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Abstract

Bioengineering aspects of native vegetation are currently, and rapidly, being evolved
to improve soil stiffness, slope stabilisation, and erosion control. Apart from the
reinforcement effect, tree roots establish sufficient matric suction to increase the shear
strength and stiffness of the soil. This paper looks at the way, vegetation influences
soil matric suction, shrinkage, and ground settlement. A mathematical model for the
rate of root water uptake that considers ground conditions, type of vegetation and
climatic parameters, has been developed. Based on this proposed model, the
distribution of moisture and the matric suction profile adjacent to the tree are
numerically analysed. The model formulation is based on the general effective stress
theory of unsaturated soils. Field measurements taken from literature published
previously are compared with the authors' numerical model. The predicted results
calculated using the soil, plant, and atmospheric parameters contained in the
numerical model, compared favourably with the measured results, justifying the
assumptions upon which the model was developed.

Introduction

Population increases over the past decades have necessitated constructing
infrastructure on soft and expansive soils. For example, in Australia, rail corridors
have often been built on soft, compressive formations, or expansive clays. Some new
maintenance observations of Australian tracks show that wherever there are trees
beside them, their localised, undrained failure is less (Figure 1). However, analysing
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and designing shallow foundations located on the vadose zone in the vicinity of native
vegetation remains a challenge to geotechnical engineers.

Available studies indicate that most attempts to quantify the effects of vegetation
have focused on the structural reinforcement provided by the roots, while almost no
attempt has been made to relate changes of soil strength and stiffness to the rate of
transpiration. Although it is believed that these reinforcements increase cohesion and
the modulus of elasticity (Docker & Hubble, 2001), changes in soil suction induced
by the roots have not been considered in detail in previous models. As described by
McKeen (1992), trees can provide suction up to 1550-3100 kPa, which is the wilting
point of a soil-root system and therefore, ground consolidation associated with
transpiration increases soil strength and stiffness. This process may be compared with
improving soft soil via prefabricated vertical drains and vacuum preloading. The
suction induced by transpiration increases the effective stresses, which in turn
increases the settlement and stiffness of unsaturated soil.

Figure 1. Photo during investigation of influence of a Black Box tree on rail
track, Miram, Victoria, Australia

Transpiration due to tree roots is a continuous process of discharging water from
the soil matrix via the tree canopy. Although it is well known that high rainfall and
infiltration can rapidly reduce suction, Zhang et al. (2004) showed that rainfall does
not necessarily eliminate suction in the soil. Therefore, for a more economical design
of structures in vegetated ground, the effect of matric suction induced by tree roots on
shear strength and deformation of partially saturated soil needs to be considered. Soil
conditions, type of vegetation, and atmospheric conditions affect the rate of root water
uptake and hence, transpiration. Consequently, any model, which can realistically
calculate the rate of root water uptake, must capture the true interaction between the
above features. A finite element analysis is used in this study to predict the
distribution of moisture, and the suction profile based on the proposed governing
equations but it does require an accurate estimation of various parameters based on
careful field observations.
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Conceptual model for root water uptake

The main factor for estimating the rate of transpiration is the rate of root water uptake,
which in turns depends on the geological, hydrological, and meteorological
conditions, hence:

∫=
)(
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dVtzyxStT (1)

where, )(tT is the transpiration rate at time t , ),,,( tzyxS is the rate of the root water
uptake at point ),,( zyx at time t, and if )(tV is the volume of root zone at time t, dV
denotes a small volumetric change.

The details of each single root and its interaction with the surrounding soil is
required to identify the microscopic interaction between the soil and root system. In
this study a macroscopic approach is adopted, which considers the integrated
properties of the entire root system, assuming that both the soil and roots form a
continuous media. Therefore, the root water uptake is considered as a volumetric sink
term in the flow continuity equation, which can be defined as the volume of water
extracted per unit bulk volume of soil per unit time. The soil water flow differential
equation, including the sink term, ),,,( tzyxS , can then be written as:
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where, θ )/( VVW= is the volumetric moisture content, ( =wV volume of water, =V total

volume), ∇ is the divergence vector, ψ is the soil suction, k is the hydraulic
conductivity, and z is the vertical coordinate (downward is positive).

The soil suction, root density distribution, and potential transpiration, which are
three independent features, may be combined to establish an appropriate analytical
solution for estimating the rate of root water uptake. Thus, it can be assumed that the
rate of root water uptake can be expressed as three separate functions of the
independent features. As suggested by Indraratna et al. (2005), it can be assumed that:

)().().(),,,( PTFGftzyxS βψ= (3)

where, )(βG is the root density factor, )(ψf is the soil suction factor, and )( PTF is the
potential transpiration factor.

To calculate )(ψf , different approaches have been recommended by various
researchers. The simplified equation suggested by Feddes et al. (1978) is used to
determine the effect of suction. The relationship suggested for )(ψf , indicated by
Feddes et al. (1978), is shown in Figure 2. Here, wψ is the suction at wilting point (i.e.

the suction limit at which a particular vegetation is unable to draw moisture from the
soil), dψ is the highest value of ψ and anψ (soil suction at anaerobiosis point) is the

lowest value of ψ at
maxSS = , where

maxS is the maximum rate of root water uptake.
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Docker and Hubble (2001), and Landsberg (1999), proposed that the total cross
sectional area of roots, including the depth and distance from the trunk, can be
determined by an exponential relationship. It is assumed by symmetry that the
maximum root density lies on a circle with 0rr = at a depth of 0zz = (see Figure 3),

and also that the root density decreases exponentially from this maximum value both
vertically and radially. According to Indraratna et al. (2005), the root density function
may be written as:

)()(
max

0201.)(),,( trrktzzkettzr −−−−= ββ (4)

where, )(max tβ is the maximum root density at time t , and 1k and 2k are two empirical

coefficients depending on the type and system of tree root.
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Figure 2. Soil suction factor (modified
after Feddes et al., 1978)

Figure 3. Schematic sketch of tree
root zone

For a given transpiration rate, the rate of water uptake from any particular unit volume
of wet soil is proportional to β . As suggested by Landsberg (1999), this relationship
is nonlinear. Based on agronomical research, an asymptotic relationship may be
assumed for the root water uptake. Nevertheless, there is an uncertainty in this
relationship when the roots become widely separated, which can often be the case if
the roots penetrate deeply into the soil.

Considering a hyperbolic tangent function that represents a nonlinear-asymptotic
curve, the following equation is suggested by the authors for the root density
factor, )(βG ,
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In the above expression, 3k is an empirical coefficient. )(βG is presented as a

normalised function, where 1)(
)(

=∫
tV

dVG β .
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Referring to the model proposed by Nimah and Hanks (1973), it can be inferred
that with depth, the potential transpiration is not distributed uniformly within the root
zone and therefore a linear distribution for potential transpiration is more appropriate.
Accordingly, Equation (6) is derived to take the effect of potential transpiration into
account (Indraratna et al, 2005):
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where, pT is the rate of potential transpiration and 4k is an empirical coefficient to

represent the effect of depth on potential transpiration distribution. The denominator
of Equation (6) represents the transpiration mass balance.

To summarise, Equation (3), which introduced the rate of root water uptake,
),,( zyxS , can now be estimated by multiplying the three independent functions that

represent soil suction, )(ψf , root density, )(βG , and potential transpiration, )( PTF .

Verification of the Proposed Model Using FE Analysis

The validity of the mathematical model (Eqn. 3) for the rate of root water uptake is
examined in conjunction with finite element analysis, by considering a selected case
history. The moisture content measured in the vicinity of a 14m high lime tree located
in a mown grass area of Boulder clay in Milton Keynes (U.K), has been reported by
Biddle (1983). Table 1 shows the estimated parameters used in the authors' finite
element analysis, based on the available literature.

Table 1. Parameters applied in the finite element analysis
Parameter Value Reference Comments

anψ 4.9 kPa Feddes et al. (1978) Clayey soil with air content of 0.04

wψ 1500 kPa Feddes et al. (1978) 20001500 << wψ kPa

dψ 40 kPa Feddes et al. (1978) 8040 << dψ kPa
γ 21 kN/m3 Powrie et. al (1992) Typical value for Boulder clay

maxr 9m Biddle (1983)
Estimated from field measurements

)117( max mrm <<

maxz 1.5m Biddle (1983) Estimated from field measurements

sk 1010− m/s
Lehane and Simpson

(2000)
Typical value for Boulder clay

PI 23 Biddle (1983) Measured

0e 0.60 Powrie et. al (1992) Typical value for Boulder clay

cC 0.13 Skempton (1944) Typical value for Boulder clay
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As reported by Biddle (1983), a Wallingford soil moisture probe, incorporating a
70 milli-curie americium-241/beryllium source, was used to measure the moisture
content. Also, five tubes were inserted along a single radius at varying distances from
the trunk. These distances related to the height of the tree at the time of insertion,
were 0.1h, 0.2h, 0.4h, 0.8h, and a far-field tube at 2h for comparison.

This numerical analysis is based on the basic effective stress theory of unsaturated
soils incorporated in the ABAQUS finite element code. The effective stress in the
unsaturated soil is given by Bishop (1959):

ijwaijaijij uuu δχδσσ )( −+−=′ (7)

where,
ijσ ′ is the effective stress of a point on a solid skeleton, ijσ is the total stress in

the porous medium at the point, au is the pore air pressure, wu is the pore water

pressure, ijδ is Kronecker’s delta ( 1=ijδ when ji = and 0=ijδ when ji ≠ ), and

χ is the effective stress parameter attaining a value of unity for saturated soils and
zero for dry soils. Bishop’s effective stress concept for predicting shear strength and
volume change in unsaturated soils has recently been discussed and validated by
Khalili et al. (2004). As a further refinement, Khabbaz (1997) presented a relationship
for χ as a function of matric suction and the air entry value. The degree of saturation
is associated with matric suction through the soil - water characteristic curve
(SWCC). The air entry value as related to the soil structure can be determined using
SWCC.

The authors’ theoretical model representing the rate of root water uptake
distribution within the root zone was included in the FE analysis through appropriate
Fortran subroutines. A two-dimensional plain strain finite element mesh with 4-node
bilinear displacement and pore pressure elements (CPE4P) was used to model
variations in the moisture content. The overall mesh consisted of 1326 nodes and
1250 elements. The boundary conditions of the finite element model are illustrated
schematically in Figure 4. The flux boundary at the surface is controlled by both
climatic conditions and soil properties. It is assumed in this study that rainfall and
evaporation are in balance and thus a "no water in-flow" condition is applied at the
surface. According to the field measurements reported by Biddle (1983), the initial
pore water pressure can be assumed as hydrostatic with the watertable located 13m
below the surface.
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Root zone

Drain-only boundary condition
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Figure 4. The geometry and boundary conditions of the verification model

The finite element analysis was conducted in two stages:

1) Geostatic: This stage is used to ensure that the analysis begins from a state of
equilibrium under geostatic loading, following realistic initial conditions.

2) Consolidation: This represents a transient response of partially saturated soil
under transpiration. In order to avoid non-physical oscillations and
convergence problems caused by non-linearities, this stage included a time-
dependent analysis using 1 day intervals for 1–year, with continuous root
water uptake.

The coefficient of unsaturated soil permeability has been calculated based on
Brooks and Corey (1964), thus:

λ
λ32

).(
+

= es Sekk (8)

( )
( ) 









−
−
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residualrr
e S

SS
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(9)

where, )(eks is the saturated coefficient of permeability estimated based on the well

known Kozeney-Carman equation (Mitchell, 1976), eS is the effective degree of

saturation,
rS is the degree of saturation, ( )residualrS is the residual degree of saturation,

and λ ( )ψlog/log ∆∆= eS is the slope of the soil water characteristic curve on a log-log

plot.
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The soil-water characteristic curve employed in this study is shown in Figure 5. A
family of curves for different values of PIw× is shown in Figure 5, where w is the
fraction of soil passing sieve #200 as an index between 0 to 1, and PI is the plasticity
index (Zapata et al., 2000).
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Figure 5. Predicted soil water characteristic curve based on PIw× (after Zapata
et al., 2000)

As fluid passes through a porous medium, a coupled flow-deformation analysis of
unsaturated soil is required to capture the 3-phase interaction among the soil, air, and
water. The governing equations for pore fluid diffusion and deformation are a
combination of Equation (2) and the relevant elasto-plastic deformation equations.
The soil is Boulder clay whose behaviour can be defined by

)ln( 0

dp

dpp
Cde c

el +
= (10)

where, elde denotes the change of void ratio in the element, cC is the compression

index, 0p is the initial mean effective stress, and dp is the mean effective stress

change on the soil skeleton. The effect of osmotic suction is assumed to be negligible.
The material properties and parameters used in the finite element analysis were given
earlier in Table 1, and the additional assumed parameters are given in Table 2.

Figure 6 shows a comparison between the field measurements and the numerically
predicted reductions in the moisture content. The numerical results incorporating the
authors' root water uptake model are in acceptable agreement with the field
measurements reported by Biddle (1983). According to Figure 6, the field data is
noticeably different from the finite element predictions around 6m-8m from the trunk.
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Table 2. Parameter values assumed in the finite element analysis in the
verification model

Parameter Value Comments

0r 6 m
Radial coordinate of the maximum root
density point

0z 0.50 m
Vertical coordinate of the maximum root
density point

)(max tβ 25 m-2 
Taken from the general shape or root
suggested by Landsberg (1999)

3k 0.0874 m-1 As above

4k 0.014
Coefficient of potential transpiration
distribution

1k 10 Coefficient of vertical root distribution

2k 0.30 Coefficient of horizontal root distribution

ν 0.30 Typical value for clayey soils

PT 3 mm/day Rate of potential transpiration
Passing #200 55% Typical value for Boulder clay

This is not surprising given the simplicity of the assumptions with regard to the shape
of the root zone. Furthermore, as the foliage alters the uniform distribution of rainfall,
the moisture content is expected to increase at the canopy edges (say approximately
6m-8m from the tree trunk), which will probably contribute to the disparity between
the field data and finite element predictions. It is also important to note that a
homogeneous profile has been assumed in the numerical analysis although a
heterogeneous profile can influence root distribution, which in turn significantly
affects moisture distribution and content. In Figure 6(b), the soil is assumed to be
homogeneous, whereas in Figure 6(a), the actual field data is probably influenced by
the heterogeneity of the soil.
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vicinity of a lime tree (a) Biddle (1983) (b) current finite element analysis
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The predicted steady state matric suction profile at 0, 0.5, 1, and 1.5m deep based
on finite element analysis, is presented in Figure 7, where the maximum change in the
soil matric suction occurs 0.5m deep, which is also the location of the maximum root
density (i.e. mzz 5.00 == ).

Figure 8 shows the ground settlement at various depths, where only the suction
related settlement was considered in this study. The results show that after one year of
continuous transpiration, the rate of change in matric suction )/( dtdψ is less

than skPa /10 6− , which is considered to be the steady state (equilibrium) condition.
As expected, the ground settlement would decrease rapidly with the sub-surface
distance. On the surface, the 80mm vertical settlement by the tree trunk decreases to
about 20 mm, 10 m away from the trunk (Figure 8). As shown in Figure 8, the
location of the maximum settlement is closer to the trunk at shallower depths, which
almost coincides with the point of maximum suction (see Figure 3).
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Figure 8. Ground settlement at various
depths

Conclusions

Given the importance of the vadose zone in most geo-environmental projects, there is
a strong need to develop a better understanding of how trees, including natural
vegetation, influence behaviour within this zone. A mathematical model was
developed for predicting the rate of root water uptake, which takes into account soil
matric suction, and distribution of root density and potential transpiration. The
proposed model was used in a numerical analysis with the ABAQUS finite element
code to examine the content and distribution of moisture in the soil near a tree. In the
analysis of the selected case history (a single lime tree), this mathematical model was
used to find the distribution and rate of root water uptake. In spite of uncertainties in
the assumptions of the soil parameters, root distribution and atmospheric parameters,
a good agreement was obtained between the measured and simulated distribution of
moisture. The results of this study provide a valuable and relatively accurate means of
estimating the influence of vegetation on ground conditions. The numerical model
developed herein offers practicing geotechnical engineers a powerful tool for
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designing structures on the vadose zone, which are under the influence of native
vegetation. It may be noted that the role of the root zone as natural reinforced soil was
not implemented in the model described in this paper.
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