of strain calculations for the small unitcell are shown in figure 1, where the energy
density relative to the unstrained cell is plotted as a function of in-plane strain. Notice how these
curves are quite asymmetric indicating that graphene is non-linear in its elastic response even at quite
small strain values. This is consistent with previous tight binding atom istic calculations[30,31].
These calculations have also been performed at the empirical level using the Brenner potential, the
results are qualitatively similar and are not shown here. From a polynomial fit of the strain vs energy
density curves in figure 1 it is possible to obtain the second and third order elastic constants via the

relationships [30,31]

AE(n,,) 1 1
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= E, + Cyiyim  + Ciiam (2.1)
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AE(n)
W here is the energy density of the system, E, is the energy of the system without strain and n is
N

the strain, chosen in this instance to be of the Lagrangian regime[31,41] . The results of these fits are
given in Table 1.
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Figure 1. The DFT and empirically calculated variation in energy density for hydrostatic planar, nyp,

and uniaxial strain applied along the zigzag, n,,,and n, edges.

Overall there is good agreement between our calculations and those previously published[30,31]. The
Young’s modulus can be derived from these elastic constants by the relationship E = C,,(1 — vi, we
will discuss these later where we compare with our indentation simulations. Agreement between the
DFT calculations and the Brenner potential is good for the second order terms but not so for the third
order values. C112 is difficult to determine as it sensitive to the values of C111 and C222. We have
also determined the elastic properties by indentation of a graphene membrane, analogous to the
experimental measurements of Lee etal [4]. By fitting equation 1 to this data Lee et al determined
both the Young’s Modulus and pretension in the membrane and deduced that their suspended
membranes are initially under tensile strain. In our calculations we consider both initial compressive

and tensile strain in the membrane.

Table 1. The values for the second and third order elastic constants, as well as Poisson’s ratio v,
calculated from the small strain method using both DFT and empirical Brenner potential in

comparison to other literature.

DFT Empirical Literature
c11 340 348 342°
c12 63 93 + 1 65"
c111 2810 + 6 3944 + 26 -2832°, -2725"
c112 419+ 2 118 £ 6 -390°, -591"
c222 2620 + 7 22459 19 -2684°, -2523"
v 0.18 0.27 0.19% 0.31"

® Ab intio[30]

PSemi-em pirical, tight-binding atom istic sim ulations [31]

As mightbe expected the initially compressed graphene sheets are observed to spontaneously indent
when we perform a geometry optimisation without the presence of the indenter tip, figure 2 (a). The
depth of this indent dependent upon the pre-compression. This mechanical ‘popping’ effect takes
place in order for the compressed sheet to minimize its strain energy and has been previously
observed in simulations of low strained graphene circles [42]. Figure 2 shows the relaxed indentation
profile of two graphene sheets with compression applied by reducing the lattice vectors by 3 % and 7
% . Buckling of the sheet in this way only occurs if the sheetis given a small nudge in order to break
its symmetry. This process could contribute to the initial indentation observed experimentally and

w hich is presumed to be purely due to Van de W aals forces with the sides of the well. If compressive
strain were present in the sheet it would naturally be inclined to depress into the well as adhesion
forces present would certainly disrupt the symmetry of the system . Interestingly itis observed that for
strain greater than 3% wrinkles in the indented morphology occur which function as an additional

mechanism to minimize strain energy, figure 2 (b). W hile these wrinkles in indented graphene have



been simulated before [26] we believe these to be the first atom istic simulations identify strain as the

driving mechanism.

By moving the constrained diamond indenter down towards the centre of the unconstrained graphene
circle and optimising the geometry of the graphene around the indenter, the indented structure for a
particular depth is found. The associated load is then calculated from the stress tensor. W e repeat this
process fora range of pretensions both tensile and compressive; example load-indentation curves are
given in figure 3 (a). As expected, tensile (compressive) prestrain of the membrane causes the load
versus indentation curves in Figure 3(a) to shift above (below) the indentation curve without strain.

W e then fit the classical expression for a centre-loaded, clamped isotropic elastic sheet given in
equation 1 to these load versus indentation curves to extract values of Young’s modulus and pre -
tension. This is a direct simulation of the experiment performed by Lee et al[4]. For compressed
indentations with the popping effect there is a transfer of stress from the xx and yy components to the
zz, this is treated as an offset as itis not load applied by the indenter. The indentation, however, would
be observed by an AFM and so our definition of indentation depth holds.. The results of this fitting
procedure are given in Table 2. Itis interesting to note that with these assumptions about the popping
effect the variation in young’s modulus with strain appears unperturbed, i.e. symmetric compared to
the variation due to tensile strain. This is the case even with the presence of wrinkles at high
compressive strain. The value of Young’s Modulus determined earlier from our 4 atom unitcell under

in-plane strain is also given in table 2 for comparison.
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Figure 2. The spontaneous indentation of the unconstrained graphene in a 2160 atom sheet when
subject to (a) 3% and (b) 7% biaxial compressive strain. The side view depicts the atom istic “nano
bow1” structure. The top view depicts a colour plot of the indentation depth in angstrom .
Table 2. Values for Young’s modulus, E, and sheet pretension, o(fit), derived by fitting equation 1 to
the load versus indentation curves similar to figure 3 (a), and the ‘true’ value from the stress
tensor, o(calculated). Results are given for empirical force field, E;, ,iricq, and DFT, Ep oy,
calculations The first column gives the actual pre-tension applied to the membrane in each case,
negative values correspond to tensile strain and positive values to compressive strain applied prior to
indentation. The popping indentation for the com pressed sheet’s are also given in the last column.
EEmpiricaI Eprr G Empirical GDFT G Empirical ODFT
(Nm Y (Nm ™ H (fit) (fit) (calculated) (calculated)
-1 -1 -1 -1
(Nm ) (Nm ) (Nm ) (Nm )




In-plane 306.0 330.0 - N ) .

Ten-7% 344.3£1.0 304.4+1.8 2.23+0.04 2.90£0.07 18.18 16.95
Ten-5% 338.8:1.9 274.2+1.8 0.66:+0.10 2.56+0.09 14.69 12.36
Ten-3% 330.1%+2.0 277.0%1.2 -0.51+1.10 0.87+0.06 9.99 7.27
Ten-1% 292.0:1.0 257.8:0.4 -1.78+0.04 -1.29+0.03 3.78 0.57
0% 282.8:0.4 253.5%0.1 -2.90+0.02 -2.76+0.01 0.00 -3.30
Com-1% 272.7+2.2 245.2+1.1 -3.79%0.13 -3.43:0.07 -4.30 -7.64
Com -3% 250.2+2.8 226.4%2.0 -5.39+0.16 -4.46+0.13 -14.70 -17.63
Com-5% 252.4%2.5 206.1%2.9 -8.63+0.19 -5.61+0.19 -28.00 -29.69
Com-7% 243.1%+1.6 207.1+1.8 -11.86£0.17 -8.07+0.16 -44.88 -43.53
Literature 340° - 0.34° - - -

Experimental [4]

Comparing first the Young’s modulus determined directly from in-plane strain of the small, 4 atom
unit cell, to values deduced by fitting the load indentation curve for zero pretension we see in table 2
that the latter values are considerably reduced both for the empirical and ab initio calculation. The
DFT calculations are significantly worse in this regard. However it must be remembered thatthe DFT
calculation of the membrane is not fully relaxed as can be seen from the calculated stress values

w here there is still a residual tensile compressive stress of 3.30N m ! corresponding to a value of
0.82% tensile strain, at supposedly zero pretension. However even for the case where the stress is
near zero (0.57N m _1) the deduced value of Young’s modulus is still substantially lower than that
from the direct, in-plane strain calculation on the smallunitcell. Itis important to realize that
identical methods are being compared here, and that these results are a test of the continuum clamped
membrane model. If this model is valid then one might expect values of Young’s modulus derived by
fitting equation (1) to the load versus indentation curve and the value derived directly by in-plane
strain applied to a small unitcell would be the same, at least within the numerical accuracy of the
methods and the fitting procedure. Numerical accuracy is high in these calculations as we have used a
set of computational conditions that are well converged, the fitting errors determined using the
jackknife methodology[43] show that the elastic constants can be derived from these calculations to
considerable precision. The difference between the two approaches observed here could be indicative
of an underestim ation by the indentation method similar to those proposed by Tan et al [18]. This is
supported further by the variation in Young’s modulus derived from load versus indentation curves
calculated for different pretension values as shown in figure 3 (b). The variation in Young’s modulus
could be explained by the inability of the pretension term in the indentation model to accurately
capture the strain presentin the sheet as seen in figure 3 (c). W hile Tan et al[18] propose an alternate

spherical load model for simulated indentations which requires a correction factor to the Young’s
1

modulus, (R/A):where R is the indenter radius and A well radius, this gives E = 486 Nm'1 and 383

N m for our empirical and ab initio calculations respectively.
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Figure 3. (a) The load Vs indentation curves from empirical simulations and AFM experiment[4] (b)
The Young’s modulus determ ined from fitting equation (1) to load Vs indentation data using
empirical force field (+) and density functional theory (x) methodology as a function of absolute
strain uniaxial strain on the graphene. (c) The pretention determined by fitting equation (1) to the load
vs indentation data for em pirical (+) and DFT (x) as well as the pretention calculated directly from the

x and y stress tensor components for empirical and DFT.

In the experiments of Lee et al the load indentation curve is measured using an AFM, the Young’s

M odulus and pretension are determined by fitting equation 1 to this curve. The pre-tension in their
membranes was found to be in the range of 0.07 - 0.74 Nm'l. Itwas concluded that the free-standing
graphene was initially in a compressed state to compensate for the observation of the graphene
membrane adhering down the sides of the well for up to 10nm, pulling the sheet tort, and giving rise
to a final tensile strain in the suspended membrane of ~2% . From our results we could provide an
alternate interpretation. The pretension determined by fitting actually corresponds to a tensile strain of

~4% , meaning the graphene may have initially been relaxed or even under a slight tensile strain.

Their results show a reasonable variation in the Young’s modulus with an average value of 340 +/-50
Nm'1 in good agreement with both our own and literature calculations from a small unitcell. Our
results would suggest that this agreement is fortuitous. The indentation model is inadequate and tends
to underestim ate the Young’s modulus furthermore the correlation of the experimental value with
smallunit cell calculations could due to a compensating tensile strain which has the effect of
increasing value of Young’s modulus determined by equation (1). Ifwe assume the graphene does
truly have a ~4% tensile strain to match our interpretation of lee et als fitted pretension then we would

also expect a Young’s modulus of330-338 Nm>1 in good agreement with the experimental values.



4. Conclusion
Simulations using empirical and, for the first time, ab initio methods were performed to investigate

the elastic properties and morphology of indented graphene membranes. It was observed that the
presence of compressive strain in the sheet prior to indentation can lead to spontaneous indentation of
the sheet which, in the case of strain greater than 3%, leads to the formation of wrinkles. Furthermore

this morphology seems to have relatively little effect on calculated Young’s modulus.

Values of Young’s modulus determined directly by straining a small unitcell in-plane and by fitting a
classical, continuum model to load versus indentation curves are quite different. The derived value of
Young’s modulus from this indented elastic membrane model shows a variation of approximately 30
% for different pre-tensions in the membrane, despite the fact that the classical model contains a term
that explicitly accounts for this pretension. Values of the pretension derived from the fitted model and
from direct calculation are also in disagreement. It would seem, from these, results that the classical
membrane model of Wan et al is therefore not adequate to describe indentation of areal graphene
membrane with nanometre dimensions. This may be due to neglecting of bending rigidity, or the
assum ption of isotropic stress in the membrane thatis independent of radial distance from the film
centre. This difference could not be reconciled with the recently proposed spherical load model[18]
however could be resolved by the presence of tensile strain in the graphene sheet. Instead we propose
an underestimation of the indentation model that was compensated for by the presence of tensile
strain. Additionally, a comparison with ab initio results suggests the inability of the Brenner potential

to fully describe out-of plane bending at larger indentations.
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