
Cooperative Hierarchical Dirichlet Processes:
Superposition vs. Maximization

Junyu Xuan, Jie Lu, Guangquan Zhang∗, Richard Yi Da Xu
Centre for Artificial Intelligence,

Faculty of Engineering and Information Technology,
University of Technology Sydney,

PO Box 123, Broadway, NSW 2007, Sydney, Australia

Abstract

The cooperative hierarchical structure is a common and significant data struc-

ture observed in, or adopted by, many research areas, such as: text min-

ing (author-paper-word) and multi-label classification (label-instance-feature).

Renowned Bayesian approaches for cooperative hierarchical structure modeling

are mostly based on topic models. However, these approaches suffer from a

serious issue in that the number of hidden topics/factors needs to be fixed in

advance and an inappropriate number may lead to overfitting or underfitting.

One elegant way to resolve this issue is Bayesian nonparametric learning, but

existing work in this area still cannot be applied to cooperative hierarchical

structure modeling.

In this paper, we propose a cooperative hierarchical Dirichlet process (CHDP)

to fill this gap. Each node in a cooperative hierarchical structure is assigned a

Dirichlet process to model its weights on the infinite hidden factors/topics. To-

gether with measure inheritance from hierarchical Dirichlet process, two kinds of

measure cooperation, i.e., superposition and maximization, are defined to cap-

ture the many-to-many relationships in the cooperative hierarchical structure.

Furthermore, two constructive representations for CHDP, i.e., stick-breaking
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and international restaurant process, are designed to facilitate the model infer-

ence. Experiments on synthetic and real-world data with cooperative hierarchi-

cal structures demonstrate the properties and the ability of CHDP for cooper-

ative hierarchical structure modeling and its potential for practical application

scenarios.

Keywords: Machine learning, Graphical model, Topic model, Bayesian

nonparametric, Hierarchical structure

1. Introduction

A hierarchical structure has multiple layers, and each layer contains a num-

ber of nodes that are linked to the nodes in the higher and lower layers, as

illustrated in Figure 1. This kind of structure is very common and pervasive,

and has been adopted in many different sub-fields in the artificial intelligence5

area. One example of such structure is found in text mining. Consider all the

papers in a scientific journal (e.g., Artificial Intelligence). An author-paper-word

[1] hierarchical structure emerges, given each author writes and publishes a num-

ber of scientific papers in this journal, and each paper is composed of several

different words. Learning from author-paper-word structure is useful for collab-10

orators’ recommendations, authors disambiguation, paper clustering, statistical

machine translation [2], and so on. Another example occurs within image pro-

cessing. The scene-image-feature hierarchical structure is formed because each

image may belong to several scenes, such as beach or urban [3], and an image

is also described by an abundance of features, such as grayscale and texture.15

Learning from scene-image-feature structure could at least benefit image search

and context-sensitive image enhancement.

Current state-of-the-art Bayesian approaches to learn from this hierarchical

structure are mainly based on topic models [4, 5] that are a kind of probabilistic

graphical models [6] and were originally designed for modeling a two-level hier-20

archical structure: document-word. Their basic idea is to construct a Bayesian

prior based on manipulations on probabilistic distributions, e.g., Dirichlet and
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Multinomial distributions [7], to map documents and words into a latent topic

space. For example, papers in the Artificial Intelligence Journal cover mul-

tiple research topics, such as machine learning, intelligent robotics, case-based25

reasoning, and knowledge representation. Each paper in this journal could be

seen as a combination of these research topics, and each topic is described by a

weighted word vector. Beyond the two-level hierarchical structure, some three-

level hierarchical structures have also been successfully modelled by incorporat-

ing additional document side information, such as: author-document-word [1],30

emotion-document-word [8], entry-document-word [9] and label-document-word

[10].

A major issue in existing (parametric) topic model-based hierarchical struc-

ture modeling is that the hidden topic number in the defined priors needs to be

fixed in advance. This number is usually chosen with domain knowledge. After35

fixing the number of topics, Dirichlet, multinomial, and other fixed-dimensional

distributions could be adopted as the building blocks for (parametric) topic mod-

els. However, discovering an appropriate number is very difficult and sometimes

unrealistic in many real-world applications. For example, limiting any given cor-

pus to a fixed exact number of topics is apparently unrealistic. Furthermore,40

this may lead to overfitting where there are too many topics, so that relatively

specific topics will not generalise well to unseen observations; Underfitting is the

opposite case, where there are too few topics, so unrelated observations will be

assigned to the same topic [11]. This number is supposed to be inferred from the

data, i.e., let the data speak. A number of methods can be used to nominate45

the number of topics, including cross-validation techniques [12], but they are

not efficient because the algorithm has to be restarted a number of times before

determining the optimal number of topics [12, 11].

One elegant approach to resolve the above issue is Bayesian nonparametric

learning - a key approach for learning the number of mixtures in a mixture50

model (also called the model selection problem) [13]. The idea of Bayesian

nonparametric learning is to use stochastic processes to replace the traditional

fixed-dimensional probability distributions. The merit of these stochastic pro-
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Figure 1: Two types of hierarchical structures

cesses is that they have a theoretically infinite number of factors1 and let the

data determine the used number of factors. Many probabilistic models with55

fixed dimensions have been extended to infinite ones with the help of stochastic

processes. One typical example is the famous Gaussian mixture model, which

was extended into an infinite Gaussian mixture model [14] using the Dirichlet

process. As for hierarchical structure modeling, the hierarchical Dirichlet pro-

cess (HDP) [15] is the most well known, which uses the relationship between60

a stochastic process and its base measure to capture the hierarchical structure

in data: more details are given in the preliminary knowledge section. Due to

its success, many extensions have been developed to account for different situ-

ations, such as: a supervised version [11] for modeling additional labels and an

incremental version [16] for streaming data.65

However, this state-of-the-art HDP-based work can only model one special

type of hierarchical structure, however there are actually two types, as shown

in Figure 1, which are distinguished by the number of parent nodes for each

node. In Type-I hierarchical structures, as illustrated in Figure 1a, each node

has one and only one parent node which could be seen as a group, and in turn is70

1We do not distinguish factor with topic throughout this paper.
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assigned to higher level groups. In Type-II hierarchical structures, as illustrated

in Figure 1b, each node may have more than one parent node. In this paper,

we term this structure a cooperative hierarchical structure. Type-II is typically

considered more general than Type-I, because Type-I can be seen as a special

case of Type-II. Note that the renowned hierarchical Dirichlet process and its75

extensions (e.g., HDP-HMM [17], HDP-based hierarchical distance-dependent

Chinese Restaurant process (hddCRP) [18], and HDP-based scene detection

[19]) are all particularly designed after Type-I hierarchical structures but fail

to model Type-II hierarchical structures. Consider the former example on an

author-paper-word structure. Using a Type-I hierarchical structure for the text80

mining area would, in this case, imply that each paper was only written by one

author. This applies to scene-image-feature structures as well. Despite a certain

rationality in some situations, the constraints of the Type-I hierarchical struc-

ture are too restrictive to model many real-world phenomena, so a new Bayesian

nonparametric prior is a must for modeling Type-II hierarchical structures.85

This paper proposes a Bayesian nonparametric model for cooperative hierar-

chical structures, based on the renowned hierarchical Dirichlet process (HDP),

which we call the cooperative hierarchical Dirichlet process(CHDP). More specif-

ically, it is built on two operations for random measures from the Dirichlet

process: Inheritance from the hierarchical Dirichlet process; Cooperation, an in-90

novation proposed in this paper, to account for multiple parent nodes in Type-

II hierarchical structures. More specially, we have designed two mechanisms

for Cooperation: one is Superposition and the other is Maximization. Based

on these operations, we propose the cooperative hierarchical Dirichlet process

along with its two constructive representations. Although the proposed CHDP95

elegantly captures cooperative hierarchical structures, it also brings additional

challenges to model inference. To resolve this challenge, we introduce two in-

ference algorithms based on the proposed two representations. Experiments on

synthetic and real-world tasks show the properties of the proposed CHDP and

its usefulness in cooperative hierarchical structure modeling.100

In summary, the main two contributions of this article are as follows:
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• we innovatively propose a cooperative hierarchical Dirichlet process based

on operations on random measures: Inheritance, Cooperation: Superpo-

sition and Cooperation: Maximization, which can be used to model the

cooperative hierarchical structures that cannot be modelled by existing105

Bayesian nonparametric models;

• two constructive representations (i.e., the international restaurant pro-

cess and stick-breaking) and the corresponding inference algorithms for

the cooperative hierarchical Dirichlet process are proposed to facilitate

model inference, which rise to the challenge brought about by Inheritance,110

Cooperation: Superposition and Cooperation: Maximization between the

random measures.

The remainder of this article is organized as follows. Section 2 discuses

related work. The definitions and constructive representations of the DP and the

HDP, which are the preliminary knowledge of the proposed model, are reviewed115

in Section 3. The CHDP and its two constructive representations are presented

in Section 4 with two corresponding inference algorithms in Section 5. Section

6 evaluates the properties of CHDP and conducts comparative experiments on

real-world tasks. Section 7 concludes this study and discusses possible future

work.120

2. Related work

This section reviews the study on hierarchical structures using Bayesian

nonparametric models. We organize the existing work in this area into two

groups: one group aims to learn out a hierarchical structure from (plain) data;

the other group aims to learn from data with a hierarchical structure. Although125

the two groups are similar, they are developed for different situations: the input

of the first group is a plain dataset (e.g., a collection of documents or images)

and the output is a hieratical structure; the input of the second group is a

hierarchical data structure and the output is a new hidden factor space. Our

study in this paper is within the second group.130
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2.1. Learning out hierarchical structures using Bayesian nonparametrics

Hierarchical structures play an important role in machine learning because

they are pervasively applied and reflect the human habit to organize informa-

tion, so learning out a hierarchical structure from plain data attracts a lot of

attention from researchers in the Bayesian nonparametric field. Compared to135

other efforts on this task, Bayesian nonparametric models have the advantage

that the learned hierarchical structure is more flexible which means there is no

bound of depth and/or width, making it easy to incorporate the newly arrived

data.

nCRP-based. A tree is viewed as a nested sequence of partitions by the140

nested Chinese restaurant process (nCRP) [20, 21], where a measurable space

is first partitioned by a CRP [22] and each area in this partition is further

partitioned into several areas using CRP. In this way, a tree with infinite depth

and branching can be generated. A datum (e.g., a document) is associated with

a path in the tree using DP by nCRP [21] or a flexible Martingale [23] prior,145

and it can associate with a subtree of the generated tree using the HDP [15]

prior in the nested HDP [24] instead of a path.

Stick-breaking-based. It is known that the traditional stick-breaking process

[25] can infer an infinite set, and it has also been revised to infer an infinite tree

structure. An iterative stick-breaking process is used to construct a Polya tree150

(PT) [26] in a nested fashion, and a datum is associated with a leaf node of

the generated tree. The traditional stick-breaking process is revised to generate

breaks with a tree structure and results in tree structured stick-breaking (TSSB)

[27] where a datum is attached to a node in the generated tree.

Diffusion-based. This kind of method holds the idea that data are generated155

by a diffusion procedure with several divergences during this procedure and

additional time varying continuous stochastic processes (i.e., Markov process)

are needed for divergence control. A datum is placed at the end of the branches

of diffusions. Both Kingman’s coalescent [28, 29, 30] and the Dirichlet diffusion

tree (DDT) [31] define a prior for an infinite (binary) tree. DDT is extended to160

a more general structure: multifurcating branches by the Pitman-Yor diffusion
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tree (PYDT) [32, 33] and to feature hierarchy by the beta diffusion tree (BDT)

[34].

Other. Motivated by the deep belief network (DBN) [35], the Poisson gamma

belief network (PGBN) [36] is proposed to learn a hierarchical structure where165

nodes have nonnegative real-valued weights rather than binary-valued weights

in DBN and the width of each layer is flexible rather than fixed. Each layer

node can be seen as an abstract feature expression of the input data.

To summarize, a variety of excellent work has been proposed in this direction,

but this is beyond the scope of this work.170

2.2. Learning from hierarchical structures using Bayesian nonparametrics

The most well-known and significant Bayesian nonparametric model for

learning from hierarchical structures is the hierarchical Dirichlet process (HDP)

[15], which is based on layering DPs. Each node in the hierarchical structure

is assigned a DP, and the relationship between nodes is modeled by the rela-175

tion between a DP and its base measure. Due to its success, many extensions

have been developed to account for different situations: supervised HDP [11] is

proposed to incorporate additional label information of hierarchical structures;

dynamic HDP [37, 38] is used to model the time-varying change of hierarchical

structures; incremental HDP [16] is for streaming hierarchical structures; the180

tree extension of HDP [39] and the combination with deep Boltzmann Machine

(DBM) [40] are used to learn out a different level of abstract features [41]; and

the adapted HDP [42] can fuse multiple heterogeneous aspects.

A similar idea was adopted in the gamma-negative binomial process [43, 44],

beta-negative binomial process [45], hierarchical beta process [46] and hierar-185

chical Poisson models [47]. Different stochastic processes, e.g., beta, Gamma,

Poisson and negative binomial processes, used in these models are piled to ac-

count for different kinds of data (i.e., binary or count data) in the hierarchical

structure. Note that these models can also be used to learn out a hierarchical

structure if the hidden layers are fixed in advance for plain data.190

To summarize, current state-of-the-art research in this group is mostly based
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on the hierarchical idea originally designed in HDP, so they can only be applied

to Type-I hierarchical structures, as discussed in the introduction.

3. Preliminary knowledge

The CHDP is built on two existing Bayesian nonparametric priors: the195

Dirichlet process (DP) and the hierarchical Dirichlet process (HDP). In this

section, we review their definitions and constructive representations that have

been used to understand and build the proposed CHDP in the following section.

Some important notations used throughout this paper are summarized in Table

1.200

Table 1: Important notations in this paper

Symbols Description

Θ a measurable space

G a random measure from DP

G0/G1
0 global random measure from DP at the first layer

Ga/G2 a random measure from DP at the second layer

Gd/G3 a random measure from DP at the third layer

G`
i i-th random measure from DP at the `-th layer

N` the number of random measures at `-th layer

H base measure of DP

γ the parameter of H (when it is a Dirichlet distribution)

Ω a random partition

Ωk a measurable set in a random partition

k an index of a measurable set/partition/factor/topic/dish

K the number of measurable sets in a partition/factors/topics/dishes

a a chef/node at the second layer

A number of chefs/nodes at the second layer

d a restaurant

D number of restaurants/nodes at the third layer

t a table in a restaurant

Td the table number in restaurant d

Ta
d the table number in restaurant d served by chef a

Ta,o the number of tables served by menu option o of chef a

Tk the number of tables served by dish k
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o a menu option on the personal menu

Oa the number of menu options on the personal menu of chef a

Ok the number of menu options with dish name k

V the number of different words in a corpus

θk k-th partition/factor/topic/dish of DP (one point in Θ)

θa,o assigned factor to menu option o of chef a

θd,t assigned factor to table t in restaurant d

θd,n/θd,i assigned factor to data/customer n/i in restaurant d

α concentration parameter of general DP

α0 concentration parameter of global DP at first layer

αa concentration parameter of DPs at second layer

αd concentration parameter of DPs at third layer

νk k-th stick break from beta distribution Beta(1, α)

πk the stick weight of k-th atom/factor from general DP

ν0,k k-th stick break from beta distribution Beta(1, α0)

π0,k the stick weight of k-th atom/factor from global DP at first layer

νa,o o-th stick break from beta distribution Beta(1, αa)

πa,o the stick weight of o-th atom/factor from DP at second layer

νd,t t-th stick break from beta distribution Beta(1, αd)

πd,t the stick weight of t-th atom/factor from DP at third layer

za,o the assigned index of factor/dish of a node at first layer for a option o of a

zd,t the assigned index of factor/option of a node at second layer for a table t of

d

zd,n the assigned index of factor/table of a node at third layer for a data n of d

Nd the number of data/customers in restaurant d

Nd,t the number of data/customers sitting at table t of restaurant d

Na
d,t the number of data/customers sitting at table t of restaurant d served by chef

a

u0,k, r0,k the variational parameters for stick breaks at the top layer

ua,o, ra,o the variational parameters for stick breaks at the second layer

ud,t, rd,t the variational parameters for stick breaks at the third layer

ςa,o the variational parameters for za,o

ςd,t the variational parameters for zd,t

ςd,n the variational parameters for zd,n

ϑk the variational parameter for θk
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3.1. Dirichlet process

The Dirichlet process [48, 49] is the pioneer and foundation of Bayesian

nonparametric learning. Its definition is as follows:

Definition 1 (Dirichlet Process). A Dirichlet process (DP) [48, 49], which

is specified by a base measure H on a measurable space Θ and a concentration

parameter α, is a set of countably infinite random variables that can be seen as

the measures on measurable sets from a random infinite partition {Ωk}∞k=1 of Θ.

For any finite partition {Ωk}Kk=1, the variables (measures on these measurable

sets) from DP satisfy a Dirichlet distribution parameterized by the measures

from the base measure H

(G(Ω1), G(Ω2), . . . , G(ΩK)) ∼ Dir(αH(Ω1), αH(Ω2), . . . , αH(ΩK))

where G is a realization of DP (α,H) and Dir() denotes the Dirichlet distribu-

tion.205

Since G is a discrete measure with probability one [48], the mass G(Ωk) will

concentrate on one point (i.e., θk ∈ Ωk, called a topic/a factor/an atom2 in this

paper) of Ωk, so an alternative definition of G is

G =

∞∑
k=1

πkδθk ,

∞∑
k=1

πk = 1, θk ∼ H (1)

where {θk}∞k=1 denotes countable infinite points in measurable space Θ and are

sampled according to the base measure H; πk = G(Ωk) is the measure value

from G on a measurable set Ωk and it can be seen as the (normalized) weight

of θk in {θk}∞k=1; δθk is a Dirac measure parameterized by θk (i.e., δθk(θ̂) = 1 if

θ̂ = θk; 0, otherwise). One draw from G would be one of {θk}∞k=1 according to210

their relative weights {πk}∞k=1.

Considering its infinite and discrete nature, DP is commonly adopted as the

prior for mixture models [14], such as:

xi ∼ F (θi), θi ∼ G (2)

2We do not distinguish these terms throughout this paper.
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where xi is a data point generated according to a distribution F () parameterized

by a draw θi from G. Due to the discrete nature of G, we have θi ∈ {θk}∞k=1 with

the implication of data clustering according to their assigned θi. For compu-

tational convenience, F () is normally set as a multinomial distribution because215

it is conjugate with Dirichlet distribution. Document modeling is a successful

application of this mixture model: θk is a V -dimensional (normalized) vector

(named a topic) where V is the number of different words in a text corpus.

In Bayesian posterior analysis of DP, a representation of G from a DP is

needed. According to whether G is represented explicitly or not, there are220

two kinds of constructive representations: Chinese restaurant process (CRP)

representation and stick-breaking representation.

3.1.1. Chinese restaurant process (CRP) representation

A marginal constructive representation is the Chinese restaurant process

[22], which directly generates θi for the i-th data point (they are exchangeable)

with G marginalized out as follows:

θi|θ1, · · · , θi−1 ∼
i−1∑
j=1

1

α+ i− 1
δθj +

α

α+ i− 1
H (3)

where 1
α+i−1 is the probability of taking the previous ones and α

α+i−1 is the

probability of taking a new one according to H. Here, the weights πk in Eq. (1)225

are implicitly reflected by the ratio of θk in {θi}i→∞.

The name comes from a metaphor used to understand Eq. (3). In a Chinese

restaurant, the i-th customer walks into this restaurant and chooses to sit at an

occupied table with the probability 1
α+i−1 or a new table with the probability

α
α+i−1 . If the customer picks an occupied table, she eats the dish already on230

the table; if a new table is picked, she needs to order a new dish for the table

from H. As a result, θi is the dish eaten by the i-th customer.
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3.1.2. Stick-breaking representation

Another explicit way (named stick-breaking) to construct G is proposed in

[25] as follows

G =

∞∑
k

νk

k−1∏
j=1

(1− νj)δθk , νk ∼ Beta(1, α), θk ∼ H

where Beta() denotes a Beta distribution and νk is the k-th random break from

a unit stick with Beta distribution parameterized by 1 and α. We can see that235

the weights πk in Eq. (1) can be explicitly represented by νk
∏k−1
j=1 (1− νj).

3.2. Hierarchical Dirichlet processes

The hierarchical Dirichlet process [15] is built by piling a DP above another

DP through an elegant method that can share the factors across the hierarchical

structure. Its definition is as follows:240

Definition 2 (Hierarchical Dirichlet Process). A hierarchical Dirichlet pro-

cess (HDP) [15] is a distribution over a set of random probability measures over

Θ. The process defines a set of random probability measures {Gd}Dd=1 and a

global random probability measure G0. The global measure G0 is distributed

as a Dirichlet process parameterized by a concentration parameter α and a base

(probability) measure H

G0 ∼ DP (α,H)

Each random measure Gd is conditionally independent from the others given

G0, and is also distributed as a Dirichlet process with the parameter αd and a

base probability measure G0

Gd ∼ DP (αd, G0)

This definition actually defines an operation between two DPs which will be

discussed in more detail in the following section. It was originally designed to

model group data. For example, there are D documents (i.e., groups) and each

Gd could be adopted to model one document using the mixture idea in Eq. (2).

13



Note that extending the above two-layer HDP to more layers is straightforward245

under this definition.

Analogous to DP, the representation for HDP is also required for model in-

ference. There are two candidates: Chinese restaurant franchise representation

and stick-breaking representation.

3.2.1. Chinese restaurant franchise (CRF) representation250

Similar to the CRP for DP, HDP has its own marginal representation with

G0 and {Gd}Dd=1 marginalized out (named the Chinese Restaurant Franchise)

as follows:

θd,t|θ1,1, · · · , θD,t−1 ∼
K∑
k=1

Tk
α+

∑
k Tk

δθk +
α

α+
∑
k Tk

H

θd,i|θd,1, · · · , θd,i−1 ∼
Td∑
t=1

Nd,t
αd + i− 1

δθd,t +
αd

αd + i− 1
G0

(4)

where Tk denotes the number of θd,t associated with θk and Nd,t denotes the

number of θd,i associated with θd,t in d. Note that although G0 appears in the

above representation, we do not need to represent it explicitly as we can use the

first line of Eq. (4) when we need to sample from G0 in second line of Eq. (4).

The metaphor for CRF in Eq. (4) is as follows [15]. There are D Chinese255

restaurants with a shared menu. The i-th customer walks into the d-th restau-

rant and picks an occupied table at which to sit with the probability Nd,t

αd+i−1

or a new table with the probability αd

αd+i−1 . If this customer picks an occupied

table, she just eats the dish already on that table; if a new table is picked, she

needs to order a new dish. The new dish is ordered from the menu according260

to its popularity. The probability that the new dish is the same as the one on

other tables has a probability of Tk

α+
∑

k Tk
and the probability that it is a new

dish is α
α+

∑
k Tk

, where Tk is the number of tables with the same dish θk. As a

result, θd,t is the dish on table t of restaurant d, and θd,i is the dish eaten by

customer i in restaurant d.265
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3.2.2. Stick-breaking representation

As for stick-breaking-based representation, there are two versions [15, 25]

for HDP. In this paper, we adopt the Sethuraman’s version [25, 50] (with two

layer) as follows:

G0 =

∞∑
k

π0,kδθk π0,k = ν0,k

k−1∏
j=1

(1− ν0,j) ν0,k ∼ Beta(1, α0)

Gd =

∞∑
t

πd,tδθd,t πd,t = νd,t

t−1∏
j=1

(1− νd,j) νd,t ∼ Beta(1, αd)

θk ∼ H θd,t = θzd,t zd,t ∼ π0

where zd,t denotes an index to one of {θk}∞k=1. Sethuraman’s version has an

advantage in that the stick weights at different layers are decoupled which makes

the posterior inference easier. From this constructive representation, we can

see the factor sharing property of HDP. The Gd at the lower layer shares the270

factors {θk}∞k=1 of G0 at higher layers. Another interesting point is that the

constructions of π0 and {πd} are independent and the only connections between

G0 and {Gd} are the relationships between θk and {θd}.

4. Cooperative hierarchical Dirichlet processes

As discussed in the Introduction, there are two types of hierarchical struc-275

tures. In this section, we formally define and model the second type: the coop-

erative hierarchical structure.

Definition 3 (Cooperative Hierarchical Structure). A cooperative hierar-

chical structure (CHS), as illustrated in Figure 1b, is composed of nodes assigned

to different layers. Each node in the structure may link to multiple parent nodes280

and child nodes.

A real-world example of CHS is: author-paper-word data. This data has

three-layer nodes: nodes in first layer denote authors; nodes in the second layer

denote papers; nodes in the third layer denote words. If an author writes a

15



paper, there is a link between two corresponding nodes; similarly, there is a link285

between a paper and a word if this paper contains this word.

Note that there is an implicit assumption of HDP in Definition 2 that each

node can only have one parent node, so HDP fails to model CHS. To capture

CHS, we first formally define three operations on random measures from DP as

follows:290

Definition 4 (Inheritance). A probability measureG1 is the Inheritance from

another probability measure G2 from DP on space Θ by taking G2 as its base

measure

G1 ∼ DP (α1, G2), G2 ∼ DP (α2, H)

where α1 and α2 are DP parameters. The discrete nature of G2 enables G1 to

inherit factors/atoms from G2.

Note that this operation is a more formal definition than the one in Definition

2.

Definition 5 (Cooperation: Superposition). A measure G is the Superpo-

sition of two probability measures, i.e., G1 and G2, from DP on the same space

Θ, if

G = G1 ⊕G2

where G is a new probability measure on space Θ and ⊕ denotes the convex

combination. For any given partition {Ω}∞k=1 on Θ, it has

G(Ωk) =
G1(Ωk) +G2(Ωk)∑
k(G1(Ωk) +G2(Ωk))

Extending the Superposition of more than two probability measures is straight-295

forward.

Definition 6 (Cooperation: Maximization). AmeasureG is theMaximiza-

tion of two probability measures, i.e., G1 and G2, from DP on the same space

Θ, if

G = G1 ∨G2
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(b) CHDP for author-document-word

Figure 2: Comparison between graphical models of HDP and CHDP for a particular hier-

archical structure: author-document-word, where this simple data includes three documents

written by two authors and each document d has with Nd words. In HDP, each document

can only have one author; in CHDP, each document can have multiple authors.

where G is a new probability measure on the space Θ and ∨ that is a Zadeh

operator borrowed from fuzzy logic which denotes the maximization3. For any

given partition {Ω}∞k=1 on Θ, it has

G(Ωk) =
max{G1(Ωk), G2(Ωk)}∑
k max{G1(Ωk), G2(Ωk)}

Extending the Maximization of more than two probability measures is also

straightforward.

The defined Superposition and Maximization are two cooperation mecha-

nisms between random measures, and they are not interchangeable. With the300

help of two mechanisms, we can model the many-to-many relationship of CHS

3Here, ∨ is a little different from its original definition, because there will be normalization

after taking the maximum.
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defined in Definition 3. Next, we define a new Bayesian nonparametric prior to

model CHS as follows:

Definition 7 (Cooperative Hierarchical Dirichlet Process). A cooperative

hierarchical Dirichlet process (CHDP) is a distribution over a set of random305

probability measures (over Θ) located at multiple layers. It defines:

• Each layer has with a numberN ` of random probability measures {G`i}i=1:N`

where N1 = 1 for the first layer;

• At the first layer ` = 1, a single global random probability measure G0

is defined, which is distributed as a Dirichlet process parameterized by a

concentration parameter α0 and a base probability measure H

G0 ∼ DP (α0, H)

• At the following layer ` > 1, each probability measure G`i at layer ` is the

Inheritance from the cooperation of probability measures at the upper

layer `− 1 which link to i,

G`i ∼ DP (α`, G
`−1
i )

where α` is the DP parameter at the layer ` and G`−1
i is from Superposition

in Definition 5

G`−1
i = G`−1

j1
⊕G`−1

j2
⊕ · · · ⊕G`−1

Ji

or Maximization in Definition 6

G`−1
i = G`−1

j1
∨G`−1

j2
∨ · · · ∨G`−1

Ji

where each G`−1
j denotes a random measure at layer `− 1 with a link to

i and {j1, . . . , Ji} are the index of linked measures at layer `− 1.310

The above CHDP has defined a prior, and we should specify the data likeli-

hood to complete the data generation process: to sample a parameter from the

bottom layer θk ∼ GL which is used to generate the data wd,n ∼ θk. H is the
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base measure of top layer DP and defines the parameter space, which is normally

set as a Dirichlet distribution for discrete data (e.g., documents). For example,315

when applied to author-document-word, θk is named the k-th topic, wd,n is the

n-th word of document d, and H is a Dirichlet distribution on (V − 1)-simplex

where V is the vocabulary size.

Comparing Definitions 2 and 7, we can draw the conclusion that HDP can

be seen as a special case of CHDP with each child node/probability measure320

having only one parent node/probability measure. If the cooperative/Type-

II hierarchical structure degenerates into a Type-I hierarchical structure, the

CHDP will degenerate into a HDP as well.

In Figures 2a and 2b, we compare the graphical models of HDP and CHDP

for a particular hierarchical structure: author-document-word, where this sim-325

ple data includes three documents written by two authors and each document d

has with Nd words. We also use colors to show how HDP and CHDP are used

to model a hieratical structure. It can be seen that the random measures at

the author and document layers of the HDP in Figure 2a have a one-to-many

relationship, where Figure 2b (or CHDP) shows a many-to-many relationship.330

The ability of CHDP to model this many-to-many relationship is due to the

designed cooperation. Therefore, CHDP is more powerful than HDP for more

general hierarchical structure modeling. Note that the many-to-many relation-

ship between the documents and words are both modeled by HDP and CHDP

by the mixture likelihood.335

Two similar studies have been published on the convex combination of DPs.

Lin and Fisher [51] proposed to use the convex combination of a finite number

of DPs {G`i} at a high layer as a new measure for the low layer G`−1 =
∑
i ωiG

`
i ,

and Chen [52] further extended this idea to all normalized random measures with

DP as a special case. We want to highlight that although the idea of Coopera-340

tion: Superposition in this paper is similar to their work, they are different. The

idea in [51, 52] is to directly use the new measure as the measure of the nodes at

a lower layer and the difference between the two new measures relies on the dif-

ferent mixing weights. For example, G`−1
1 =

∑
i ω1,iG

`
i and G

`−1
2 =

∑
i ω2,iG

`
i
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are different only if {ω1,i} are different from {ω2,i}. However, in our CHDP, we345

use this convexly combined measure as the base measure of a new DP which

introduces additional flexibility (controlled by α) beyond the mixing weights.

For example, G`−1
1 ∼ DP (α,

∑
i ω1,iG

`
i) and G`−1

2 ∼ DP (α,
∑
i ω2,iG

`
i) may

be different even though {ω1,i} and {ω2,i} are the same. When modeling hi-

erarchical structures, it is usually assumed that the whole structure is given350

and sometimes the mixing weights of the nodes may also be observed. In the

situation where mixing weights are known, CHDP shows more model flexibil-

ity than the determinate method in [51, 52]. Note that we assume the mixing

weights are given in this paper and it would be straightforward to model these

mixing weights in CHDP just simply adding a Dirichlet prior to them. As for355

Cooperation: Maximization, we found no similar research in the literature.

Next, we introduce two constructive representations for CHDP: international

restaurant process representation (marginal one) and stick-breaking representa-

tion (explicit one).

4.1. International restaurant process (IRP) representation360

The marginal representation of CHDP with G0, {Ga}Aa=1, and {Gd}Dd=1

marginalized out (named the international restaurant process) is as follows

θa,o|θ1,1, · · · , θa,o−1, H ∼
K∑
k=1

Ok∑
k Ok + α0

δθk +
α0∑

k Ok + α0
H (5)

θd,t|θ1,1, · · · , θd,t−1, G0 ∼
Oa∑
o=1

Ta,o∑
o Ta,o + αa

δθa,o
+

αa∑
o Ta,o + αa

G0 (6)

θd,n|θd,1, · · · , θd,n−1, G
d
a ∼

Td∑
t=1

Nd,t∑
tNd,t + αd

δθd,t +
αd∑

tNd,t + αd
Gda (7)

where Nd,t denotes the number of θd,n associated with θd,t in d; Ta,o denotes

the number of θd,t associated with θa,o; and Ok denotes the number of θa,o

associated with θk. Gda is the cooperation between the parent random measures
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of d. If Superposition is adopted, then

Gda = Gaj1 ⊕Gaj2 ⊕ · · · ⊕GaJd

If Maximization is adopted, then

Gda = Gaj1 ∨Gaj2 ∨ · · · ∨GaJd

where and {aj1 , aj2 , · · · , aJd} are authors linked to d. The above marginal rep-

resentation is finished.

Similar to the Chinese restaurant process of DP outlined in Section 3.1.1

and the Chinese restaurant franchise in HDP in Section 3.2.1, a metaphor is

also introduced to ease the understanding of IRP. Since CHDP is based on a365

three-layer HDP, we describe the metaphor for the three-layer HDP first, and

then introduce one for CHDP. Note that the CRF in Section 3.2.1 is only a

two-layer HDP.

As shown in Figure 3b, the metaphor for the three-layer HDP is as follows:

there is a global menu with different dishes {θk}Kk=1 shared by all chefs {a}Aa=1370

from different countries (i.e., China, India, Italy, France). Each chef has a

personal menu with dish names as menu options {θa,o} (Note that menu options

are not eliminative - different options could, in fact, be the same dish.) according

to their preference and ability. There are also several (national) restaurants {d}.

Each restaurant employs one (and only one) chef, but a chef can work in different375

restaurants at the same time. For example, a French restaurant hired a French

chef, but this chef may work in other French restaurants. In each restaurant,

there are multiple tables Td, and each table is served with a dish cooked by the

chef of this restaurant. When a customer n walks into a restaurant d, she sits

at an occupied table with the probability Nd,t∑
tNd,t+αd

or a new table with the380

probability αd∑
tNd,t+αd

. If an occupied table is selected, she just eats the dish on

this table; if the table is new, the customer needs to order a dish for this table

from the personal menu of the chef. If option o on the menu is selected with

the probability Ta,o∑
o Ta,o+αa

, she eats it; if she is not satisfied by all the current

options on the menu with the probability αa∑
o Ta,o+αa

, the chef has to add a new385
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(b) (Three-layer) Chinese Restaurant Franchise (CRF)

Figure 3: Comparison of the Chinese restaurant franchise process (three-layer) and the in-

ternational restaurant process. There are four restaurants and three chefs in the figure. In

CRF, all the customers in a restaurant can only be served by one chef, but the customers in

IRP can be served by different chefs. The main difference between HDP and CHDP is due to

Cooperation.
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option on the menu from the global shared menu. If dish k on the global menu

is selected with the probability Ok∑
k Ok+α0

, she eats it; if all the dishes on the

global menu still do not satisfy this customer with the probability α0∑
k Ok+α0

, the

chefs have to add a new dish to this global menu (while embarrassedly looking

up a recipe book H).390

As shown in Figure 3a, the metaphor for the IRP is as follows: the back-

ground is almost the same as the one in HDP, but each restaurant in IRP can

employ a number of chefs from different countries, and a chef can work in differ-

ent restaurants. For example, an international restaurant may have a Chinese

chef, a French chef, an Italian chef, and an Indian chef (hence its name, interna-395

tional restaurant). When a customer n walks into an international restaurant

d and needs to order a dish for an empty table, she could order this from the

menus of all the chefs working in this restaurant. If option o on the menu of

a chef a is selected with the probability Ta,o∑
o Ta,o+αa

, she eats it; if she is not

satisfied by the current options on the menu with the probability αa∑
o Ta,o+αa

,400

she can ask this chef a to add a new option to his menu from the globally shared

menu.

4.2. Stick-breaking representation

Based on the stick-breaking process for HDP [15], we develop the following

stick-breaking representation for CHDP

G0 =

∞∑
k

π0,kδθk π0,k = ν0,k

k−1∏
j=1

(1− ν0,j) ν0,k ∼ Beta(1, α0)

Ga =

∞∑
o

πa,oδθa,o
πa,o = νa,o

o−1∏
j=1

(1− νa,j) νa,o ∼ Beta(1, αa)

Gd =

∞∑
t

πd,tδθd,t πd,k = νd,t

t−1∏
j=1

(1− νd,j) νd,t ∼ Beta(1, αd)

za,o ∼ π0 zd,t ∼ πda zd,n ∼ πd

wd,n ∼ θzzd,zd,n θk ∼ H

where πda is from the cooperation of the parent random measures of d:
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• If Superposition is used, then

πda = πaj1 ⊕ πaj2 ⊕ · · · ⊕ πaJd
(8)

• If Maximization is used, then

πda = πaj1 ∨ πaj2 ∨ · · · ∨ πaJd
(9)

and {aj1 , aj2 , · · · , aJd} have links to d. When applied to author-paper-word, θk405

is named the k-th topic, wd,n is the n-th word of a document d, zd,n is the topic

assignment of word n, and H is a Dirichlet distribution parameterized by η.

Note that there is no one-to-one mapping between πa,o with πa,k. In fact,

their relationship is πa,k =
∑
o:za,o=k πa,o. Similar to πd,k and πd,t, their relation

is πd,k =
∑
t:zzd,t=k πd,t.410

5. Model Inference

With the observed CHS, the final aim of the inference is to obtain the poste-

rior distribution of the latent variables in CHDP. Apparently, different represen-

tations of CHDP lead to different representations for the posterior distribution.

Therefore, we develop one Markov Chain Monte Carlo [53] algorithm to ap-415

proximate the target posterior distribution using samples in Section 5.1 based

on IRP, and a variational inference [54] algorithm to approximate target pos-

terior distribution through optimization in Section 5.2 based on stick-breaking

representation. The main difficulty facing the two inference algorithms lies in

cooperation, i.e., superposition and maximization.420

5.1. Gibbs sampler

In this section, we design a Markov Chain Monte Carlo algorithm to obtain

samples of the posterior distribution p({θk}, {θa,o}, {θd,t},K|data, · · · ) of CHDP

based on IRP representation. Since the difference and difficulty of CHDP com-

paring three-layer HDP mainly lies on sampling θd,t, we focus on its inference425

with two kinds of cooperation: Superposition and Maximization.
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Sampling θd,t for CHDP-Superposition. This should be sampled from

Gda, but Gda is a superposition of a number of {Ga} so it is different from the

one in HDP and hard to marginalize out. The Gda from superposition is,

Gda ∝
∑
ai

∑
o:θai,o

=θ1
Tai,o∑

o Tai,o + αa
+ · · ·+

∑
ai

∑
o:θai,o

=θK
Tai,o∑

o Tai,o + αa︸ ︷︷ ︸
K components

+
∑
ai

αa∑
o Tai,o + αa

G0

(10)

where ai ∈ {aj1 , . . . , aJd}, the K components of the left-hand side correspond to

the observedK dishes, and the remaining part accounts for the new dishes made

by the chefs {ai}1≤i≤Jd . Since Superposition is used, each component is a sum-

mation across all chefs. Note that the summation also eases the normalization430

because the summation of the left-hand side is simply Jd.

Considering the above Gda and IRP representation, Gda can be seen as all the

menu options of the chefs serving in restaurant d, and the sampling of θd,t is

only a selection procedure from these candidate menu options. Following this

idea, we obtain the posterior distribution of θd,t as,

θd,t| · · · ∼
1

Jd

Oaj1∑
o=1

Taj1 ,o∑
o Taj1 ,o + αa

δθaj1
,o

+
1

Jd

αa∑
o Taj1 ,o + αa

G0

+ · · ·+ 1

Jd

OaJd∑
o=1

TaJd
,o∑

o TaJd
,o + αa

δθaJd
,o

+
1

Jd

αa∑
o TaJd

,o + αa
G0

(11)

Another sampling method for CHDP-Superposition is to introduce an aux-

iliary variable for the sampling of θd,n which is given in Appendix 1.

Sampling θd,t for CHDP-Maximization. Similar to CHDP-Superposition,

the difficulty also lies in the fact that the Gda is a maximization of a number of

{Ga} here. The Gda from maximization is,

Gda ∝ max
ai

∑
o:θai,o

=θ1
Tai,o∑

o Tai,o + αa
+ · · ·+ max

ai

∑
o:θai,o

=θK
Tai,o∑

o Tai,o + αa︸ ︷︷ ︸
K components

+
∑
ai

αa∑
o Tai,o + αa

G0

(12)

Under IRP representation, the sampling θd,t here could also be considered as

a menu option selecting procedure. Compared with CHDP-Superposition, the
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difference is that not all the menu options of chefs serving in restaurant d are

seen as candidates. CHDP-Maximization only takes the menu options from the

chefs who are the best at these options as the candidates. Finally, the posterior

distribution of θd,t is,

θd,t ∼
Oaj1∑
o=1

Taj1 ,o∑
o Taj1 ,o + αa

1

(
aj1 = arg max

ai

∑
o:θai,o

=θaj1
,o
Tai,o∑

o Tai,o + αa

)
δθaj1

,o

+
αa∑

o Taj1 ,o + αa
G0

+ · · ·+
OaJd∑
o=1

TaJd
,o∑

o TaJd
,o + αa

1

(
aJd = arg max

ai

∑
o:θai,o

=θaJd
,o
Tai,o∑

o Tai,o + αa

)
δθaJd

,o

+
αa∑

o TaJd
,o + αa

G0

(13)

where 1() is the identity function which is equal to 1 if the condition is satisfied;

0, otherwise. Here, the identity functions serve as the candidate filter. Note that435

the normalization is nontrivial for CHDP-Maximization because some options

are removed from the candidate list and then the unit summation for each chef

does not hold any more.

The posterior distributions of the remaining variables simply follow the

three-layer HDP. Due to the space limitation, we list the distributions of the440

remaining variables in Appendix 1. The entire procedure for the inference of

IRP is summarized in Algorithm 1.

5.2. Variational inference

Different from the designed sampler in the previous section which uses sam-

ples to approximate the posterior distribution of latent variables, variational445

inference [54] casts this distribution approximation problem to an optimization

problem. While samplers have the advantage of asymptotically exact, they are

usually not efficient in practice when facing large-scale data. Optimization-

based variational inference [50] is more tractable than samplers with only a

small loss in terms of theoretical accuracy. We therefore develop a variational450

inference algorithm for CHDP, described as follows, to handle large-scale data.
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The core idea of variational inference is to propose a number of (normally in-

dependent) variational distributions of latent variables with corresponding vari-

ational parameters and to reduce the distance (usually Kullback-Leibler (KL)

divergence) between the real posterior distribution and these variational distri-

butions through adjusting the value of these variational parameters. However,

the infinite number of factors and their weights make the posterior inference

of the stick weights even harder. One common work-around in nonparamet-

ric Bayesian learning is to use a truncation method. The truncation method

[55, 56], which uses a relatively big K† as the (potential) maximum number

of topics, is widely accepted. For CHDP, we define the following variational

distributions for the latent variables using stick-breaking representation:

q(ν0,k) =

K†−1∏
k=1

q(ν0,k;u0,k, r0,k) q(νa) =

A∏
a=1

O†−1∏
o=1

q(νa,o;ua,o, ra,o)

q(νd) =

D∏
d=1

T †−1∏
t=1

q(νd,t;ud,t, rd,t) q(za,o) =

A∏
a=1

Oa∏
o=1

q(za,o; ςa,o)

q(zd,t) =

D∏
d=1

Td∏
t=1

q(zd,t; ςd,t) q(zd,n) =

D∏
d=1

Nd∏
n=1

q(zd,n; ςd,n)

q(θ) =

K†∏
k=1

q(θk;ϑk)

whereH is chosen asDir(η), K†, O† and T † are the truncation levels, ν0,K† = 1,

{νa,O† = 1}, {νd,T † = 1}, {u, r, ς, ϑ} are the defined variational parameters.

With these variational distributions, we have

log p(w|α0, αa, αd, η)

≥Eq [log p(w, ν0, νa, νd, za,o, zd,t, zd,n, θ|α0, αa, αd, η)]

− Eq [log q(ν0, νa, νd, za,o, zd,t, zd,n, θ)]

=£(q)

= log p(w|α0, αa, αd, η)

− DKL[q(ν0, νa, νd, za,o, zd,t, zd,n, θ)||p(ν0, νa, νd, za,o, zd,t, zd,n, θ|w,α0, αa, αd, η)]

where £(q) is the evidence lower bound (ELBO). Our objective is to maximize
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ELBO through updating variational parameters, and maximizing of ELBO is

equal to minimizing the KL divergence between the real posterior distribution

and the variational distribution. Next, we use the coordinate gradient optimiza-455

tion method to update the variational parameters.

Update ςa,o,k for CHDP-Superposition. The derivative of £(q) with

respective to ςa,o,k is

∂£ςa,o,k
(q)

∂ςa,o,k
= (Ψ(u0,k)−Ψ(u0,k + r0,k)) +

∑
h<k

(Ψ(r0,h)−Ψ(u0,h + r0,h))

+
∑
d

∑
n

∑
t

ςd,t,ao
∑
v

ςd,n,tδ(wd,n = v)

(
Ψ(ϑk,v)−Ψ

(∑
v

ϑk,v

))

− log ςa,o,k − 1

Note that updating ςa,o,k using this derivative with a step τ implies a Euclidean

regularization 1
2τ ||ςa,o,k − ς

(i)
a,o,k||2 where ς(i)a,o,k is the value in the last (i-th) iter-

ation. This update overlooks the geometry of the variable, i.e., the changes of

a variational distribution and its variational parameters are not synchronous.

To consider the distribution geometry, natural gradient [? ] and proximal

gradient methods [57] are proposed in the literature. Here, we adopt the prox-

imal gradient method to resolve our problem, which has better convergence

properties [58]. Note that all the following variational parameter updates use

proximal regularization. For ςa,o,k, we introduce an additional regularization

−γDKL[q(za,o|ςa,o,k)||q(za,o|ς(i)a,o,k)], and then the new derivative becomes

∂£ςa,o,k
(q)

∂ςa,o,k
= (Ψ(u0,k)−Ψ(u0,k + r0,k)) +

∑
h<k

(Ψ(r0,h)−Ψ(u0,h + r0,h))

+
∑
d

∑
n

∑
t

ςd,t,ao
∑
v

ςd,n,tδ(wd,n = v)

(
Ψ(ϑk,v)−Ψ

(∑
v

ϑk,v

))

− (1 + γ) log ςa,o,k − (1 + γ) + γ log ς
(i)
a,o,k
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Finally, it can be updated by

ς
(i+1)
a,o,k ∝ exp

{
1

1 + γ

(
(Ψ(u0,k)−Ψ(u0,k + r0,k)) +

∑
h<k

(Ψ(r0,h)−Ψ(u0,h + r0,h))

− (1 + γ) + γ log ς
(i)
a,o,k

+
∑
d

∑
n

∑
t

ςd,t,ao
∑
v

ςd,n,tδ(wd,n = v)

(
Ψ(ϑk,v)−Ψ

(∑
v

ϑk,v

)))}
(14)

Note that when updating ςa,o,K , the item, i.e., Ψ(u0,k)−Ψ(u0,k + r0,k) should

be removed because ν0,K = 1.

Update ςd,t,ao for CHDP-Superposition. The EBLO with ςd,t,ao is

£ςd,t(q) =Eq

[∑
d

∑
t

log p(zd,t|{νa})

]
+ Eq

[∑
d

∑
n

log p(wd,n|θ, za,o, zd,t, zd,n)

]

− Eq

[∑
d

∑
t

log q(zd,t|ςd,t)

]
where

p(zd,t|{νa}) =
∏
ao

(
πdao
)δ(zd,t=ao)

, πdao =
πa,o
Jd

and then

Eq

[∑
d

∑
t

log p(zd,t|{νa})

]

=
∑
d

∑
t

∑
a∈ad

∑
o∈a

Eq

[
log

(
πa,o
Jd

)δ(zd,t=ao)]

=
∑
d

∑
t

∑
a∈ad

∑
o∈a

ςd,t,ao

(Ψ(ua,o)−Ψ(ua,o + ra,o)) +
∑

h<o,h∈a

(Ψ(ra,h)−Ψ(ua,h + ra,h))− log Jd


(15)

The above result is relatively simple, because the normalization in Superposi-

tion is intuitive: normalizing of {πa,o} is done simply by multiplying 1
Jd

because460 ∑
o πa,o = 1 and

∑
a

∑
o πa,o = Jd thanks to the linearity nature of Superpo-

sition. This simplicity does not hold for Maximization where normalizing πa,o

depends on other {πā,ō|ā 6= a, ō 6= o}, which will be discussed in more detail in

its update for CHDP-Maximization.
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Finally, it can be updated by

ς
(i+1)
d,t,ao ∝ exp

{
1

1 + γ

((Ψ(ua,o)−Ψ(ua,o + ra,o)) +
∑

h<o,h∈a

(Ψ(ra,h)−Ψ(ua,h + ra,h))− log Jd


− (1 + γ) + γ log ς

(i)
d,t,ao

+
∑
n

∑
k

ςa,o,k
∑
v

ςd,n,tδ(wd,n = v)

(
Ψ(ϑk,v)−Ψ

(∑
v

ϑk,v

)))}
(16)

Similarly, when updating ςd,t,aO, the item, i.e., Ψ(ua,o)−Ψ(ua,o + ra,o) should465

be removed because νa,O = 1.

Update ua,o and ra,o for CHDP-Superposition. Ignoring the detailed

deduction, they can be updated by

u(i+1)
a,o =

∑
d

∑
t ςd,t,ao + γ(u

(i)
a,o − 1)

1 + γ
+ 1 (17)

and

r(i+1)
a,o =

αa − 1 +
∑
d

∑
t

∑
h>o,h∈a ςd,t,ah + γ(r

(i)
a,o − 1)

1 + γ
+ 1 (18)

Update ςa,o,k for CHDP-Maximization. The ELBO with respective to

ςa,o,k is,

£ςa,o,k
(q) =Eq

[∑
a

∑
o

log p(za,o|ν0)

]
+ Eq

[∑
d

∑
t

log p(zd,t|{νa}, {za,o})

]

+ Eq

[∑
d

∑
n

log p(wd,n|θ, za,o, zd,t, zd,n)

]
− Eq

[∑
a

∑
o

log q(za,o|ςa,o)

]
where

p(zd,t|{νa}, {za,o}) =
∏
ao

(
πdao
)δ(zd,t=ao)

(19)

and

πdao =

πa,o1

(
a = arg max

ai

{∑
{o:zaj1

,o=za,o} πaj1 ,o, · · · ,
∑
{o:zaJd

,o=za,o} πaJd
,o

})
∑
ao πa,oδ

(
a = arg max

ai

{∑
{o:zaj1

,o=za,o} πaj1 ,o, · · · ,
∑
{o:zaJd

,o=za,o} πaJd
,o

})
(20)

Comparing the update for CHDP-Superposition, there is an additional item (i.e.,

the second expectation) in £ςa,o,k
(q). The reason is that zd,t is independent with
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za,o in CHDP-Superposition but zd,t depends on za,o in CHDP-Maximization

according to the aforementioned probability of πdao. Due to the complicated

functional form of this probability, it is difficult to evaluate this expectation

and obtain its derivative with a closed form. Next, we try to approximate this

expectation and its derivative,

Eq

[∑
d

∑
t

log p(zd,t|{νa}, {za,o})

]

≈
∑
d

∑
t

∑
a∈ad

∑
o∈a

ςd,t,ao
(
ςa,o,k∇ςa,o,k

Eq
[
log πdao

])
=
∑
d

∑
t

∑
a∈ad

∑
o∈a

ςd,t,ao
(
ςa,o,kEq

[
log πdao∇ log q(za,o|ςa,o,k)

])
=
∑
d

∑
t

∑
a∈ad

∑
o∈a

ςd,t,ao

(
ςa,o,kEq

[
log πdaoδ(za,o = k)

ς
(i)
a,o,k

])

≈
∑
d

∑
t

∑
a∈ad

∑
o∈a

ςd,t,ao

(
ςa,o,k

1

S

∑
s

log(πdao)
(s)δ(z

(s)
a,o = k)

ςia,o,k

)

where log(πdao)
(s) is evaluated by replacing za and πa in Eq. (20) by a set of

samples z(s)
a and π(s)

a . The first approximation holds due to linear approxima-

tion that is also adopted by the Laplace variational inference [59] and proxi-

mal variational inference [57] for the non-conjugate situation; the second equal-

ity holds with the help of the score function estimator [60] which is used to

move the derivative into the expectation and avoid computing the derivative of

Ω; the last approximation is done through Monte Carl, using S samples from∏
a

∏
o q(νa,o|u

(i)
a,o, r

(i)
a,o)q(za,o|ς(i)a,o,k) to approximate the expectation. Finally, we

obtain an unbiased stochastic estimate of the derivative (with proximal regular-
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ization) as

∂£ςa,o,k
(q)

∂ςa,o,k
= (Ψ(u0,k)−Ψ(u0,k + r0,k)) +

∑
h<k

(Ψ(r0,h)−Ψ(u0,h + r0,h))

+
∑
d

∑
t

∑
a∈ad

∑
o∈a

ςd,t,ao

(
1

S

∑
s

log(πdao)
(s)δ(z

(s)
a,o = k)

ςia,o,k

)

+
∑
d

∑
n

∑
t

ςd,t,ao
∑
v

ςd,n,tδ(wd,n = v)

(
Ψ(ϑk,v)−Ψ

(∑
v

ϑk,v

))

− (1 + γ) log ςa,o,k − (1 + γ) + γ log ς
(i)
a,o,k

(21)

Finally, it can be updated by a step towards its gradient.

Update ςd,t,ao for CHDP-Maximization. The update equation contains

an expectation of log πdao which is again approximated by the Monte Carlo.

Ignoring the detailed deduction, we can obtain its derivative as follow

ς
(i+1)
d,t,ao ∝ exp

{
1

1 + γ

(
1

S

∑
s

log(πdao)
(s) − (1 + γ) + γ log ς

(i)
d,t,ao

+
∑
n

∑
k

ςa,o,k
∑
v

ςd,n,tδ(wd,n = v)

(
Ψ(ϑk,v)−Ψ

(∑
v

ϑk,v

)))}
(22)

Update ua,o and ra,o for CHDP-Maximization. The update of varia-

tional parameters u0,k and r0,k also encounters problem in the update of ςa,o,k

as it is difficult to obtain the derivative of a complicated expectation. Again, we

use the same strategies for updating ςa,o,k for CHDP-Maximization. Ignoring

the detailed deductive, the final derivatives are

∂£ua
(q)

∂ua,o
= (−Ψ′(ua,o + ra,o))

(
αa − 1− (1 + γ)(ua,o − 1)− (1 + γ)(ra,o − 1)

+ γ(u(i)
a,o − 1) + γ(ra,o − 1)

)

+ Ψ′(ua,o)

(
γ(u(i)

a,o − 1)− (1 + γ)(ua,o − 1)

)
(23)

+
∑
d

∑
t

ςd,t,ao

(
1

S

∑
s

log(πdao)
(s)(Ψ(u(i)

a,o + ra,o)−Ψ(u(i)
a,o) + log ν(s)

a,o)

)
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and

∂£ra(q)

∂ra,o
=(−Ψ′(ua,o + ra,o))

(
αa − 1− (1 + γ)(ra,o − 1)− (1 + γ)(ua,o − 1)

+ γ(r(i)
a,o − 1) + γ(ua,o − 1)

)

+ Ψ′(ra,o)

(
αa − 1− (1 + γ)(ra,o − 1) + γ(r

(i)
0,k − 1)

)
(24)

+
∑
d

∑
t

ςd,t,ao

(
1

S

∑
s

log(πdao)
(s)(Ψ(ua,o + r(i)

a,o)−Ψ(r(i)
a,o) + log(1− ν(s)

a,o))

)

Since the update of the remaining variational parameters, e.g., u0,k and

r0,k, are common for both CHDP-Superposition and CHDP-Maximization and

relatively simple, they are given in Appendix 2 to complete the entire procedure.470

Finally, the whole variational inference algorithm is summarized in Algorithm 2.

Note that this algorithm is demonstrated for three-layer hierarchical structure

modeling. It is interesting that Algorithm 2 is an alternative sampling and

optimizing procedure, e.g., the update of variational parameters at layer A needs

the samples of the latent variables at this layer in advance. When applying475

this on the hierarchical structure with more than three layers, the update of

variational parameters (e.g., u and r) for each layer will need samples of the

latent variable at this layer.

6. Experiments

We present experimental evaluations of the proposed CHDP regarding its480

properties and practical usefulness. We first present a set of experiments on

synthetic data to analyze the properties of CHDP and the designed inference

algorithms, i.e., the convergence analysis of the proposed MCMC algorithms (in

Section 6.1), the parameter sensitivity analysis of CHDP (in Section 6.2), and

the ability to uncover the hidden structure comparing its base model: HDP (in485

Section 6.3). We then move to the real-world setting, where we evaluate the per-

formance of CHDP on two real-world applications based on real-world datasets
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Figure 4: Convergence comparison between CHDPS and CHDPM using one chain on Log-

Likelihood and ACF. (The sample number is 2,000, and it is acceptable that the chain is

convergent if ACF is smaller than 0.1.)
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Figure 5: Convergence comparison between CHDPS and CHDPM using one chain on K and

ACF. (Sample number is 2,000, and it is acceptable that the sampler is convergent if ACF is

smaller than 0.1.)

compare with state-of-the-art models or algorithms on these applications (in

Section 6.4).

34



6.1. Evaluation on the convergence of the designed samplers490

In Section 5, we presented two inference algorithms for CHDP: MCMC-

based and Optimization-based. Optimization-based inference algorithms can

easily track its convergence through evaluating the ELBO, but it is not easy

to assess the convergence of MCMC-based inference algorithms [61]. Therefore,

we need to evaluate the convergence of the designed samplers (Algorithm 1)495

for CHDPS and CHDPM. In the literature, the methods for the convergence

analysis of MCMC are roughly grouped into two categories: one chain-based

or multiple (normally 3 to 7) chains-based. We first randomly generated a

hierarchical structure with A = 20, D = 50, V = 100: each document had 10

words, the links between authors and documents were randomly generated, and500

the mixing density was 0.3 with a guarantee that each author linked to at least

one document and each document had at least one author, the model parameters

were α0 = 1, αa = 1, αd = 1, η = 0.5. On this synthetic data, we ran both

CHDPS and CHDPM and collected 2,000 samples, and then Autocorrelation

(ACF) [62] was used for the convergence evaluation of CHDPS and CHDPM505

based on their chains. In Fig. 4, the Loglikelihood of two samplers was plotted

along samples on the left-hand side, and the evaluated ACF values were plotted

along different lags on right-hand side. In Fig. 5, the hidden factor number K of

two samplers was plotted along samples on the left-hand side, and the evaluated

ACF values were plotted along different Lags on right-hand side. Furthermore,510

we also plotted two dashed lines with ACF values 0.1 and −0.1 on the right-

hand side in both two figures, because a sampler is believed converge well if

its ACF absolute value is smaller than 0.1. The reason why Loglikelihood and

K are selected as the representatives of two samplers is that they are highly

dependent on all the latent variables and if they are convergent, other latent515

variables will also be convergent. According to two figures, we can draw the

following conclusions: 1) two models can converge well because the ACF values

were finally smaller than 0.1; 2) Loglikelihood converged more quickly than K ;

3) CHDPM converged more quickly than CHDPS.

We also evaluated the convergence on multiple (five) chains using the same520
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Figure 6: Convergence comparison between CHDPS and CHDPM using PSRF on Likelihood,

K and PSRF. (There are 5 chains, and each chain contains 2,000 samples. Usually, it is

acceptable that the sampler is convergent if PSRF is smaller than 1.2 or 1.1.)

synthetic data. The evaluation metric for multiple chains is the Potential Scale

Reduction Factor (PSRF) [63], which is computed by
√

n−1
n + B

nW where B is

the variance between the means of 5 chains, W is the average of 5 within-chain

variances, and n = 2000 is the number of samples. Generally, the convergence

is acceptable if PSRF is less than 1.2 or 1.1. Fig. 6 shows the PSRF results525

of CHDPS and CHDPM on Loglikelihood and K. We also plotted a dashed line

with PSRF=1.1 in each subfigure. From this figure, we can draw the follow-

ing conclusions: 1) CHDPS and CHDPM both converged well because PSRF

was smaller than 1.1 after about 500 samples; an 2) CHDPM converged more

quickly than CHDPS because CHDPM-L converged after about 200 samples530

but CHDPS-L used about 500 samples.

6.2. Evaluation on parameter sensitivity

The Bayesian nonparametric models (i.e., different stochastic processes or

their designed combinations) actually provide a prior for the number of hidden

factors. Given a dataset, we can infer a factor number for this dataset through535
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Figure 7: The empirical evaluation on how the learned factor number K from CHDP is chang-

ing with model parameters (i.e., α0, αa and αd). IRP_S denotes CHDPS under IRP rep-

resentation; IRP_M denotes CHDPM under IRP representation; STICK_S denotes CHDPS

under Stick-breaking representation; STICK_M denotes CHDPM under Stick-breaking rep-

resentation.

Bayesian nonparametric models. The expected factor number from this prior

is determined by the parameters of the designed nonparametric priors, so it is

necessary to investigate the relationships between the model parameters with

the inferred factor number. For the proposed CHDP, the expected factor num-

ber (including two representations: stick-breaking and IRP) is parameterized540

by α0, αa and αd. In order to evaluate changing the factor numbers with three

parameters, we first randomly generated a cooperative hierarchical structure

with size A = 10, D = 20 and V = 50. The links between nodes at three layers

were also randomly set. The mixing density between A and D was set to 0.3

with a guarantee that each author is linked to at least one document and each545

document had at least one author, and the mixing density between D and V

was set to 0.5 with a guarantee that each document is linked to at least one
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word and each word is linked to at least one document. We then ran both

CHDPS and CHDPM (using IRP representation and Stick-breaking representa-

tion) on this generated cooperative hierarchical structure with different values550

of parameters and ignored the data likelihood, and recorded the final learned

empirical factor number. Since we had three parameters α0, αa and αd, we

adjusted each one (taking a value from {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}) with another

two parameters fixed as 1.0. In Figure 7, there were 3 × 3 subfigures and each

subfigure denoted a setting with one adjusted parameter, two fixed parameters,555

and a model under a specific representation. For example, the top-left corner

subfigure had a setting: free α0, αa = 1, αd = 1, and IRP-S (i.e., CHDPS

under IRP representation). For each candidate value of α0, we ran IRP-S 10

times and the learned hidden factor number at each time was represented as

a (black) point in the subfigure. Furthermore, a trending (red) line of factor560

number changing with α0 was fitted and plotted. From this figure, we see that

1) CHDPS and CHDPM with two representations had similar trends of factor

changes; 2) CHDP was more sensitive to α0 than αa and αd, the reason being

that α0 controls the factor number of the top level.

After the relation between the hidden factor number and model parameters565

was evaluated, we were also interested in changes to the data scale (i.e., the

node number in a hierarchical structure). A series of hierarchical structures were

generated with a different number of nodes. For each hierarchical structure, we

first fixed the number of nodes at the middle layer as D, and then the node

number at the top layer was set as A = b0.5 ∗ Dc and the node number at570

the bottom layer was set as V = D ∗ 2. The mixing links between the top

and middle layers were randomly generated with a fixed density of 0.3 with a

guarantee that each author is linked to at least one document and each document

had at least one author, and the mixing links between the middle and bottom

layers were also randomly generated with a fixed density of 0.5. We ran CHDP575

under different representations on this series of hierarchical structures with the

same parameters: α0 = 1, αa = 1, αd = 1. All the results are shown in Fig. 8.

On each hierarchical structure, we ran the model 10 times, the learned factor
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Figure 8: The empirical evaluation on how the learned factor number K from CHDP changes

with data scale (i.e., the node number in hierarchical structure). IRP_S denotes CHDPS

under IRP representation; IRP_M denotes CHDPM under IRP representation; STICK_S

denotes CHDPS under Stick-breaking representation; STICK_M denotes CHDPM under

Stick-breaking representation.

number were represented as (black) points in Fig. 8, and a box-plot was plotted

to show the statistics of the factor numbers on this structure. From this figure,580

we see that: 1) CHDPS and CHDPM under two representations had similar but

different trends for the hidden factor number changes; 2) CHDPM was relatively

more sensitive to the data scale than CHDPS.

6.3. Evaluation on cooperative structure modeling

The main contribution of this study is to extend HDP from a non-cooperative585

hierarchical structure (non-CHS) to a cooperative hierarchical structure (CHS).

The main difference between non-CHS and CHS is the mixing relations in CHS.

Next, we show the capability of CHDP on mixing structure modeling, comparing

HDP using toy examples. Firstly, we generated 12 nodes (authors) at the top

layer, 20 nodes (documents) at the middle layer, and 3 nodes (vocabulary words)590
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Figure 9: Illustration of 12 authors’ interests (points) on three vocabulary words, and same

color and shape points denote authors in a group. Four subfigures denote: DATA (bench-

mark using Superposition), learned structure from HDP, learned structure from CHDPS, and

learned structure from CHDPM. It appears that results from CHDPS are closer to the bench-

mark. Three quantitatively measured distances are: < 0.6256, 0.5631, 0.6399 > (they are

Euclidean distances and smaller value is better).

at the bottom layer (here, we continue to use author-document-word to explain

CHS) as follows: 1) Authors were evenly divided into three groups and an

author’s interest (va denoted the interest of author a) in three vocabulary words

was generated by a group-specific Dirichlet distribution (parameterized by <

20, 1, 1 >, < 20, 1, 1 >, and < 20, 1, 1 >, respectively); 2) the mixing relations595

between authors and documents were randomly generated with fixed density of

0.3 with a guarantee that each author is linked to at least one document and

each document has at least one author; 3) each document’s interest in (three)

vocabulary words was inherited from the cooperation (using Superposition) of its

authors; 4) Finally, we generated 100 (maybe similar) words for each document600
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using a multinomial distribution parameterized by its interest on three basic

vocabulary words. Until now, we obtained a CHS, and we then ran CHDP (using

IRP representation in Algorithm 1) on this CHS aiming to recover the authors’

interests on three vocabulary words by πa ∗ θ (after normalization). At the

same time, we degenerated CHS to a non-CHS by removing the redundant links605

between authors and documents to ensure each document had only one author,

and then we ran HDP on this non-CHS to recover the authors’ interests as well

(all three models use the same parameters: α0 = 1, αa = 1, αd = 1, η = 0.5). If

CHDP is able to recover the authors’ interests better than HDP, this verifies that

CHDP is able to model the mixing structure well because the only difference610

between CHS for CHDP and non-CHS for HDP is the mixing structure. Fig.

9 clearly demonstrates the results. There are four subfigures in Fig. 9, and

each subfigure has a 2-simplex which is a space for interests in three vocabulary

words (each corner denotes a vocabulary word). The top-left subfigure shows

the real author interests, where authors in same group are indicated by the same615

color and shape. The other three subfigures are results from HDP, CHDPS, and

CHDPM, respectively. From this figure, we can see that 1) CHDPS could recover

the hidden structure better than HDP (12 points in CHDPS were more closer to

their real positions in DATA than them in HDP) because it had considered the

mixing structure; and 2) CHDPS was better than CHDPM because the data620

was generated using Superposition rather than Maximization. Note that we also

measured the (Euclidean4) distances between the real (DATA in Fig. 9) and

learned positions of the authors quantitatively except for the visualization in

Fig. 9: 0.6256 for HDP, 0.5631 for CHDPS, and 0.6399 for CHDPM.

The reason why CHDPS was better than CHDPM in the above example is625

because the data was generated using Superposition. To prove this argument, we

generated another toy dataset using the same procedure with only one difference

in step 3: each document’s interest in (three) vocabulary words was inherited

4We also tried other distances, e.g., cosine and correlation, finding that they have same

trend as Euclidean.
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Figure 10: Illustration of 12 authors’ interests (points) in three vocabulary words, where

the same color and shape points denote authors in a group. The four subfigures denote:

DATA (benchmark using Maximization), the learned structure from HDP, the learned struc-

ture from CHDPS, and the learned structure from CHDPM. It can be seen that the results

from CHDPM are closer to the benchmark. Three quantitatively measured distances are:

< 0.6940, 0.6440, 0.4915 > (these are Euclidean distances and a smaller value is better).

from the cooperation (using Maximization rather than Superposition) of its

authors. We then performed this evaluation again using the same settings,630

and the results were shown in Fig. 10. From this figure, we can see that:

1) CHDPM recovered the hidden structure better than HDP; 2) CHDPM was

also better than CHDPS on this toy example. The Euclidean distances were:

0.6940 for HDP, 0.6440 for CHDPS, and 0.4915 for CHDPM. One interesting

observation was that the performance of CHDPS was a little worse than HDP635

in the toy example using Maximization and the performance of CHDPM was

also a little worse than HDP in the toy example using Superposition. This

observation tells us that CHDPS and CHDPM are not interchangeable and
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Figure 11: The evaluation on the capability of cooperative structure modeling with different

mixing densities. For each density, the synthetic data (using Superposition) is simulated 10

times and three models also run 10 times, so three box-plots at each density summarize the

results of the three models.

both are necessary because we had no knowledge about how the real-world data

were generated. Furthermore, it demonstrated that choosing the appropriate640

model is a determinant for learning CHS and the performance of a wrong model

may be even worse than ignoring a cooperative structure.

The capability of CHDP on cooperative structure modeling has been eval-

uated and analyzed using the aforementioned two examples with fixed mixing

density (0.3) between authors and documents. It is also interesting to evaluate645

its performances with different mixing densities. We used the above data gener-

ation procedure, but the density was adjusted with values of {0.2, 0.3, 0.4, 0.5,

0.6, 0.7, 0.8, 0.9}. For each density, we repeated the following process 10 times:
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Figure 12: The evaluation on the capability of cooperative structure modeling with different

mixing densities. For each density, the synthetic data (using Maximization) is simulated 10

times and three models also run 10 times, so three box-plots at each density summarize the

results of the three models.

1) simulated a data; and 2) ran three models (i.e., HDP, CHDPS, and CHDPM)

using same model parameters as above. As before, we had also considered both650

Superposition and Maximization respectively. Figs. 11 and 12 show the results

on the data using Superposition and Maximization, where the x-axis denoted

mixing density and the y-axis denoted the distance between learned authors’

interests from the three models to the real authors’ interests (similar to the

aforementioned toy examples). At each density, there were three box-plots cor-655

responding to the three models (pink for HDP, green for CHDPS, and blue for

CHDPM), and each box-plot was used to summarize 10 points/results from a

specific model in both figures. From Fig. 11 and 12, we see that: 1) CHDPS
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and CHDPM generally performed better than HDP; 2) CHDPS was better

than CHDPM on hidden structure learning using Superposition, and CHDPM660

was better than CHDPS on the hidden structure learning using Maximization;

3) After increasing the density, the performance of all models decreased, which

was due to an increase in the complexity of the mixing relations; 4) more inter-

estingly, the performance of the three models was indistinguishable when the

density went beyond 0.6 or 0.5. The underlying reason for this is the identifica-665

tion problem5 where it is impossible to distinguish the respective contributions

of authors in the extreme situation that density is 1.0 (all authors write all

documents together). The mixing structure between authors and documents

will determine if the authors’ interests can be identified or not. We believe this

problem will appear if the rank of the mixing matrix is significantly smaller than670

the number of authors, so it is necessary to check this factor before using the

proposed models or HDP.

6.4. Evaluation on real-world tasks

Following the previous evaluations on the model properties of CHDP us-

ing synthetic data, this subsection evaluates the capability of CHDP to resolve675

real-world tasks using real-world datasets. The two selected document-based

real-world tasks are: Author-topic modeling and Multi-label classification. The

reason these are selected is that both tasks involve cooperative hierarchical struc-

tures. The variational inference in Algorithm 2 is adopted for both tasks. Next,

we introduce each task in more detail, including the dataset, aim, comparative680

models, setup, evaluation metric, and the result analysis.

6.4.1. Author-topic modeling task

The DATASET for this task is NIPS papers6. This dataset contains pa-

pers from the NIPS conferences between 1987 and 1999, comprising 1,740 pa-

pers with 2,037 authors, a total of 2,301,375 word tokens, and a vocabulary685

5More detail on this problem can be found in http://www2.gsu.edu/m̃kteer/identifi.html
6http://www.datalab.uci.edu/author-topic/NIPs.htm
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Figure 13: The evaluation on the author-topic modeling task. The two selected comparative

Bayesian models (with fixed dimensions) are ATM and DADT, and the evaluation metric is

Author-perplexity. The x-axis denotes the candidates of hidden topic numbers, and the results

from the four models on each candidate using 5-fold cross-validation are plotted including

mean and standard deviation.

size of 13,649 unique words. Note that this dataset is actually a COOP-

ERATIVE HIERARCHICAL STRUCTURE: author-paper-word (Each

paper could have more than one author), so the proposed CHDP could be

adopted to model this dataset. The AIM of this task is to discover the hid-

den topics/factors from this structure and, simultaneously, the authors’ interest690

in these topics. This task could be further applied to real-world applications,

such as 1) detecting the most and least surprising papers for an author, 2)

an author/topic-based browser; and so on. The selected COMPARATIVE
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MODELS for this task are the Author Topic Model (ATM)7 [64] and the Dis-

joint Author-Document Topic model (DADT)[65], which are based on fixed di-695

mensional probability distributions. Note that the topic number needs to be

fixed when using ATM and DADT, but CHDP does not suffer from this prob-

lem. The SETUP for this task was as follows: 5-fold cross validation was

applied so the entire dataset was divided into 5 parts, with one being used

as the test data each time. Furthermore, the rank of the mixing matrix be-700

tween labels and free texts is around 1107 for each fold, which is close to the

rank maximum. After learning the proposed models on the training dataset,

we predicted the authors of a given test paper. CHDP was implemented using

the stick-breaking representation with both Superposition and Maximization

in Section 4.2 and Algorithm 2. CHDP used the following truncation levels:705

T = 50, O = 100,K = 500; and parameters: α0 = 1, αa = 1, αd = 1, η =

0.5. The EVALUATION METRIC used for the qualitative comparisons

is Author-perplexity : Ap = exp
(
− 1
|Dt|

∑
d∈Dt

1
Ad

∑
a∈ad

∑
k p(a|θk)p(θk|wd)

)
,

where Dt is the test papers, θk is the learned k-th topic, ad is the authors of

paper d, and Ad is the author number of paper d. Ap is the exponential of710

the probability of observing authors ad of a given document d. The smaller

the value of Ap, the better the performance. For CHDP, p(a|θk) can be eval-

uated by πa,k =
∑
o:za,o=k πa,o, and p(θk|wd) can be evaluated by the cosine

distance between θk and wd. For CHDPM, the evaluation is a little different:

Ap = exp
(
− 1
|Dt|

∑
d∈Dt

∑
k p(ã|θk)p(θk|wd)

)
, where ã is the Maximization of715

all author interests of paper d. The RESULTS are shown in Figure 13. Since

ATM and DADT need the number of topics to be fixed in advance, the 10

candidates K ∈ {i : i = j × 10, j = [1, 10]} (indicated by the x-axis) were

evaluated and plotted in Figure 13. Since CHDPS and CHDPM do not have

this limitation, there were two lines in the figure to represent their results. We720

also plotted the standard deviations from the cross-validation. From Figure

13, we can see that 1) the performances of ATM and DADT were affected by

7Implementation is from: http://www.datalab.uci.edu/author-topic/
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Figure 14: The evaluation on the multi-label classification task. The two selected comparative

Bayesian models (with fixed dimensions) are BCS and BMLPL. The four subfigures denote

the four evaluation metrics. The x-axis denotes the candidates of the hidden factor numbers,

and the results from the four models on each candidate are plotted.

choosing the hidden topic number; 2) CHDPS and CHDPM achieved generally

better performances than ATM and DADT. Note that CHDP achieved this bet-

ter performance without the additional restriction that the topic number needs725

to be prefixed; 3) CHDPS was slightly better than CHDPM, and it was inter-

esting that CHDPM had a comparative performance to CHDPS on this task;

and 4) the standard deviations from CHDPM were the largest of all the models,

which may be because Maximization in CHDPM is not a strict restriction on all

authors’ interests compared to Superposition and this loose restriction leaded730

more variance. So, we can draw the conclusion that CHDP is effective on this

task.
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6.4.2. Multi-label classification task

The DATASET for this task is Clinical free text8. This dataset comprises

radiology reports annotated by experts. There are 45 labels (ICD-9-CM codes)735

and 645 (training) / 333 (testing) texts with 1,449 features. More detailed

description can be found in [66]. Note that this dataset is also a COOPER-

ATIVE HIERARCHICAL STRUCTURE: label-text-feature (Each clini-

cal text may have more than one label), so the proposed CHDP can also be

adopted to model this dataset. Since each text is associated with a number of740

(0/1 valued) features (similar to mapping between documents and words), the

multinomial distribution is still used as the likelihood of CHDP for this dataset.

Furthermore, the mixing matrix between labels and free texts has a full rank.

The AIM of this task is to automatically assign labels to the test clinical texts.

Automatic and accurate label assignment for text can save an enormous amount745

of time and cost compared with manual labor. The selected COMPARA-

TIVE MODELS for this task are Bayesian Compressed Sensing (BCS)9 [67]

and Bayesian Multi-label Learning via Positive Labels (BMLPL)10 [68] (two

Bayesian models with fixed dimensions). Note that the factor number needs to

be fixed when using BCS and BMLPL, but CHDP does not suffer from this prob-750

lem. The SETUP for this task was as follows: we trained CHDP using training

data and learned the hidden factor embedding for labels and features, and then

used this factor embedding to predict the labels for the test dataset. CHDPS

and CHDPM used the following truncation levels: T = 50, O = 100,K = 200;

and parameters: α0 = 1, αa = 1, αd = 1, η = 0.1. The EVALUATION755

METRICS are: OneError, Coverage, RankingLoss, and AvgPrecision, which

are commonly used for a performance comparison of multi-label learning and

their detailed definitions can be found in [69]. For AvgPrecision, the larger the

value, the better the performance; for OneError, Coverage and RankingLoss, the

8http //mulan.sourceforge.net/datasets-mlc.html
9Implementation is from: https://github.com/yalesong/BGCS

10Implementation is from: http://people.ee.duke.edu/ lcarin/Papers.html
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smaller the value, the better the performance. These metrics are all ranking-760

based. This means that they can rank all the labels in different multi-label

classification models for every data according to the possibility of the data with

each label. For CHDP, it can also rank the labels of the test data according

to their hidden factor embedding by Rank(l, xi) =< πl, πxi >, where xi is i-th

test data, l denotes a label, πl is a K dimensional vector that denotes the factor765

embedding of label l and πl,k can be evaluated by πl,k =
∑
o:zl,o=k πl,o, πxi

is

also a K dimensional vector that denotes the factor embedding of data xi and

πxi,k can be evaluated by the cosine distance between θk and xi. Finally, we

can rank the labels for each data according to Rank(l, xi). The RESULTS are

shown in Figure 14, where four subfigures denote the four evaluation metrics770

and there are four lines plotted for the four models in each subfigure. Since

BCS and BMLPL need the number of topics to be fixed in advance, the 10

candidates K ∈ {i : i = j × 5, j = [1, 10]} (indicated by the x-axis) were eval-

uated and plotted in each subfigure. The results from CHDPS and CHDPM

were again represented as two straight-lines in each subfigure. From Figure 14,775

we observed that 1) the performances of BCS and BMLPL fluctuated with the

hidden factor numbers; 2) CHDPS achieved the best performance on OneError

and RankingLoss, and achieved a comparative performances on AvgPrecision

with BCS and Coverage with BMLPL; 3) CHDPM performed badly on OneEr-

ror and RankingLoss, but achieved comparative performances on AvgPrecision780

and Coverage. So, we can draw the conclusion that CHDPS is effective on this

task and CHDPS is better than CHDPM on this task.

7. Conclusions and further studies

Hierarchical structure is a commonly observed and adopted data structure,

so its modeling could benefit numerous application areas, such as author-topic785

modeling and multi-label learning. We have presented a Bayesian nonparamet-

ric model, i.e., cooperative hierarchical Dirichlet processes (CHDP), for more

general hierarchical structure: cooperative hierarchical structures. CHDP is
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based on two random measure operations which have been specifically designed

to model the cooperative hierarchical structure (CHS): Inheritance for the layer-790

ing structure in CHS, Cooperation: Superposition and Cooperation: Maximiza-

tion for the mixing structure in CHS. Similar to the renowned DP and HDP,

two constructive representations, i.e., the international restaurant process and

stick-breaking, have been designed for CHDP to facilitate the model inference.

In order to resolve the issue brought about by Inheritance and Cooperation in795

CHDP, two inference algorithms have been carefully developed for both repre-

sentations. Experiments on synthetic and real-world datasets showed its ability

to model cooperative hierarchical structures and demonstrated its practical ap-

plication scenarios.

In the future, we plan to design a more efficient and accurate inference800

algorithm for CHDPM based on evolutionary computing considering its compli-

cated non-smooth optimization objective function. Moreover, it would be also

interesting to apply the idea of existing various extensions for HDP on CHDP

accounting for more general situations. Other interesting work is to extend

the current model to hierarchical network structures that include node network805

structures within each single layer of CHS.
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Appendix 1: Marginal sampler

Sampling θd,n. To assign a table t to each customer n in restaurant d, the

prior is as the one in Eq. (7) and the likelihood part is

L(ηd,t) ∝

F (vd,n|θd,t) if t is occupied

LK(vd,n) if t is new
(25)

Sampling θa,o. To assign a dish k to each menu option o of chef a, the prior

is as the one in Eq. (5) and the likelihood part is,

L(ηa,o) ∝

F (va,o|θk) if k is occupied

LK(va,o) if k is new
(26)
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Algorithm 1: Marginal Sampler for IRP

initialization;

do

for d = 1; d ≤ D do

for n = 1;n ≤ Nd do
Update θd,n by Eq. (7);

for t = 1; t ≤ Td do
// Superposition

Update θd,t by Eq. (11);

// Maximization

Update θd,t by Eq. (13);

for a = 1; a ≤ A do

for o = 1; o ≤ Oa do
Update θa,o by Eq. (5);

for k = 1; a ≤ K do
Update θk by Eq. (27);

while convergent ;

return K, {θk}Kk=1, {{θd,t}
Td
t=1}Dd=1}, {{θa,o}

Oa
o=1}Aa=1 ;

where va,o denotes all the customers served by the o-th menu option of chef a,

LK(xa,o) =

∫
θ

F (va,o|θ)H(θ)dθ.

Sampling θk. θk denotes a global factor/topic and its posterior distribution

is

p(θk| · · · ) ∝ Dir(θk; γ) · F (vk|θk) (27)

where vk is total number of customers assigned to k.

We can also introduce an auxiliary variable ẑd,n to make it inferrable: ẑd,n

denotes the selected chef of customer n in restaurant d. If we know which chef

this customer selects, we can simply assign a dish to him by marginalizing the

probability measure of the selected chef. Here, we define the distribution of the
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auxiliary variable ẑd,n as

p(ẑd,n = a| · · · ) =

∑
tN

a
d,t + αd∑

tNd,t + αd
(28)

where Na
d,t denotes the number of customers on table t served by chef a in

restaurant d. With the selected chef, we can sample θd,n by

θd,n|ẑd,n = a,Ga, · · · ∼
Ta
d∑

t=1

Nd,t∑
tN

a
d,t + αd

δθd,t +
αd∑

tN
a
d,t + αd

Ga (29)

where T ad is the table number in restaurant d served by chef a and t ∈ a denotes1020

table t served by chef a. If a new dish is needed, we need to sample from Ga.

Proof. The marginal distribution of θd,n with ẑd,n marginalized out is:

p(θd,n) =
∑
ẑd,n

p(θd,n, ẑd,n)p(ẑd,n)

=
∑
a

p(θd,n|ẑd,n = a)p(ẑd,n = a)

=
∑
a

 Ta
d∑

t=1

Nd,t∑
tN

a
d,t + αd

δθd,t +
αd∑

tN
a
d,t + αd

Ga

∑tN
a
d,t + αd∑

tNd,t + αd

=
∑
a

 Ta
d∑

t=1

Nd,t∑
tNd,t + αd

δθd,t +
αd∑

tNd,t + αd
Ga


=

Td∑
t=1

Nd,t∑
tNd,t + αd

δθd,t +
αd∑

tNd,t + αd
(Ga1 ⊕Ga2 ⊕ · · · )

=

Td∑
t=1

Nd,t∑
tNd,t + αd

δθd,t +
αd∑

tNd,t + αd
Gda

The result is the same as in Eq. (7). So we can conclude that introducing

an auxiliary variable will not impact on the posterior distribution of the θd,n.

Sampling θad,t. To assign an menu option o to each table served by chef a

in restaurant d, the prior for θad,t is as the one in Eq. (6) and the likelihood part

is,

L(θad,t) ∝

F (vd,t|θa,o) if o is occupied∑K
k=1

Ok∑
k Ok+α0

F (vd,t|θk) + α0∑
k Ok+α0

LK(vd,t) if o is new
(30)
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where vd,t denotes all the customers sitting on table t in restaurant d, and Ok

is the number of menu options with dish k,

LK(vd,t) =

∫
θ

F (vd,t|θ)H(θ)dθ.

Appendix 2: Variational Inference

Update ϑk,v. The derivative of £(q) on ϑk,v with additional proximal

regularization is

∂£ϑ(q)

∂ϑk,v
=

(
ηv − (1 + γ)ϑk,v + γϑ

(i)
k,v +

∑
d

∑
n

δ(wd,n = v)
∑
ao

ςao,k
∑
t

ςd,t,aoςd,n,t

)
Ψ′(ϑk,v)

+
∑
v

(
ηv − (1 + γ)ϑk,v + γϑ

(i)
k,v +

∑
d

∑
n

δ(wd,n = v)
∑
ao

ςao,k
∑
t

ςd,t,aoςd,n,t

)(
−Ψ′(

∑
v

ϑk,v)

)

Finally, it can be updated by

ϑk,v =
ηv + γϑ

(i)
k,v +

∑
d

∑
n δ(wd,n = v)

∑
ao ςao,k

∑
t ςd,t,aoςd,n,t

γ + 1
(31)

In addition, the inference could be further speed up by using the stochastic1025

gradient method [70]: Each iteration only selects a batch of documents, and

update ϑk that is considered as global variables by slightly revising the above

equation.

Update u0,k and r0,k. The update of variational parameter u0,k and r0,k

is by

u
(i+1)
0,k =

∑
a

∑
o ςa,o,k + γ(u

(i)
0,k − 1)

1 + γ
+ 1 (32)

and

r
(i+1)
0,k =

α0 − 1 +
∑
a

∑
o

∑
l>k ςa,o,l + γ(r

(i)
0,k − 1)

1 + γ
+ 1 (33)

Update ud,t and rd,t. The update of variational parameter ud,t and rd,t

are by

u
(i+1)
d,t =

∑
n ςd,n,t + γ(u

(i)
d,t − 1)

1 + γ
+ 1 (34)
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Algorithm 2: Variational Inference for CHDP

initialization;

do

Obtain samples of
∏
a

∏
o q(νa,o|u

(i)
a,o, r

(i)
a,o)q(za,o|ς(i)a,o,k) for

CHDP-Maximization;

for d = 1; d ≤ D do

for n = 1; 1 ≤ Nd do
Update ςd,n by Eq. (36);

Update ud,t and rd,t by Eqs. (34) and (35);

//CHDP-Superposition

Update ςd,t by Eq. (16);

//CHDP-Maximization

Update ςd,t by Eq. (22);

for a = 1; a ≤ A do
//CHDP-Superposition

Update ua,o and ra,o using derivatives in (17) and (18);

Update ςa,o,k using derivative in (14);

//CHDP-Maximization

Update ua,o and ra,o using derivatives in (23) and (24);

Update ςa,o,k using derivative in (21);

for k = 1; k ≤ K† do
Update u0,k and r0,k by Eqs. (32) and (33);

Update ϑk,v by Eq. (31);

while convergence;

return K, {ϑk}, {u0, r0}, {ua, ra}, {ud, rd}, {ςa,o}, {ςd,t}, {ςd,n};

and

r
(i+1)
d,t =

αd − 1 +
∑
n

∑
l>t ςd,n,l + γ(r

(i)
d,t − 1)

1 + γ
+ 1 (35)
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Update ςd,n,t. The update of variational parameter ςd,n,t is by

ς
(i+1)
d,n,t ∝ exp

{
1

1 + γ

(
(Ψ(ud,t)−Ψ(ud,t + rd,t)) +

∑
j<t

(Ψ(rd,j)−Ψ(ud,j + rd,j))− (1 + γ) + γ log ς
(i)
d,n,t

(36)

+
∑
k

∑
ao

ςa,o,kςd,t,ao
∑
v

δ(wd,n = v)

(
Ψ(ϑk,v)−Ψ

(∑
v

ϑk,v

)))}

When updating ςd,n,T , the item, i.e., Ψ(ud,t)−Ψ(ud,t + rd,t) should be removed

because νd,T = 1.1030
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