
Seasonal-to-Interannual Variability of Ethiopia/Horn of Africa Monsoon.
Part II: Statistical Multimodel Ensemble Rainfall Predictions

ZEWDU T. SEGELE

Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

MICHAEL B. RICHMAN, LANCE M. LESLIE, AND PETER J. LAMB

Cooperative Institute for Mesoscale Meteorological Studies, and School of Meteorology, University of

Oklahoma, Norman, Oklahoma

(Manuscript received 8 July 2014, in final form 23 October 2014)

ABSTRACT

An ensemble-basedmultiple linear regression technique is developed to assess the predictability of regional

and national June–September (JJAS) anomalies and local monthly rainfall totals for Ethiopia. The ensemble

prediction approach captures potential predictive signals in regional circulations and global sea surface

temperatures (SSTs) two to three months in advance of the monsoon season. Sets of 20 potential predictors

are selected from visual assessments of correlation maps that relate rainfall with regional and global pre-

dictors. Individual predictors in each set are utilized to initialize specific forward stepwise regression models

to develop ensembles of equal number of statistical model estimates, which allow quantifying prediction

uncertainties related to individual predictors and models. Prediction skill improvement is achieved through

error minimization afforded by the ensemble.

For retroactive validation (RV), the ensemble predictions reproduce well the observed all-Ethiopian JJAS

rainfall variability two months in advance. The ensemble mean prediction outperforms climatology, with

mean square error reduction (SSClim) of 62%. The skill of the prediction remains high for leave-one-out cross

validation (LOOCV), with the observed–predicted correlation r (SSClim) being10.81 (65%) for 1970–2002. For

tercile predictions (below, near, and above normal), the ranked probability skill score is 0.45, indicating

improvement compared to climatological forecasts. Similarly high prediction skill is found for local prediction of

monthly rainfall total at Addis Ababa (r5 10.72) and Combolcha (r5 10.68), and for regional prediction of

JJAS standardized rainfall anomalies for northeastern Ethiopia (r 5 10.80). Compared to the previous gen-

eration of rainfall forecasts, the ensemble predictions developed in this paper show substantial value to benefit

society.

1. Introduction

Rainfall is themost important climate element affecting

the Ethiopian population (96.6 million). The main rainy

season (called Kiremt) occurs during June–September

(JJAS), when the northern two-thirds of the country re-

ceives 65%–95% of Ethiopia’s total annual rainfall

(Segele and Lamb 2005) and produces 85%–95% of its

food (Degefu 1987). Because all Ethiopian agricultural

activities and resulting crop production are dependent

upon on the distribution and amount of JJAS rainfall, its

seasonal prediction is of great importance for agricultural

planning and socioeconomic disaster mitigation.

Several previous studies have examined aspects of the

intraseasonal-to-interannual variability of Ethiopian

rainfall. These studies have considered the following:

Kiremt onset, cessation, and resulting growing season

variability (Segele and Lamb 2005); the abrupt lat-

itudinal rainfall changes involved and their representa-

tion in climate model simulations (Riddle and Cook

2008; Segele et al. 2009c); associated large-scale atmo-

spheric circulation characteristics and global sea surface

temperature patterns (Beltrando and Camberlin 1993;

Shanko andCamberlin 1998; Segele et al. 2009a; Berhane

et al. 2014); and connections to the Indian monsoon
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(Camberlin 1997; Vizy and Cook 2003). Also investigated

have been the hydrological responses to rainfall (Conway

2000), temporal trends and decadal shifts of the rain

(Seleshi and Zanke 2004; Bowden and Semazzi 2007;

Cheung et al. 2008; Williams et al. 2012; Viste et al. 2013;

Berhane et al. 2014), and seasonal spring (Belg) and

Kiremt rainfall predictability (Gissila et al. 2004; Korecha

and Barnston 2007; Block and Rajagopalan 2007; Diro

et al. 2008; Korecha and Sorteberg 2013; Jury 2013;

Nicholson 2014).

Segele et al. (2009b, hereinafter Part I) used wavelet

analysis to identify temporal and spectral characteristics

of the seasonal-to-interannual variability of 5-day av-

erage Ethiopian JJAS rainfall, and to present a time–

frequency quantification of teleconnections between the

rainfall and large-scale atmospheric circulation and

global sea surface temperature (SST) patterns. The re-

sults linked Ethiopian monsoon rainfall variations

principally with seasonal-to-interannual time-scale at-

mospheric circulation patterns that involve fluctuations

in the major components of the monsoon system, in-

cluding the monsoon trough, tropical easterly jet (TEJ),

and Somali low level jet (SLLJ). Part I thus provided the

physical basis for understanding the mechanisms of

Ethiopian rainfall variability and identifying regional

rainfall drivers. The current study builds on that foun-

dation by developing new statisticalmethods for assessing

the predictability of monthly-to-seasonal Ethiopian

rainfall on national and local scales, as a step toward an

operational seasonal prediction capability for Ethiopia.

On interannual time scales, monsoon rainfall vari-

ability now is widely recognized as being governed by

slowly varying surface boundary conditions, such as

SSTs, land surface albedo, and soil moisture. For Africa,

the role of basin- and global-scale SST anomalies for

such rainfall variability received considerable attention

over the last 35 years (e.g., Lamb 1978a,b; Folland et al.

1986, 1991; Lamb andPeppler 1992; Barnston et al. 1996;

Ward 1998;Mutai andWard 2000; Camberlin et al. 2001;

Giannini et al. 2003; Segele et al. 2009a; Part I; Ndiaye

et al. 2011). Using diagnostic relationships developed in

those studies, several other investigations further assessed

the predictability of Ethiopian Belg (Diro et al. 2008) and

Kiremt (Gissila et al. 2004; Block and Rajagopalan 2007;

Korecha and Barnston 2007; Jury 2013; Nicholson 2014)

seasonal rainfall. The possible role of land surface con-

ditions for African rainfall was noted first by Charney

(1975) and has been investigated in many subsequent

studies (e.g., Charney et al. 1977; Charney and Shukla

1981; Xue and Shukla 1993; Clark andArritt 1995; Clark

et al. 2001).

The surface boundary focus of the present Ethiopian

study is SST. However, El Niño–Southern Oscillation

(ENSO)-related ‘‘predictability barrier’’ in Northern

Hemisphere spring (e.g., Goswami and Shukla 1991;

Webster and Yang 1992; Webster et al. 1998) can pose

a major challenge to providing seasonal rainfall forecasts

two or more months in advance in the tropics (Goddard

et al. 2001; Korecha and Barnston 2007). Also, because

the effects of slowly evolving global SST variations on

Ethiopian rainfall must be transmitted through

changes in local and regional atmospheric circulations

and SST patterns, development of monthly-to-seasonal

Ethiopian rainfall predictions can be enhanced by

identifying local and regional predictors and aggre-

gating their effects into ensemble-based statistical

prediction schemes.

The present Kiremt predictability investigation in-

volves 2–3-month lead time forecasts of local, regional,

and national rainfall for Ethiopia. Individual predictions

employ a set of 20 predetermined regional and global

predictor variables to construct equal number ensem-

bles of initial statistical model estimates that capture

potentially valuable and unique signals from every var-

iable in the 20-member predictor set. Final models are

selected objectively from the 20 initial models after

a series of tests are applied that address regression as-

sumptions and statistical significance requirements. The

averaging of the final ensembles of statistical estimates is

shown to improve cross-validation skill compared to

a traditional, single-model based technique. The en-

semble provides a novel approach to quantify the en-

velope of uncertainty created by the model building

process, reflecting the predictive uncertainties associ-

ated with individual predictors and models. Cross-

validation skill improvement is achieved through error

minimization afforded by the ensemble.

2. Data and methodology

Accurate prediction of all-Ethiopian Kiremt rainfall

would provide valuable national-scale information.

Stakeholders would benefit from accurate monthly

rainfall predictions at local and regional levels, espe-

cially for highly populated areas and those with large

interannual rainfall variability. To achieve a high level

of accuracy and a measure of forecast uncertainty,

ensemble-based statistical prediction tools were de-

veloped and assessed for 1) all-Ethiopian standardized

Kiremt rainfall anomalies, 2) August total rainfall at

Addis Ababa (the most populated city in the African

Union) and Combolcha (center of the 1984 Ethiopian

drought), and 3) northeastern Ethiopia standardized

JJAS rainfall anomalies. Addis Ababa and Combolcha

have daily rainfall records, with Combolcha’s high in-

terannual rainfall variability challenging traditional
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single-model-based seasonal forecast methods (e.g.,

Gissila et al. 2004; Korecha and Barnston 2007). North-

eastern Ethiopia was selected for regional prediction be-

cause of the region’s susceptibility to drought and high

rainfall variability (e.g., Lanckriet et al. 2015).

a. Data

This study utilizes sets of Ethiopian rainfall (pre-

dictand) and large-scale atmospheric and global SST

(predictor) data for 1970–99 that were described in

Part I and now have been extended through 2000–02.

For seasonal prediction at a national level, a standard-

ized all-Ethiopian JJAS rainfall index originally was

constructed for 1970–99 using daily totals from 100 rain

gauge stations (Fig. 1, dots). The present extension of

that index for 2000–02 employed seasonal totals for 52 of

those stations (Fig. 1, squares) analyzed in Korecha and

Barnston (2007; data obtained from A. G. Barnston in

2008). For local prediction examples, August monthly

rainfall totals for 1970–99 were used for Addis Ababa

and Combolcha (Fig. 1). For regional prediction, 11

stations from three regional states (Amahara, Afar, and

Tigray) were used to construct a standardized regional

JJAS rainfall index for 1970–99 for northeastern Ethiopia

(Fig. 1, stars). This index was extended for 2000–02 using

seven stations fromKorecha andBarnston (2007) seasonal

total rainfall for northeastern Ethiopia (Fig. 1, collocated

squares/stars).

The set of atmospheric predictors for 1970–99 was

constructed from monthly NCEP–NCAR reanalysis

data (508N–408S, 308W–908E and 2.58 latitude 3 2.58
longitude spatial resolution; Kalnay et al. 1996). These

predictors included daily-averaged fields of mean sea

level pressure (MSLP), geopotential height, tempera-

ture, horizontal wind, vertical velocity, and specific hu-

midity at standard pressure levels. SST predictors

for 1970–99 were obtained from the Met Office Hadley

Centre global monthly SST dataset (HadISST1;

18 latitude3 18 longitude resolution; Rayner et al. 2003).

Both these datasets were extended to 2002.

b. Prediction design

In Part I, wavelet analysis identified the temporal and

spectral characteristics of the intraseasonal-to-interannual

variability of 5-day average JJAS Ethiopian rainfall, and

their strong contemporary teleconnections with large-

scale atmospheric circulation and global SST patterns.

Although variability on quasi-biennial (QB; 5%) and

ENSO (2%) time scales accounted for much less rainfall

variance than the annual mode (66%), they modulated

the season-long persistence of major regional monsoon

components and their remote teleconnection linkages.

However, time-lagged relationships between regional

rainfall and such large-scale variables generally do not

remain strong or statistically significant (e.g., DelSole

and Shukla 2002; Segele et al. 2009a, their Fig. 14), which

limits their predictive potential.

The present study therefore develops and applies an

ensemble-based multiple linear regression technique

to predict 1) standardized JJAS rainfall anomalies for

all of Ethiopia for 1970–2002, 2) monthly rainfall to-

tals for Addis Ababa and Combolcha for 1970–99, and

3) regional standardized rainfall anomalies for north-

eastern Ethiopia for 1970–2002 (Fig. 1). This approach

assumes that slowly evolving global SST variations

affect Ethiopian rainfall through changes in more re-

gional and local atmospheric circulation and SST

anomalies, even when the influential ENSO state is

unpredictable or its phase has minimal effect (e.g.,

DelSole and Shukla 2002; Nicholson 2014). The

methodology involves three distinct steps: 1) building

a set of potential atmospheric circulation and SST

predictors from a series of correlation maps; 2) con-

structing initial ensemble model members by specify-

ing each potential predictor as the first predictor in

a multiple regression model; and 3) selecting final

ensemble model members based on statistical signifi-

cance tests.

FIG. 1. Regional map showing locations of 100 Ethiopian rain

gauge stations (dots) with data for 1970–99. Squares enclose 52 sta-

tions for which 2000–02 data were added to those for 1970–99 to ex-

tend use of the retroactive verification (RV) and leave-one-out cross

validation (LOOCV) methods for all-Ethiopian June–September

(JJAS) rainfall anomaly prediction through 2002. Stars locate 11

northeastern Ethiopia stations with 1970–99 data, with 7 collocated

squares added to extend use of LOOCV for northeastern Ethiopia

regional prediction of JJAS rainfall anomaly through 2002. Thin

arrows locate Addis Ababa and Combolcha, which were used for

local August rainfall total prediction for 1970–99 using the

LOOCV approach.
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1) STEP 1: BUILDA SETOF POTENTIAL PREDICTORS

Guided by Part I, the full three-dimensional state of the

regional atmosphere and global SST was represented by

a set of potential March predictors of Kiremt (JJAS)

rainfall. Raw atmospheric predictors consisted of grid-

point values for 508N–408S, 308W–908E of geopotential

height (F), temperature (T), horizontal wind (u, y), ver-

tical velocity (w), and specific humidity (q) at standard

pressure levels, and MSLP. To accommodate potential

interaction effects between these predictors, additional

second-order predictors were derived by their cross

multiplication—that is,Fu,Fy, Tu, Ty, uy, uw, and yw at

12 pressure levels from 1000 to 100hPa, and qu and qy at

eight levels from 1000 to 300hPa. Also, following Part I,

the horizontal wind components and vertical velocity for

1000–100hPa within 308N–208S, 308–508E were used to

construct zonal and meridional vertical cross sections of

uw and yw. Raw global (608N–608S) SST predictors for

March were used in their original form. Each gridpoint

variable was standardized. Correlations were computed

at all grid points and levels and, following Gissila et al.

(2004), Block and Rajagopalan (2007), Korecha and

Barnston (2007), and Nicholson (2014), coherent areas of

highly significant correlation were selected and the av-

erage values of individual variables within the coherent

areas were taken as candidate predictors. Here, it was

required that the correlations remain statistically signifi-

cant at 5% level according to a nonparametric bootstrap

test for 1970–90 and 1970–99. In addition, the physical

significance of the correlations was assessed for all se-

lected predictors. Representative samples of predictors

are discussed in section 3a. The number of candidate

predictors for a given predictand was limited to a maxi-

mum of 20. These predictors were then used for both

retroactive/retrospective verification (RV) and leave-

one-out cross validation (LOOCV) approaches. In RV,

the 20 selected March predictors were used to generate

all-Ethiopian Kiremt (JJAS) rainfall predictions for the

1990–2002 verification period, based on 1970–89 model

development data. In the LOOCV, 20 March predictors

were used for each year during 1) 1970–2002 for all of

Ethiopia national and northeastern regional predictions

of seasonal rainfall anomalies and 2) 1970–99 for local

monthly rainfall prediction at Addis Ababa and

Combolcha, based on model development data for all

other years in the corresponding training period.

The above predictors may not be mathematically in-

dependent. However, the problem of multicollinearity

that arises in a given predictor matrix, owing to lack of

independence between levels and variables, was evaluated

for individual regression models during the final model

selection stage, as described in step 3 below.

2) STEP 2: CONSTRUCTION OF MULTIMODEL

ENSEMBLE SET

Model development used a forward selection stepwise

multiple linear regression procedure (S-PLUS 2013) that

began with base models containing only one predictor

from the preselected set and an intercept. Other pre-

selected predictors then were added individually in turn,

until no further improvement resulted according to the

Akaike information criterion (AIC; Venables and Ripley

1997, 218–222). This process was repeated until all pre-

selected predictors (Np) variables for a given prediction/

verification year were used as a first model parameter,

giving Np individual prediction equations. This ensures

that a potential predictive signal uniquely associated with

a predictor is not unduly discarded. The forward selection

procedurewas necessary because the alternative backward

elimination stepwise approach starts from a full (complex)

model and does not guarantee that the final model will

contain a particular predictor as its first parameter.

3) STEP 3: SELECTION OF FINAL MODEL MEMBERS

Final multimodel ensemble members were selected

from candidate models identified in step 2, based on pre-

dictor independence, model assumption validity, model

coefficient statistical significance, and overall model sig-

nificance. Several procedures were applied to ensure that

the multiple regression assumption of independent pre-

dictors was not seriously violated. Correlations between

all predictors were determined for the entire time series,

andmodels for which correlationmagnitudes between any

two predictors exceeded 0.5 were discarded. Further

scrutiny for multicollinearity used the variance inflation

factor (VIF; Tamhane and Dunlop 2000, p. 417) to elim-

inate remaining models with VIFs .10. Remaining

models were considered for further analysis only when the

null hypotheses of normality, zero autocorrelation, and

homoscedasticity were not rejected at the 5% (a 5 0.05)

significance level according to the following tests: the

Shapiro–Wilk normality test (Steinskog et al. 2007), the

Durbin–Watson test for serial independence (Wilks 2006,

192–193), and the Breusch–Pagan test for conditional

heteroscedasticity (Breusch and Pagan 1979). A model

then was admitted to a final multimodel ensemble set only

when its individual regression coefficients, as well as the

overall model fit, were statistically significant at the 5%

level according to an F test (e.g., Draper and Smith 1981,

31–33; Tamhane andDunlop 2000, 407–410). In the above

significance tests, if the cost of type I error is much larger

(smaller) than expected, the a value can be adjusted to

a smaller (larger) value. The cost of type II error needs

to be considered simultaneously when adjusting a. Fol-

lowing other regression-based prediction development
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(e.g., Hastenrath et al. 1995; DelSole and Shukla 2002;

Saunders and Lea 2005; Block and Rajagopalan 2007;

Korecha and Barnston 2007), nonparametric tests were

not performed for regression coefficient significance be-

cause of the considerable computational requirements

associated with the large number of regression models

involved.

c. Forecast verification

Comprehensive model evaluation was performed by

comparing predicted and observed rainfall values for

mutually exclusive/independent verification periods,

using goodness-of-fit and relative/absolute error mea-

sures with supporting estimates of reliability (Willmott

et al. 1985; Legates and McCabe 1999, hereinafter

LM99). Mean absolute error (MAE) and root-mean-

square error (RMSE) statistics quantified prediction

errors. To assess the models’ goodness of fit or relative

error, the Pearson’s product-moment correlation co-

efficient, coefficient of efficiency [E2; Eq. (2) of LM99],

index of agreement [d2; Eq. (3) of LM99], modified in-

dex of agreement [d1; Eq. (4) of LM99], and modified

FIG. 2. Correlation analyses involving selected March atmospheric predictors and Kiremt

(JJAS) standardized all-Ethiopian rainfall anomalies. Correlation patterns between gridpoint

predictors Tu100, fv500, and qv925 (shown at left) for March and standardized all-Ethiopian

JJAS rainfall anomalies for (left) 1970–90 and (right) 1970–99. Correlation values are color-

coded at right, with solid (dashed) red isopleths enclosing positive (negative) correlation values

with achieved significance levels (ASLs) of#1% according to a nonparametric bootstrap test.

A thick black line encloses Ethiopia. Arrows indicate locations of selected predictors (Table 1).
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coefficient of efficiency [E1; Eq. (5) of LM99] were all

calculated. Willmott et al. (1985) and LM99 explain E2,

d2, d1, and E1, while DelSole and Shukla (2002) and

Wilks (2006, 280–281) further discuss E2.

The aforementioned deterministic model evaluation

metrics were complemented by the ranked probability

score (RPS), a commonly used ensemble forecast per-

formance measure (Mason and Mimmack 1992; Wilks

2006, 299–302; Block and Rajagopalan 2007), defined as

RPS5 �
J

m51

(Ym 2Om)
2 , (1)

where J is the number of prediction categories, andYm and

Om are cumulative predicted and observed probabilities

through categorym, respectively. The RPS was converted

into a ranked probability skill score (RPSS) by computing

it relative to climatological probabilities, where

RPSS5 1:02
RPS

RPSClim
. (2)

Three equiprobable categories (terciles) were used, and

were obtained by ranking and grouping predictand time

series into the bottom (below normal), middle (near

normal), and top (above normal) thirds.

Because the aforementioned measures follow no

known distribution, no standard parametric approach

can determine the reliability and significance; therefore,

significance and confidence intervals were assessed

through two nonparametric bootstrap methods that

permit any data distribution to generate statistics (Efron

FIG. 3. As in Fig. 2, but for uw200, w300, and uv500. See Table 1 for predictor details.
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and Gong 1983; Willmott et al. 1985; Solow 1985;

LM99). First, and following Part I, the reliability of each

sample statistic (Mason and Mimmack 1992; Nicholls

2001) was assessed by calculating its confidence

intervals, using the bias-corrected and accelerated

(BCa) bootstrap technique of Efron and Tibshirani

(1993, p. 178). To establish confidence interval accuracy,

the BCa method was applied to sample statistics

FIG. 4. Correlation analyses involving standardized gridpoint SST predictors for March and

Kiremt (JJAS) standardized all-Ethiopian rainfall anomalies for (a) 1970–90 and (b) 1970–99.

Correlation values are color-coded at bottom, with solid (dashed) red isopleths enclosing positive

(negative) correlation values with ASLs of #1% according to a nonparametric bootstrap test.

Thick black line encloses Ethiopia. Arrows indicate locations of selected predictors (Table 1).

TABLE 1. Predictors selected for the prediction of standardized Kiremt (JJAS) all-Ethiopian rainfall anomalies (Fig. 1; 100 stations

for 1970–99, dots; 52 stations for 2000–02, squares) using both retroactive verification (RV, section 2b) and leave-one out cross valida-

tion (LOOCV, section 2b) approaches. Predictors were selected based on their high correlations with rainfall (sections 2b and 3a). All

predictand–predictor correlations are statistically significant with ASLs #5% according to a nonparametric bootstrap test.

Predictor description Symbol Location

Correlation (3100)

1970–90 1970–99

1 Air temperature at 100 hPa T100 Southern Europe (458–508N, 108–158E) 246 253

2 Zonal geopotential height flux at 300 hPa fu300 Eastern Indian Ocean (58S–08, 808–858E) 259 251

3 Zonal geopotential height flux at 500 hPa fv500 Western Indian Ocean (08–58N, 558–608E) 164 160

4 Zonal moisture flux at 700 hPa qu700 South Atlantic (258–308S, 108–158W) 261 255

5 Meridional moisture flux at 925 hPa qv925 Arabian Sea (108–158N, 608–658E) 156 157

6 Meridional moisture flux at 1000 hPa qv1000 Somali coast (108–158N, 508–558E) 274 265

7 Sea surface temperature SST North tropical Pacific (168–188N, 1718–1758E) 263 255

8 Zonal temperature flux at 100 hPa Tu100 Southeastern Europe (408–458N, 258–308E) 145 150

9 Meridional temperature flux at 600 hPa Tv600 Central Indian Ocean (08–58N, 608–658E) 272 267

10 Meridional temperature flux at 925 hPa Tv925 Northern Arabian Sea (208–258N, 608–658E) 155 158

11 Zonal/meridional wind flux at 500 hPa uv500 Western Indian Ocean (58S–08, 408–458E) 162 158

12 Zonal/meridional wind flux at 925 hPa uv925 Somali coast (108–158N, 508–558E) 249 249

13 Zonal/vertical wind flux at 100 hPa uw100a Asia (408–458N, 658–708E) 152 155

14 Zonal/vertical wind flux at 100 hPa uw100b Asia (458–508N, 808–858E) 151 150

15 Zonal/vertical wind flux at 200 hPa uw200 Arabian Sea (108–158N, 658–708E) 248 248

16 Meridional/vertical wind flux at 850 hPa vw850 South Atlantic Ocean (258–308S, 108–158W) 146 148

17 Meridional/vertical wind flux at 925 hPa vw925 Central Indian Ocean (58–108S, 708–758E) 164 163

18 Meridional/vertical wind flux at 1000 hPa vw1000 Somali coast (58–108N, 508–558E) 256 253

19 Vertical wind at 150 hPa w150 Asia (458–508N, 658–708E) 171 159

20 Vertical wind at 300 hPa w300 Western Indian Ocean (58S–08, 508–558E) 166 259
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computed from 5000 bootstrap samples of N pairs of

observed/predicted rainfall time series members. Each

of theN pairs was obtained by reshuffling and randomly

choosing, with replacement, single-pair values at a time

from the N pairs of observed/predicted rainfall time

series members. In the second bootstrap approach, an

achieved significance level (ASL)—the probability of

exceeding the observed correlation by chance—was

obtained for correlations computed from the same 5000

bootstrap samples of N pairs of observed/predicted

rainfall time series members (Efron and Tibshirani 1993,

p. 203). Each observed–predicted correlation was

ranked among the bootstrap sample correlations to de-

termine the fraction of the random correlations that

were at least as large as the observed correlation.

3. Prediction of Kiremt rainfall

a. Examples of March predictors for all-Ethiopia
Kiremt rainfall

This section documents the physical importance of

certain selected atmospheric and SST predictors for

FIG. 5. RV of model performance initiated from average March atmospheric and SST con-

ditions. (a) Correlations/root-mean-square errors (RMSEs) between predicted and observed

Kiremt (JJAS) standardized all-Ethiopian rainfall anomalies (Fig. 1) are shown for the 1970–89

training (red/orange) and 1990–2002 independent verification (green/magenta) periods for

each of the initial 20 regression models (model sequence number along abscissa). Red/orange

squares show 11 models that were selected as final ensemble members, with blue (purple)

arrows indicating the decreased (increased) correlations (RMSE) between their predicted

values and observations for 1990–2002 independent verification period. (b) Regression equa-

tions for the final 11-member multimodel ensemble (abscissa) and the frequency of occurrence

ofMarch predictors (color coded at bottom). The ordinate shows model coefficients/parameters,

with roman numerals I–IV on right giving the order of predictor appearances in that model.

Variable name abbreviations are given in Table 1. See sections 2b, 2c, and 3b for details.
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Kiremt rainfall prediction. Figures 2 and 3 (atmospheric

circulation) and Fig. 4 (SST) document the March pre-

dictors that were most strongly correlated with stan-

dardized all-Ethiopian Kiremt rainfall for the 1970–90

and 1970–99 periods. The discussion below focuses on

regions of strong correlations indicated by red arrows in

Figs. 2–4.

Zonal temperature advection at 100 hPa (Tu100) over

southern Europe during March correlated strongly with

Kiremt rainfall, with achieved significance levels (ASLs)

FIG. 6. Two-month lead time prediction of observed (red) Kiremt (JJAS) standardized all-

Ethiopian rainfall anomalies (Fig. 1) for 1990–2002 using the RV approach initiated from av-

erageMarch atmospheric and SST conditions. Predictions are mean (green) andmedian (orange)

of final 11-member multimodel ensemble developed using 1970–89 training data. Black vertical

bars give 95% confidence intervals for final multimodel-predicted values, computed by applying

the bias-corrected and accelerated (BCa) bootstrap method described in section 2c.

TABLE 2. Verification (section 2c) of 2-month lead time model predictions of standardized Kiremt (JJAS) all-Ethiopian rainfall

anomalies (Fig. 1, squares, 52 stations) for 1990–2002 using the RV approach (section 2b, steps 2 and 3), based on atmospheric and SST

predictors observed in March. Predictions are means for final 11-member multimodel ensemble developed using 1970–89 training data

(section 3b). Details on statistics and confidence intervals (BCa bootstrap method) appear in section 2c. The median column gives the

median values of the statistics obtained for the individual 11 regression estimates without pooling and the mean column under the

bootstrap heading contains average of 5000 bootstrap statistic replicates.

Statistic Median Predicted vs obs values

Bootstrap

95% confidence intervals

MeanLower limit Upper limit

Standard deviation (obs, s) — 10.34 10.25 10.42 10.32

Standard deviation (predicted, s) 10.18 10.36 10.20 10.51 10.34

Mean absolute error (MAE; s) 10.22 10.16 10.10 10.24 10.16

Root-mean-square error (RMSE; s) 10.27 10.20 10.13 10.29 10.19

Skill score (vs climatology; SSClim) 10.28 10.62 10.26 10.86 10.57

Skill score (vs persistence; SSPers) 10.76 10.87 10.80 10.96 10.79

RPSS (vs climatology; RPSSClim) 10.20 10.55 10.29 10.75 10.55

Pearson’s correlation (r) 10.71 10.84 10.62 10.95 10.84

Index of agreement (d2) 10.82 10.91 10.73 10.97 10.89

Modified index of agreement (d1) 10.60 10.72 10.57 10.84 10.70

Modified coefficient of efficiency (E1) 10.20 10.44 10.20 10.67 10.40
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of#1% according to a nonparametric bootstrap test for

both the 1970–90 and 1970–99 periods (Fig. 2, top). The

association between north–south variations in zonal

westerlies and warm lower stratospheric midlatitude air

is manifested by strong correlations. The correlation

magnitude decreased appreciably (from10.50 to10.40)

at 150hPa, although similar correlation patterns con-

tinue in the zonal wind at pressure levels greater than

250 hPa. The positive correlation indicates a likelihood

of enhanced Kiremt rainfall with increased Tu100 over

southern Europe.

Another potential predictor involving the mass field

was found over the western equatorial Indian Ocean in

association with the meridional flux of geopotential

height at 500 hPa (fv500) duringMarch (Fig. 2, middle).

Themain correlation signal was linked to themeridional

wind (v500), but including variability in the midtropo-

spheric tropical geopotential height field increased the

correlation with Kiremt rainfall. Perturbation in the

northerly wind occurs in response to the east–west

(mainly) oscillation of a weak tropical high over Africa

and the eastward passage of subtropical westerlies,

which break the weak zonal midtropospheric easterlies

over the equatorial Indian Ocean. The positive v500–

rainfall correlations indicate that the strengthening of

equatorial southerlies over the western Indian Ocean

during March is likely to enhance Ethiopian rainfall in

summer.

In the lower troposphere, meridional moisture flux in

the western Indian Ocean in March is associated

strongly with Ethiopian Kiremt rainfall. March meridi-

onal moisture flux is affected by a transitory subtropical

anticyclone over the Arabian Peninsula, which brings

moisture for the short rains in Ethiopia from mid-

February to mid-May (locally called Belg) when it

moves eastward over the Arabian Sea. In association

with the eastward displacement of the subtropical high/

anticyclone to the Arabian Sea (usually in response to

a southward intrusion of westerlies), the dry continental

northeasterlies are replaced by maritime northeasterly

to easterly humid air flowing into Ethiopia from the

Arabian Sea. The negative rainfall and meridional

moisture flux at 925 hPa (qv925) association indicates

that increased (decreased) northerly moisture flux over

FIG. 7. Frequency distributions of bootstrap samples of selected verification statistics

(section 2c) for 2-month lead time prediction of standardized all-Ethiopian Kiremt (JJAS)

rainfall anomalies (Fig. 1) for 1990–2002, using the RV approach initiated from March at-

mospheric and SST conditions. Predictions are means for final 31-member multimodel en-

semble developed using 1970–89 training data. (a) Pearson’s product-moment correlation

coefficient, (b) mean absolute error, (c) modified index of agreement, and (d) ranked

probability skill score over climatology. The 95% BCa bootstrap confidence intervals (sec-

tion 2c) span the shaded bars. Thin lines depict probability density functions for normal

distributions using the means and standard deviations of bootstrap replicates. Arrows locate

the original statistic values (Table 1).
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the northern Indian Ocean during March can lead to

enhanced (reduced) Ethiopian seasonal rainfall during

JJAS.

Predictors in the horizontal wind and vertical velocity

fields include 500–200-hPa zonal and meridional winds

and vertical velocity. In the upper troposphere, the

product of 200hPa u and w (uw200) during March pos-

sessed strong negative correlation with Kiremt rainfall

over northeastern Arabian Sea. This correlation arises

from the passage of a ridge–trough system that perturbs

a normally weak zonal and subsiding flow over the

northern Indian Ocean. The negative correlation in-

dicates that increasing westerlies/ascending motion

(easterlies/descending motion) during March likely lead

to reduced (enhanced) Ethiopian Kiremt rainfall.

Nicholson (2014) also found strong correlation between

Horn of Africa rainfall and zonal wind at 200 hPa for

May. The 200-hPa vertical velocity association with

Ethiopian rainfall strengthens at 300 hPa with its foot-

print extending farther west to the western Indian

Ocean (Fig. 3, middle).

In the middle troposphere, the zonal and meridional

wind for March showed strong correlation with Ethio-

pian rainfall off the coast of Kenya (Fig. 3, bottom). The

predictability signal was obtained from both the zonal

and meridional components, with the zonal and merid-

ional wind interaction shifting the region of influence

near the African coast compared to Fig. 2 (middle). The

negative correlation reflects the simultaneous strength-

ening of northerlies (southerlies) and westerlies (east-

erlies) during March over the western Indian Ocean can

enhance Ethiopian rainfall during JJAS.

Much of Ethiopian Kiremt rainfall predictability from

SST is generated from tropical Pacific SST, where there

are strong statistically significant correlations for both the

1970–90 and 1970–99 periods. Previous studies also found

the northern tropical Pacific to be a source of Ethiopian

rainfall predictability (e.g., Block and Rajagopalan 2007;

Korecha and Barnston 2007; Nicholson 2014). After

demonstrating the circulation patterns associated with

the correlations, a physical basis for retention of these

predictors is confirmed and a total of 20 predictors were

selected for modeling of all-Ethiopian Kiremt rainfall

(Table 1). These predictors were used for both RV and

LOOCV approaches.

b. Retroactive verification of all Ethiopian
predictions using March predictors

For RV of all-Ethiopian Kiremt rainfall predictions,

20 individual regression models (with intercepts) ini-

tially were developed for the 1970–89 training period,

following the multimodel ensemble construction (step

2) described in section 2b. The numbers of model co-

efficients (not counting the intercepts) stepped into

the initial regression models were 2 (5% of models),

3 (65%), and 4 (30%). The final multimodel ensemble

set (11 models) was identified as described in step

3 (section 2b) using model statistics for the 1970–89

training period (regression coefficients and residuals,

numbers of coefficients, multiple R2, VIF, and correla-

tions between predictors).

Model performance is summarized in Fig. 5, which

displays the correlations between model-predicted and

observed standardized all-Ethiopian Kiremt rainfall

anomalies for the training (1970–89) and independent

verification (1990–2002) periods for the initial 20 and

final 11 models (Fig. 5b). All 20 models reproduced well

the observations for the training period (R2 . 0.77), but

their cross-validated skill decreased significantly for the

independent 1990–2002 period, with 55% of models

having less than 50% explained variance and RMSE

increasing by 39%–193% (Fig. 5a). Figure 5b shows the

regression equations for the final 11 selectedmodels that

satisfied the assumptions of linear regression technique

objectively and attained statistical significance of 5%

(section 2b). All models have a maximum of four non-

intercept coefficients. With the exception of the vw925

predictor, which appeared in 7 of the 11 final models as

the second parameter, the other predictors are fairly

uniformly distributed with #4 out of 11 frequency of

occurrence in the ensemble. Comparison of Figs. 5a and 6

FIG. 8. Sensitivity of cross-validated model performance to en-

semble size. Correlation between observed and ensemble pre-

dicted (solid black line, left y axis) and ensemble mean standard

deviation (dashed line, right y axis) for two-month lead time pre-

diction of standardized all-Ethiopian rainfall anomalies (Fig. 1) for

1990–2002 using the RV approach as a function of the total number

of predictors (abscissa) used in developing models as described in

section 2b (step 2). Vertical bars show corresponding final en-

semble size (values given on top of each bar) for each simulation

determined by step 3 (section 2b). The first final model ensemble

(2) was developed from a 5-member predictor set, while the last

final ensemble (11) was developed from 20 initial predictors.
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shows that significant prediction improvement resulted

from averaging the ensemble members, consistent with

findings of Krishnamurti et al. (2000) and Bohn et al.

(2010) for dynamic multimodel ensemble forecasting.

This benefit primarily arises from cancelling (reinforcing)

disagreements among (common features between) en-

semble members (Wilks 2006, p. 235).

Figure 6 and Table 2 document the RV performance

using the mean and median of the final 11-member

model ensemble. To highlight the skill advantages that

arise from the ensemble averaging, the median column

in Table 2 gives the median values of the statistics under

the observed versus predicted column but obtained for

the final 11 regression models individually prior to en-

semble averaging. Pearson’s correlations between ob-

served and predicted ensemble means (10.84) and

medians (10.79) for the 1990–2002 verification period

have ASLs of ,1% according to a nonparametric

bootstrap test (Fig. 6). The Spearman’s rank correlation

increased slightly for the ensemble mean (10.87) but

remained nearly the same for the median (10.78), both

with similarly determined ASLs#1%, indicating strong

monotonic association between the ranking of ensemble

forecasts and observations. Predictions have similar

variability as the observations, as evidenced by their

standard deviations (Table 2, Fig. 6 inset). Absolute

TABLE 3. Characteristics of regression models developed using a LOOCV approach (section 2b) for 2-month lead time prediction of

standardized Kiremt (JJAS) all-Ethiopia rainfall anomalies (Fig. 1) for 1970–2002, based on atmospheric and SST predictors observed in

March. The columns under the heading number of models having indicated number of coefficients (3–6) exclude the intercept. Models for

which the predictors were strongly intercorrelated (i.e., jrpxj $ 0.5, where rpx is the correlation between any two predictors in a model)

were removed. The column under the heading number of models significant at 5% level gives results of tests for 1) normality, serial

independence, and constant variance according to the Shapiro–Wilk, Durbin–Watson, and Breusch–Pagan tests, respectively, and

2) individual model coefficients and overall model fit according to an F test. The column under final ensemble model size gives the number

of statistically significant (at 5% level) models selected having a max of five coefficients excluding the intercept.

Year

No. of models having indicated number

of coefficients (3–6) No. of models

removed (jrpxj $ 0.5)

No. of models

significant at 5% level

Final ensemble

model size3 4 5 6 (excluded)

1970 — 5 12 3 10 17 8

1971 — 9 11 — 3 20 14

1972 2 8 10 — 7 18 10

1973 — 3 14 3 8 16 7

1974 — 1 14 5 5 14 8

1975 — 5 12 3 7 14 8

1976 — 7 12 1 5 18 9

1977 — 5 14 1 7 18 9

1978 1 7 10 2 5 17 11

1979 — 8 11 1 4 19 12

1980 — 11 9 — 4 20 12

1981 — 5 12 3 5 16 11

1982 — 8 8 4 8 15 7

1983 — 3 13 4 5 16 8

1984 — 9 9 2 7 15 9

1985 — 4 14 2 6 14 9

1986 — 7 12 1 4 19 11

1987 — 9 9 2 6 17 9

1988 — 12 7 1 4 18 11

1989 — 6 14 — 3 19 12

1990 — 7 11 2 8 18 11

1991 — 6 12 2 6 18 11

1992 — 8 11 1 6 19 9

1993 — 10 9 1 5 17 11

1994 — 7 12 1 7 17 12

1995 — 8 12 — 4 15 10

1996 2 9 6 3 7 17 11

1997 — 8 9 3 8 17 10

1998 — 5 14 1 7 19 8

1999 — 5 15 — 6 20 10

2000 — 7 12 1 8 19 10

2001 — 8 10 2 4 18 13

2002 — 10 7 3 4 12 8
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prediction error statistics (MAE and RMSE) are 46%–

59% of the observed standard deviation. All relative

error measures in Table 2 indicate that the model en-

semble mean satisfactorily reproduced the observed

standardized rainfall anomalies. The prediction showed

conventional skill score (SSClim; Wilks 2006, p. 281)

improvement over 1990–2002 climatology (62% MSE

reduction) and persistence (87%). For tercile pre-

dictions (below, near, and above normal), the ranked

probability skill score (RPSSClim) exceeded that of cli-

matology (10.55). Further, by comparing the ensemble

mean statistics with the median average values for the

individual regressionmodel counterparts, there emerges

a clear increase in skill for all statistics for the ensemble

mean: increased prediction variance, reduced absolute

errors, and much increased goodness-of-fit statistics.

Figure 7 documents the reliability of the above sta-

tistics in the context of empirically derived frequency

distributions of bootstrapped samples and correspond-

ing confidence intervals. Because the RPSSClim [skew-

ness b1 5 20.3 and kurtosis b2 5 13.2, defined in

Tamhane andDunlop (2000, p. 118) and computed from

sample replicates used in Fig. 7] and (especially) the

Pearson’s correlation r (b1 5 20.7, b2 5 14.3) are

negatively skewed and leptokurtic compared to the

standard normal distribution, the BCa method makes

appropriate adjustments to correct the skewness bias in

the estimation of their confidence intervals. The modi-

fied index of agreement d1 also is negatively skewed and

leptokurtic compared to the standard normal distribu-

tion (b1 5 20.7, b2 5 13.6), while MAE is positively

skewed (b1 5 0.3) and mesokurtic (b2 5 13.0).

To examine the cross-validated performance of the

ensemble prediction as a function of ensemble sizes, the

number of predictors, and hence initial ensemble model

sizes, was varied from five to the maximum available

FIG. 9. Two-month lead time prediction of standardized all-EthiopianKiremt (JJAS) rainfall

anomalies (Fig. 1, 100 stations for 1970–99, dots; 52 stations for 2000–02, squares) for 1970–2002

using a LOOCV approach that was initiated from average March atmospheric and SST con-

ditions. (top) Time series of observed (red) vs mean (green) and median (orange) of ensemble

model–predicted Kiremt rainfall anomalies. Inset shows corresponding scatter diagram of

observed vs ensemble-predicted mean (green) and median (orange). (bottom) Number of final

ensemble model members selected. Black vertical bars in top panel give 95% confidence in-

tervals for the final multimodel-predicted values, computed by applying the BCa bootstrap

method described in section 2c.
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number (20) and the ensemble performance was

assessed following themodel development and selection

procedures described in section 2b (steps 2 and 3). Using

cross-validated correlation between observed values

and predicted ensemble mean as a measure of model

performance, Fig. 8 shows that as the ensemble size in-

creases, the cross-validated correlation skill also in-

creases from as low as 10.62 for a two-member model

ensemble to the maximum of 10.84 for the final

11-member ensemble model set. At the same time, the

TABLE 4. Summary statistics and 95% confidence intervals for model verifications (section 2c) of 2-month lead time prediction of

standardized Kiremt (JJAS) all-Ethiopian rainfall anomalies (Fig. 1) for 1970–2002 using a LOOCV approach (section 2b, steps 2 and 3),

based on atmospheric and SST predictors observed in March. Ensemble models were developed by excluding a single verification year in

turn (section 3c). Confidence intervals were computed by applying the BCa bootstrap method to 5000 verification statistic replicates

obtained by bootstrapping the observed and predicted rainfall anomalies (section 2c). The median column gives the median values of the

statistics obtained for the individual regression estimates without pooling, and the mean column under the bootstrap heading contains the

average of 5000 bootstrap statistic replicates. Asterisks indicate values were computed using the least common number of models

available in all verification years (i.e., 7; Table 3).

Statistic Median Predicted vs obs values

Bootstrap

95% confidence intervals

MeanLower limit Upper limit

Standard deviation (obs, s) — 10.39 10.32 10.50 10.38

Standard deviation (predicted, s) 10.15 10.29 10.24 10.38 10.28

Mean absolute error (MAE; s) 10.22 10.18 10.14 10.24 10.18

Root-mean-square error (RMSE; s) 10.27 10.23 10.18 10.29 10.22

Skill score (vs climatology; SSClim) 10.49* 10.65 10.50 10.74 10.63

Skill score (vs persistence; SSPers) 10.80* 10.86 10.83 10.92 10.81

RPSS (vs climatology; RPSSClim) 20.02* 10.45 10.22 10.62 10.45

Pearson’s correlation (r) 10.72* 10.81 10.66 10.86 10.81

Index of agreement (d2) 10.83* 10.88 10.80 10.92 10.87

Modified index of agreement (d1) 10.61* 10.66 10.57 10.74 10.66

Modified coefficient of efficiency (E1) 10.27* 10.41 10.26 10.53 10.40

TABLE 5. Predictors selected for the prediction of August total rainfall for Addis Ababa (Fig. 1) using a LOOCVapproach (section 2b).

Predictors were selected based on their high correlations with rainfall, with predictand–predictor correlations being statistically significant

with ASLs #5% according to a nonparametric bootstrap test.

Predictor description Symbol Location

Correlation (3100)

1970–90 1970–99

1 Air temperature at 100 hPa T100 Middle East (308–358N, 458–508E) 252 248

2 Air temperature at 400 hPa T400 Southern Atlantic Ocean (208–258S, 258–308W) 159 155

3 Meridional moisture flux at 500 hPa qu500 Southern Africa (208–258N, 258–308E) 249 246

4 Meridional moisture flux at 850 hPa qv850 Northern Arabian Sea (208–258N, 558–608E) 255 258

5 Sea surface temperature SST1 Bay of Bengal (118–168N, 888–938E) 155 149

6 Sea surface temperature SST2 Southeastern Indian Ocean (468–518S, 1288–1338E) 151 156

7 Meridional temperature flux at 300 hPa Tv300 Central Indian Ocean (58–108S, 708–758E) 248 249

8 Zonal/meridional wind flux at 500 hPa uw500 Gulf of Guinea (08–58N, 08–58W) 163 158

9 Zonal/vertical wind flux at 200 hPa uw200 Eastern Indian Ocean (58–108N, 808–858E) 260 247

10 Zonal/vertical wind flux at 850 hPa uw850a Western Indian Ocean (58–108N, 558–608E) 151 153

11 Zonal/vertical wind flux at 850 hPa uw850b Asia (408–458N, 608–658E) 267 256

12 Zonal wind at 400 hPa u400 South Atlantic Ocean (158–208S, 258–308W) 245 246

13 Meridional/vertical wind flux at 150 hPa vw150 Central Indian Ocean (58–108S, 808–858E) 253 248

14 Meridional/vertical wind flux at 200 hPa vw200a Southern Indian Ocean (358–408S, 158–208E) 152 147

15 Meridional/vertical wind flux at 200 hPa vw200b Southern Atlantic Ocean (358–408S, 108–158W) 158 150

16 Meridional/vertical wind flux at 600 hPa vw600 Ethiopia (58–108N, 408–458E) 150 146

17 Meridional wind at 250 hPa v250 Central Indian Ocean (08–58S, 708–758E) 245 252

18 Vertical velocity at 300 hPa w300 Asia (408–458N, 658–708E) 161 160

19 Vertical velocity at 400 hPa w400 Western Indian Ocean (08–58N, 558–608E) 245 249

20 Vertical velocity at 500 hPa w500 South Atlantic Ocean (108–158S, 08–58W) 254 251
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variance of the prediction also decreases as the ensemble

size increases, as shown by the dashed line in Fig. 8.

However, the ensemble standard deviation for the final

ensemble is still higher than the observed standard de-

viation (Table 2). It can also be seen from the figure that

an increase in the number of predictors may not increase

the ensemble size, because some of themodels associated

with the added predictors do not make it to the final

ensemble set as they fail to satisfy preset conditions of

statistical significance and regression requirements. In

general, diversifying the predictor set can increase the

likelihood of capturing regional atmospheric predictive

signals that improve the prediction of Kiremt rainfall.

c. Leave-one-out cross validation of all Ethiopian
predictions using March predictors

All-Ethiopian Kiremt rainfall predictability also was

assessed for 1970–2002 using March predictors via the

LOOCV approach described in section 2b. The pro-

cedures described in section 2b were followed for model

construction (step 2) and final ensemble model member

selection (step 3). After the passage of all statistical

tests, 7–14 models were accepted as the final ensemble

set from the initial 20 models (Table 2). In addition to

the intercept, the initial models had 3–6 predictor co-

efficients, with the majority of the models having 5 co-

efficients. The maximum number of nonintercept

coefficients allowed in the final ensemble set was five,

because reducing the number of regression parameters

to four led to a single model for 1974 (Table 3) that did

not satisfy the regression assumptions and statistical

significance requirements.

The mean and median of the final ensemble model

members were used as verification metrics for the

forecasts. Figure 9 and Table 3 document the perfor-

mance of the LOOCV approach for the predictions of

standardized all-Ethiopian Kiremt rainfall anomalies.

The Pearson’s correlations between the observed and

predicted ensemble mean and median respectively are

10.81 and 10.75 (ASLs ,1% according to a non-

parametric bootstrap test) for 1970–2002. The Spear-

man’s rank correlation was 10.81 for the ensemble

mean and 10.77 for the median.

Table 4 provides additional prediction verification

statistics (section 2c) for the final multimodel ensemble

shown in Table 3 (last column). The performance sta-

tistics under the median column were obtained from

individual regression estimates. For verification statis-

tics that require pairwise observed–predicted time se-

ries, only the least common number of models in the 33

verification years (7 for 1973 and 1982) was used so that

no data pairs are excluded or repeatedly used in cross

validating individual regression estimates. This issue

arises in the LOOCV approach because the number of

TABLE 6. Predictors selected for the prediction of August total rainfall for Combolcha (Fig. 1) using a LOOCV approach (section 2b).

Predictors were selected based on their high correlations with rainfall, with predictand–predictor correlations being statistically significant

with ASLs #5% according to a nonparametric bootstrap test.

Predictor description Symbol Location

Correlation (3100)

1970–90 1970–99

1 Meridional moisture flux at 925 hPa qv925 Central Indian Ocean (08–58N, 858–908E) 166 165

2 Sea surface temperature SST1 Southern Indian Ocean (518–568S, 1718–1768E) 145 149

3 Sea surface temperature SST2 South Pacific Ocean (508–558S, 1208–1258W) 265 257

4 Sea surface temperature SST3 East Pacific Ocean (158–208S, 808–858W) 245 245

5 Zonal/meridional wind flux at 500 hPa uv500 South Atlantic Ocean (108–158S, 108–158W) 256 257

6 Zonal/meridional wind flux at 600 hPa uv600a Southeastern Indian Ocean (108–158S, 558–608E) 258 252

7 Zonal/meridional wind flux at 600 hPa uv600b South Atlantic Ocean (108–158S, 108–158W) 263 260

8 Zonal/meridional wind flux at 925 hPa uv925 Gulf of Guinea (08–58N, 08–58E) 145 154

9 Zonal/vertical wind flux at 150 hPa uw150 Eastern Indian Ocean (308–358S, 658–708E) 252 252

10 Zonal/vertical wind flux at 200 hPa uv200 Central Africa (08–58N, 258–308E) 146 142

11 Zonal/vertical wind flux at 500 hPa uw500 East Africa (08–58N, 358–408E) 146 145

12 Zonal wind at 150 hPa u150a Central Africa (08–58N, 258–308E) 250 248

13 Zonal wind at 150 hPa u150b Central Africa (08–58N, 308–358E) 248 246

14 Zonal/vertical wind flux at 150 hPa

averaged between 308 and 508E
uw150x Cross section (08–108S) 145 146

15 Meridional/vertical wind flux at 300 hPa vw300 India (258–308N, 808–858E) 247 246

16 Meridional/vertical wind flux at 400 hPa vw400a Central Indian Ocean (08–58S, 758–808E) 253 248

17 Meridional/vertical wind flux at 400 hPa vw400b South Atlantic Ocean (108–158S, 58–108W) 146 146

18 Meridional/vertical wind flux at 500 hPa vw500 Central Indian Ocean (08–58S, 808–858E) 261 253

19 Meridional wind at 1000 hPa v1000 Central Indian Ocean (08–58N, 858–908E) 164 160

20 Vertical velocity at 250 hPa w250 Mediterranean Sea (308–358N, 308–358E) 146 146
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final models (and hence the number of predicted values)

varies from year to year (Table 3). To be as objective as

possible in selecting the least common number of

models, seven models were randomly sampled (without

replacement) for all verification years with larger final

model ensembles and were used for cross validation. As

seen from Table 4, the LOOCV ensemble mean pre-

diction proved more skillful than the individual re-

gression estimates for all verificationmeasures including

prediction variance (standard deviation), SSClim,

RPSSClim, r, and E1. In particular, the RPSSClim skill for

the individual regression estimates was far inferior to the

skill obtained for the ensemblemean. To ensure that this

low skill was not an artifact of a one-time sampling issue,

RPSSClim was computed for 10 more samples obtained

for different initializations of the random number gen-

erator. In all cases, the median of the RPSSClim for the

individual regression estimates was less than 0, in-

dicating worse than climatology skill.

The prediction variability for the ensemble mean is

close to the observed variation, with the prediction

standard deviation being close to 74% of the standard

deviation of the observations (Table 4). The MAE (0.18

standardized units) and RMSE (0.23 standardized units)

are smaller than the observed standard deviation (0.39

standardized units). The LOOCV prediction approach

showed substantial reduction in MSE compared to

climatology (65%) and persistence (86%). Generally,

the skill of the LOOCV remains close to the skill ob-

tained for the RV approach and provided skillful all-

Ethiopian Kiremt rainfall forecasts with the average

regional atmospheric and global SST conditions ob-

served inMarch (e.g., r510.81, d15 66%, and RPSS5
45%).

d. Leave-one-out cross validation for local and
regional predictions using March predictors

The LOOCV approach was applied on finer temporal

and spatial scales for the prediction of August monthly

rainfall totals at Addis Ababa and Combolcha (Fig. 1)

and standardized JJAS rainfall anomalies for northeast-

ern Ethiopia based on atmospheric and SST predictors

observed in March. Tables 5–7 list the 20-predictor sets

used for local and regional predictions. Following

previous studies (e.g., Gissila et al. 2004; Block and

Rajagopalan 2007; Korecha andBarnston 2007; Nicholson

2014), these predictors were selected based on a careful

assessment of maps of predictand–predictor correlations.

All selected predictors have statistically significant corre-

lations with ASLs #5% according to a nonparametric

bootstrap test for both the 1970–90 and 1970–99 periods.

The predictors for Addis Ababa (Table 5) include upper

tropospheric air temperature, meridional moisture flux

over the northern Arabian Sea, SST over the Bay of

TABLE 7. Predictors selected for the prediction of standardized JJAS northeastern Ethiopia (Fig. 1; 11 stations for 1970–99, stars; 7

stations for 2000–02, squares) using a LOOCV approach (section 2b). Predictors were selected based on their high correlations with

rainfall, with predictand–predictor correlations being statistically significant withASLs#5%according to a nonparametric bootstrap test.

Predictor description Symbol Location

Correlation (3100)

1970–90 1970–99

1 Air temperature at 100 hPa T100a Russia (458–508N, 508–558E) 256 252

2 Air Temperature at 100 hPa T100b Southern Indian Ocean (208–258S, 758–808E) 256 249

3 Air Temperature at 150 hPa T150 India (208–258N, 808–858E) 153 148

4 Meridional moisture flux at 500 hPa qv500 Asia (358–408N, 658–708E) 162 155

5 Zonal/meridional wind flux at 100 hPa uv100a Southern Africa (208–258S, 258–308E) 160 159

6 Zonal/meridional wind flux at 100 hPa uv100b Mozambique Channel (208–258S, 358–408E) 148 151

7 Zonal/meridional wind flux at 500 hPa uv500 Western Indian Ocean (58–108S, 408–458E) 273 267

8 Zonal/meridional wind flux at 600 hPa uv600 South Atlantic Ocean (108–158S, 108–158W) 259 253

9 Zonal/vertical velocity flux at 100 hPa uw100 Somali coast (08–58N, 458–508E) 259 253

10 Zonal wind at 100 hPa u100 Southern Europe (458–508N, 258–308E) 145 146

11 Zonal wind at 400 hPa u400 South Atlantic (208–258S, 108–158W) 248 249

12 Zonal/vertical wind flux at 150 hPa

averaged between 58 and 108N
uw150x Cross section (658–708E) 249 244

13 Meridional/vertical wind flux at 100 hPa vw100 Asia (458–508N, 858–908E) 257 263

14 Meridional/vertical wind flux at 300 hPa vw300 India (258–308N, 758–808E) 251 258

15 Meridional/vertical wind flux at 700 hPa vw700 South Atlantic Ocean (58–108S, 158–208W) 151 149

16 Vertical velocity at 100 hPa w100a Eastern Europe (358–408N, 458–508E) 249 249

17 Vertical velocity at 100 hPa w100b Central Indian Ocean (58–108N, 558–608E) 258 249

18 Vertical velocity at 100 hPa w100c Asia (458–508N, 808–858E) 148 163

19 Vertical velocity at 150 hPa w150 South Atlantic Ocean (158–208N, 208–258W) 161 151

20 Vertical velocity at 700 hPa w700 West Africa (58–108N, 08–58W) 267 263
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Bengal, and products of zonal and meridional winds

with vertical velocities across the southern oceans,

most of which are strongly correlated with the per-

formance of the Belg rains in Ethiopia and the de-

velopment of the monsoon systems in summer. For

Combolcha (Table 6), lower-tropospheric meridional

wind and specific humidity over the central IndianOcean

and SST over the southern Pacific possessed strong pre-

dictive signals, while for regional predictions (Table 7)

midtropospheric zonal and meridional wind over the

western Indian Ocean and vertical velocity over West

Africa and/or the Gulf of Guinea in March are major

predictors of JJAS rainfall anomalies for the northeastern

Ethiopia.

The procedures presented in section 2b (steps 2 and

3) were followed for model construction and final en-

semble model member selection for local predictions

for Addis Ababa and Combolcha for 1970–99 and re-

gional prediction for northeastern Ethiopia for 1970–

2002. In all cases, models with a maximum of only five

nonintercept coefficients were allowed in the final en-

semble set.

For Addis Ababa, the final ensemble models range

from 5 for 1984 to 14 for 1972, with the majority of the

models having 4–5 nonintercept coefficients (Table 8).

Training period degrees-of-freedom–adjusted R2 (co-

efficient of multiple determination) varied from 56%

to 88% (from 61% to 91%) for all verification years. The

TABLE 8. Characteristics of regression models developed using a LOOCV approach (section 2b, steps 2 and 3) approach for 3-month

lead time localized prediction of August monthly total rainfall at Addis Ababa (Bole International Airport; Fig. 1) for 1970–99, based on

atmospheric and SST predictors observed in March. The columns under the heading number of models having indicated number of

coefficients (3–7) exclude the intercept. Models for which the predictors were strongly intercorrelated (i.e., jrpxj $ 0.5, where rpx is the

correlation between any two predictors in a model) were removed. The column under the heading number of models significant at 5%

level gives results of tests for 1) normality, serial independence, and constant variance according to the Shapiro–Wilk, Durbin–Watson,

and Breusch–Pagan tests, respectively, and 2) individual model coefficients and overall model fit according to an F test. The ‘‘Final

ensemble model size’’ column gives the number of statistically significant (at 5% level) models selected with a max of five nonintercept

coefficients.

Year

No. of models having indicated number

of coefficients (3–7) No, of models

removed (jrpxj $ 0.5)

No. of models

significant at 5% level

Final ensemble

model size3 4 5 $6 (excluded)

1970 — 5 6 9 5 11 7

1971 — 7 6 7 2 13 10

1972 9 8 2 1 3 19 14

1973 — 8 7 5 5 15 9

1974 3 9 7 1 3 17 12

1975 2 10 6 2 2 18 12

1976 — 9 7 4 5 16 13

1977 2 6 7 5 4 14 8

1978 2 9 9 — 1 16 13

1979 3 5 5 7 5 13 10

1980 — 7 8 5 5 15 9

1981 — 6 7 7 4 13 8

1982 2 5 8 5 3 13 9

1983 — 8 9 3 5 16 8

1984 — 7 6 7 5 9 5

1985 — 6 9 5 3 14 11

1986 1 8 5 6 3 14 11

1987 2 5 11 2 1 16 12

1988 2 6 8 4 4 16 10

1989 1 6 9 4 2 16 12

1990 — 6 10 4 4 12 7

1991 3 5 7 5 2 14 10

1992 1 6 8 5 3 15 12

1993 1 12 4 3 1 10 9

1994 1 7 6 6 2 14 11

1995 1 7 9 3 2 17 12

1996 3 6 5 6 3 14 10

1997 4 5 10 1 3 19 11

1998 1 7 7 5 4 14 11

1999 1 5 8 6 4 14 7
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LOOCV ensemble mean overestimated the three driest

years (1987, 1972, and 1975) by 51–91mm and under-

estimated the wettest three years by 18–80mm (Fig. 10).

However, differences between predicted and observed

rainfall amounts were less than 50 (33)mm for 77%

(73%) of the 1970–99 verification years. The observed

and LOOCV ensemble means for 1970–99 differed by

,5mm, with the year-to-year variability of the ensem-

ble mean being 86% of the observed standard deviation.

The RPSSClim and all MSE-based skill scores (SSClim,

SSPers, E1, d1, and d2) showed improved forecast skill

relative to the 1970–99 climatology and persistence

(Table 9). The Pearson’s correlations between observed

and predicted ensemble mean and median respectively

are 10.72 and 10.68 (ASLs ,1% according to a con-

ventional nonparametric bootstrap test), which re-

spectively decreased to 10.64 and 10.58 when the

maximum number of nonintercept coefficients was re-

duced to four. In the latter case, however, the final en-

semble sizes were small, ranging from 3 or 4 models for

many verification years to 12 models for 1972, which can

affect the quantification of prediction uncertainty for

years with small ensemble sizes. Compared to the me-

dian values of individual regression estimates, there is

a substantial improvement of the ensemble averaging as

evidenced by a smaller predicted-minus-observed mean

difference, higher prediction variance, and smaller

MAE and RMSE values. In addition, the ensemble

mean provided higher skill values (Table 8) for all ver-

ification metrics including RPSSClim, SSClim, and E1 for

five randomly selected model ensembles for all years

except 1984, which only had five ensemble members.

For the prediction of August rainfall total for

Combolcha, from 7 (for 1974) to 17 (for 1986) final

ensemblememberswere selected from the initial 20models

(Table 10). In addition to the intercept, the initial mod-

els stepped in 3–6 predictors, with the majority of the

models having four regression coefficients. The LOOCV

ensemble mean (median) forecasts (Fig. 11) for the final

ensembles produced an observed–predicted Pearson’s

FIG. 10. Three-month lead time localized prediction ofAugustmonthly total rainfall at Addis

Ababa (Bole International Airport; Fig. 1) for 1970–99 using a LOOCV approach that was

initiated from average April atmospheric and SST conditions. (top) Time series of observed

(red) vs mean (green) and median (orange) of ensemble model–predicted August rainfall total

amounts. Inset shows corresponding scatter diagram of observed vs ensemble-predicted mean

(green) and median (orange). (bottom) Number of final ensemble model members selected.

Black vertical bars in top panel give 95% confidence intervals for the final multimodel-

predicted values, computed by applying the BCa bootstrap method described in section 2c.
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correlation of 10.68 (10.63), both with #1% ASLs ac-

cording to a nonparametric bootstrap test. The Spear-

man’s rank correlation decreased for both the ensemble

mean (10.63) and median (10.56), indicating a reduced

monotonic association between ensemble-mean pre-

dicted and observed time series. Reducing themaximum

number of coefficients from five to four did not change

the correlation skills, but lowered the ensemble sizes to

between 5 (for many verification years) and 12 for 1996.

The observed and prediction ensemble means have

comparable values (Table 11), but the predicted year-

to-year variability was 19% lower than the observed

standard deviation. The prediction outperformed cli-

matology and persistence, with a 45% (76%) reduction

of the MSE obtained from 1970–99 climatology (per-

sistence). Note that RPSSClim and E1 are not statisti-

cally different from zero. Despite the ensemble’s poor

RPSSClim and E1 skill values, the ensemble averaging

showed modest improvements over the median values

of individual regression estimates (excluding RPSSClim
and E1), with percentage skill increases of 2%–37% for

relative error measures, and reductions in absolute error

measures of 5%–10%.

For regional JJAS rainfall prediction for northeastern

Ethiopia, from 6 (for 1986) to 13 (1994) final model

ensembles were selected. The majority of models again

had 4–5 coefficients, but none of the final ensemble

models had more than five nonintercept coefficients

(Table 12). The Pearson’s correlations between ob-

served and predicted ensemble mean and median re-

spectively are 10.80 and 10.75 (Fig. 12; ASLs ,1%

according to a conventional nonparametric bootstrap

test), while the Spearman’s rank correlation counterpart

for the ensemble mean (median) is 10.76 (10.75). The

Pearson’s correlation skill values for the ensemble mean

and median slightly decreased respectively to10.78 and

0.73 when the maximum number of nonintercept co-

efficient was reduced from five to four. However, the

small change in correlation values was accompanied by

significant reductions in ensemble sizes (4 and 5 for

many years and 11 for 1982). The small ensemble sizes in

turn affect the quantification of prediction uncertainty.

Although the ensemble mean overestimated the driest

four years and underestimated the wettest two anoma-

lies, the prediction exhibited sufficiently high year-to-

year variability (90% of the observed standard

deviation). Unlike for Combolcha, the RPSSClim and all

MSE-based skill scores (SSClim, SSPers, E1, d1, and d2)

showed improved forecast skill relative to the 1970–2002

climatology and persistence (Table 13). Compared to the

median values of individual regression estimates, the

ensemble mean showed 20%–22% decreases in MAE

andRMSEand 7%–62% increases in SSClim, SSPers, r,E1,

d1, and d2 for six randomly selected model ensembles for

all years except for 1986, which had only six ensemble

model members. Thus, the ensemble-based statistical

technique provided substantively high skill scores for

regional prediction of JJAS standardized rainfall anom-

alies two months in advance of the onset of Kiremt in

northeastern Ethiopia.

4. Summary and discussion

This study evaluates the predictability of Ethiopian

Kiremt monthly to seasonal rainfall at local, regional,

and national levels based on the climate system

TABLE 9. As in Table 3, but for 3-month lead time localized prediction of August monthly total rainfall at Addis Ababa (Bole In-

ternational Airport; Fig. 1) for 1970–99, based on atmospheric and SST predictors observed in March. Asterisks indicate shown values

were computed using the least common number of models available for all verification years (i.e., 5; Table 5).

Statistic Median Obs statistic value

Bootstrap

Confidence interval

MeanLower limit Upper limit

Obs mean (mm) — 240.6 218.8 260.2 240.5

Predicted mean (mm) 1251.3 245.2 226.9 261.6 245.3

Standard deviation (obs, mm) — 58.1 47.8 75.0 56.7

Standard deviation (predicted, mm) 125.6 49.8 39.5 64.9 48.5

Mean absolute error (MAE; mm) 141.2 30.4 22.1 41.3 30.4

Root-mean-square error (RMSE; mm) 152.5 40.5 30.4 51.8 40.0

Skill score (climatology; SSClim) 10.15* 0.50 0.04 0.76 0.46

Skill score (persistence; SSPers) 10.73* 0.84 0.74 0.93 0.79

RPSS (climatology; RPSSClim) 20.13* 0.40 0.02 0.65 0.39

Correlation (r) 10.62* 0.72 0.49 0.85 0.72

Index of agreement (d2) 10.78* 0.84 0.69 0.92 0.83

Modified index of agreement (d1) 10.57* 0.65 0.52 0.76 0.64

Modified coefficient of efficiency (E1) 10.12* 0.35 0.08 0.54 0.33
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causation of Kiremt rainfall variability over Ethiopia.

Time-scale analysis in Part I showed the contempora-

neous linkages of Ethiopian rainfall variability with both

atmospheric and sea surface temperature (SST) forcing

during June–September (JJAS). The monsoon’s re-

sponse to both slowly varying SST variability and

higher-frequency regional atmospheric changes are

found to be the primary climate system variability cau-

sation to assess Ethiopian seasonal and monthly rainfall

predictability one to three months in advance.

A pool of predictors (20) deemed relevant to the

rainfall was selected by careful assessments of a series of

historical correlation maps that relate rainfall with in-

dividual regional atmospheric and global SST variables

for March. Regression models were constructed using

a forward stepwise model-fitting procedure, for which

each selected predictor was specified as a first model

parameter along with an intercept to ensure that a

potential predictive signal uniquely associated with

a predictor is not unduly discarded. This produces an

ensemble of models. Forecast skill was assessed using

several verification metrics.

In the retroactive verification (RV) approach, the

ensemble prediction for 1990–2002 reproduced well the

observed all-Ethiopian Kiremt rainfall variability two

months in advance, with a Pearson’s correlation [mean-

square skill score over climatology (SSClim)] of 10.84

(62%). The leave-one-out cross verification (LOOCV)

for 1970–2002, which is a fairer test of the predictive

capability of the models, has a Pearson’s correlation

(SSClim) of 10.81 (65%). For probability forecasts of

below normal, near normal, and above normal, the en-

semble mean showed improvement compared to cli-

matological forecasts, with a ranked probability skill

score (RPSSClim) of 0.45 for the LOOCV approach.

Results of LOOCV-based localized predictions of

August rainfall atAddisAbaba andCombolcha for 1970–

99 showed that the predictions captured the relative

TABLE 10. As in Table 4, but for 3-month lead time localized prediction ofAugust monthly total rainfall at Combolcha (Fig. 1) for 1970–

99, based on atmospheric and SST predictors observed inMarch. Themax number of coefficients excluding the intercept stepped in was 6,

and all models with six coefficients were excluded from the final ensemble models.

Year

No. of models having indicated number

of coefficients (3–6) No. of models removed

(jrpxj $ 0.5)

No. of models

significant at 5% level

Final ensemble

model size3 4 5 6 (excluded)

1970 1 12 6 1 6 18 10

1971 1 12 6 1 6 18 10

1972 — 6 12 2 2 15 10

1973 — 12 8 — 6 17 8

1974 1 11 8 — 9 18 7

1975 1 11 8 — 3 20 12

1976 1 13 5 1 4 18 12

1977 — 5 14 1 4 18 12

1978 1 7 12 — 5 20 12

1979 — 16 4 — 5 19 11

1980 3 17 — — 10 19 8

1981 — 10 9 1 4 18 11

1982 1 15 4 — 5 19 11

1983 1 13 6 — 5 19 11

1984 1 6 12 1 4 15 12

1985 1 13 6 — 4 18 13

1986 — 13 7 — 1 20 17

1987 — 12 8 — 1 19 16

1988 1 12 6 1 5 19 12

1989 1 14 5 — 6 19 9

1990 3 6 11 — 5 20 12

1991 — 10 8 2 5 18 10

1992 1 12 6 1 4 18 12

1993 — 9 11 — 3 20 13

1994 — 10 10 — 7 19 10

1995 1 10 9 — 2 19 13

1996 3 17 — — 4 20 12

1997 1 11 7 1 6 18 10

1998 — 9 11 — 3 18 12

1999 — 11 8 1 6 19 11
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interannual variability well. The correlations between

observed and ensemble means for Addis Ababa (10.72)

and Combolcha (10.68) were high. Consistent with de-

creasing Spearman’s rank correlation, the RPSSClim
skill is low especially for Combolcha (10.12) and not

statistically significant at 5% level. For regional pre-

diction of JJAS standardized rainfall for northeastern

Ethiopia, strong linear correlation (10.80) was found.

There is a marked improvement in the performance

of the current empirical ensemble prediction method

FIG. 11. As in Fig. 10, but for Combolcha (Fig. 1).

TABLE 11. As in Table 3, but for 3-month lead time localized prediction ofAugustmonthly total rainfall at Combolcha (Fig. 1) for 1970–

99, based on atmospheric and SST predictors observed inMarch. Asterisks indicate shown values were computed using the least common

number of models available for all verification years (i.e., 7; Table 10).

Statistic Median Obs statistic value

Bootstrap

Confidence interval

MeanLower limit Upper limit

Obs mean (mm) — 241.5 215.2 266.6 241.7

Predicted mean (mm) 245.2 240.8 219.3 262.1 240.1

Standard deviation (obs, mm) — 73.3 56.7 101.4 71.3

Standard deviation (predicted, mm) 24.0 59.6 47.3 79.0 58.2

Mean absolute error (MAE; mm) 49.0 46.7 37.5 56.2 46.6

Root-mean-square error (RMSE; mm) 59.0 53.5 44.9 62.8 53.3

Skill score (climatology; SSClim) 0.33* 0.45 0.10 0.71 0.39

Skill score (persistence; SSPers) 0.71* 0.76 0.57 0.87 0.75

RPSS (climatology; RPSSClim) 20.50* 0.12 20.25 0.42 0.11

Correlation (r) 0.64* 0.68 0.49 0.83 0.68

Index of agreement (d2) 0.79* 0.81 0.71 0.89 0.80

Modified index of agreement (d1) 0.55* 0.54 0.43 0.65 0.53

Modified coefficient of efficiency (E1) 0.11* 0.16 20.12 0.37 0.13
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compared to prediction skill found in previous studies. For

example, the correlation skill derived herein between

predicted and observed standardized all-Ethiopian

Kiremt rainfall anomalies was 10.81 (10.84) for the

LOOCV (RV) for models initiated from average March

atmospheric and SST conditions. This can be compared to

Korecha and Barnston (2007), who found a correlation

skill of 10.64 (10.51) between predicted and observed

standardized all-Ethiopian Kiremt rainfall anomalies

for LOOCV (RV) verification approach for models

developed fromMarch–May SSTs (for improvements of

27%–65%). For regional northwestern Ethiopia pre-

diction, Block and Rajagopalan (2007) found cross-

validated correlation (RPSSClim) skill of 10.69 (10.39),

based on local polynomial regression models developed

using March–May predictors. The current ensemble

prediction technique has about 16%–44% gain in ex-

plained variance compared to the corresponding R2 in

these studies. In addition, the ensemble prediction

provided longer lead times compared to the above

studies (May versusMarch). However, Nicholson (2014)

found a high correlation skill of 10.75 for LOOCV-

based July–September rainfall predictions for the larger

Horn of Africa region encompassing Ethiopia and Su-

dan. Although enlargement of the domain could have

reduced the rainfall variability [e.g., negative 1996

rainfall anomaly for the larger Horn of Africa in Fig. 12

of Nicholson (2014) versus the locally wet all-Ethiopian

Kiremt in Figs. 6 and 8] and affect the comparison of

results, the current ensemble-based prediction still

TABLE 12. As in Table 3, but for a LOOCV approach (section 2b) for 2-month lead time prediction of standardized JJAS northeastern

Ethiopia (Fig. 1; 11 stations for 1970–99, stars; 7 stations for 2000–02, collocated squares) rainfall anomalies for 1970–2002, based on

atmospheric and SST predictors observed in March. The columns under the heading number of models having indicated number of

coefficients (3–7) exclude the intercept. The column final ensemble model size gives the number of statistically significant (at 5% level)

models selected with a max of five nonintercept coefficients.

Year

No. of models having indicated

number of coefficients (3–7) No. of models

removed (jrpxj $ 0.5)

No. of models

significant at 5% level

Final ensemble

model size3 4 5 $6 (excluded)

1970 — 8 12 — 3 20 12

1971 1 7 10 2 4 18 11

1972 — 9 9 2 5 17 7

1973 — 12 6 2 1 18 11

1974 — 10 9 1 4 19 10

1975 — 7 7 6 8 14 7

1976 — 7 10 3 5 16 8

1977 — 9 8 3 6 17 8

1978 2 9 8 1 4 18 11

1979 — 9 9 2 4 17 10

1980 — 9 6 5 4 15 7

1981 — 9 8 3 4 17 11

1982 — 12 7 1 4 19 13

1983 — 9 9 2 6 17 8

1984 1 6 7 6 3 14 8

1985 — 7 9 4 2 16 9

1986 — 12 5 3 6 15 6

1987 — 10 9 1 4 19 10

1988 1 8 9 2 8 18 9

1989 1 13 5 1 2 18 11

1990 — 12 7 1 4 19 12

1991 — 11 7 2 3 18 10

1992 1 11 6 2 5 18 11

1993 1 7 9 3 6 17 10

1994 1 11 8 — 4 18 13

1995 — 8 7 5 5 14 8

1996 — 9 8 3 3 17 10

1997 — 8 11 1 4 18 10

1998 3 4 9 4 4 12 7

1999 — 8 10 2 4 16 8

2000 — 11 8 1 5 18 10

2001 — 8 8 4 6 16 9

2002 — 9 8 3 4 17 9
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shows improved skill at a longer lead times (March versus

May) and finer spatial scales, with 8%–9% gain in ex-

plained variance compared to the correspondingR2 of 56%

(for LOOCV) and 62% (for RV) in Nicholson (2014).

The RV (using a model developed for 1970–89 for

upcoming season prediction) and LOOCV (using

amodel developed for all years up to the current year for

upcoming season prediction) approaches can be applied

FIG. 12. As in Fig. 9, but for 2-month lead time prediction of standardized JJAS northeastern

Ethiopia rainfall anomalies (Fig. 1; 11 stations for 1970–99, stars; 7 stations for 2000–02, col-

located squares) for 1970–2002 using a LOOCV approach that was initiated from average

March atmospheric and SST conditions.

TABLE 13. As in Table 4, but for 2-month lead time prediction of standardized JJAS northeastern Ethiopia (Fig. 1, 11 stations for 1970–

99, stars; 7 stations for 2000–02, collocated squares) rainfall anomalies for 1970–2002, based on atmospheric and SST predictors observed

in March. Asterisks indicate values were computed using the least common number of models available in all verification years (i.e., 6;

Table 12).

Statistic Median Predicted vs obs values

Bootstrap

95% confidence intervals

MeanLower limit Upper limit

Standard deviation (obs, s) — 10.79 10.67 10.98 10.78

Standard deviation (predicted, s) 10.35 10.63 10.53 10.80 10.62

Mean absolute error (MAE; s) 10.48 10.38 10.29 10.48 10.38

Root-mean-square error (RMSE; s) 10.59 10.47 10.38 10.59 10.47

Skill score (vs climatology; SSClim) 10.43* 10.64 10.38 10.81 10.61

Skill score (vs persistence; SSPers) 10.68* 10.80 10.57 10.89 10.80

RPSS (vs climatology; RPSSClim) 20.13* 10.36 10.02 10.60 10.36

Pearson’s correlation (r) 10.69* 10.80 10.63 10.90 10.80

Index of agreement (d2) 10.83* 10.88 10.79 10.94 10.87

Modified index of agreement (d1) 10.61* 10.68 10.58 10.77 10.67

Modified coefficient of efficiency (E1) 10.26* 10.43 10.21 10.58 10.40
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for real-time predictions of all-EthiopianKiremt rainfall

anomalies a few days after the end of March, as the

necessary initialization data (real-time reanalysis, SST)

are available 5–10 days after the end of the month. The

predictors selected in this study may not pose a problem

in the near-term climate. However, the predictor pool

should be reevaluated every few years to account for

1) predictors that remain skillful but have decreasing

frequency, 2) predictors that are decreasing in skill,

3) predictors that were not included in the selected sets

that are starting to show additional skill, and 4) changes

in the likelihood functions due to climate change. Up-

dating the RV and LOOCV prediction models using the

entire data with follow up real-time forecast evaluation

realistically could lead to successful real-time opera-

tional use of the approaches. The simultaneous use of

both approaches builds confidence in the value of the

prediction if they yield similar forecasts. Moreover, to

our knowledge, the methodology of building observa-

tional ensembles for statistical prediction is unique. The

high-quality local and national prediction capability

should have significant beneficial societal implications.

In particular, the forecasting of seasonal anomalies at

regional and national scales and monthly rainfall totals

at specific localities with usable skill could play a key

role in risk management to help minimize the damaging

effects of recurring droughts in Ethiopia.
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