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Abstract 

This study aims to investigate the behavior of nitrogen removal in an aerobic sponge based 

moving bed biofilm reactor by evaluating nitrification and denitrification rates of sponge 

biocarriers from three aerobic moving bed biofilm reactors (MBBRs) with filling ratios of 10% 

(R-10), 20% (R-20) and 30% (R-30). Results showed that the highest removal efficiencies of 

total nitrogen in three reactors were 84.5% (R-10), 93.6% (R-20) and 95.3% (R-30). 

Correspondingly, simultaneous nitrification and denitrification rate (SND) was 90.9%, 97.6% 

and 100%, respectively. Although R-20 had the highest attached-growth biomass (AGB) per 

gram of sponge compared to the other two reactors, R-30 showed the maximum ammonium 

oxidation rate (AOR) (2.1826±0.0717 mg NH4
+-N/g AGB/h) and denitrification rate (DNR) 

(5.0852±0.0891 mg NO3
--N/g AGB/h), followed by R-20 and R-10. These results indicated 

AOR, DNR and AGB were affected by the filling ratio under the same operation mode.  

Keywords: nitrification rate, denitrification rate, moving bed biofilm reactor, sponge carrier, 
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1. Introduction  

With stricter regulatory and legislative effluent quality requirements and eutrophication 

controls in place worldwide, the removal efficiencies of organic matter as well as nutrients are 

required to be improved (Wang et al, 2014). Therefore, moving bed biofilm reactor (MBBR) 

technology as an example of efficient attached growth treatment processes, has been 

developed for wastewater treatment. MBBR has proven to be a very simple and efficient 

technology in municipal and industrial wastewater treatment (Chen et al., 2015; Bian et al., 

2017; Huang et al., 2017). As noted in the study by Young et al. (2016), the MBBR system’s 

performance depends not only on the loading rate but also the carrier type, on account of 

biofilm thickness, morphology and microbial population community shifts in response to the 

carrier type and loading rate in MBBR. Therefore the carriers in MBBR play a major role in 

governing microbial community within the biofilm, as well as the system operation conditions 

and the bioreactor performance. Different types of biofilm carriers have been introduced in 

MBBR technology, for instance polyethylene plastic, polyurethane sponge, biodegradable 

polymer, granular activated carbon, etc. (Ngo et al., 2008; Bertin et al., 2010; Chu and Wang, 

2011; Wu et al., 2012; Masłon and Tomaszek, 2015 ; Li et al., 2016a).    

Among these carriers, sponge is considered to be an ideal attached growth media because 

of its high porosity for microbial immobilization with the biomass deposition on the sponge 

surface and inside the sponge pores (Guo et al., 2009; Deng et al., 2016; Zhang et al., 2016). 

Nguyen et al. (2010) investigated the organic and nutrient removal in an up-flow sponge 

bioreactor with sponge cube as support media. The best performance of over 90% TOC, 95% 

COD, 65% TN and 90% TP was obtained under aerobic conditions. Chen et al. (2015) used a 
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novel suspended carrier, prepared by coating a sponge on the inside and outside of a hard 

polyethylene ring, to obtain a quick start-up of MBBR. COD and NH4
+-N removal rates 

reached 99.5±1.1 and 93.6 ± 2.3%, much higher than those of the commercial carrier 

(74.9±2.7 and 40.0±1.8%). According to the study results of Deng et al. (2016), the MBBR 

with sponge modified carriers improved the overall performance in terms of effluent quality 

and nutrient removal, compared to the MBBR with plastic carriers at HRTs of 12 h and 6 h.  

As the biocarrier is the key factor influencing the quantity and distribution of attached 

biomass and sequentially affecting nitrification and the denitrification processes in an MBBR 

(Zhang et al., 2013; Young et al., 2016), it is necessary to investigate the nitrogen removal 

behavior of the attached-growth biomass (AGB) on the biocarriers. To date, however, 

nitrification and denitrification rates of sponge biocarriers in an aerobic MBBR have not been 

examined. Thus, the objective of this study was to evaluate nitrification and denitrification 

rates of sponge carriers in an aerobic MBBR for understanding the behavior of nitrogen 

removal.  

2. Materials and methods 

2.1. Chemicals and Materials 

The cubic-shaped polyurethane sponge (15×15×15 mm) was employed in MBBR as the 

biocarrier, which has a density of 28 kg/m3 and cell count of 90 cells/in (90 cells per 25 mm) 

( Joyce Foam Pty Ltd, Australia). 

 l-allyl-2-thiourea (ATU) was obtained from J&K Scientific (China), and other chemicals 

used in the experiments were purchased from Sangon Biotech (China). All the compounds 
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were of at least analytical grade (>99% purity). 

2.2. Synthetic wastewater 

Synthetic wastewater was used throughout the experiments to provide the influents of 

MBBRs. The wastewater was prepared by dissolving glucose, (NH4)2 SO4, KH2PO4 and trace 

elements in tap water (Zhang et al., 2016). The synthetic wastewater contained (per liter ) 

107.6±5.3 mg of total organic carbon (TOC), 15.49±1.28 mg of NH4
+-N, 2.85±0.24 mg of 

total phosphorus, 0.68±0.31 mg of NO3
--N, 0.14±0.12 mg of NO2

--N and trace nutrients as 

follows (mg/L): MgSO4·7H2O, 5.07; CaCl2·2H2O, 0.368; MnCl2·7H2O, 0.275; ZnSO4·7H2O, 

0.44; CoCl2·6H2O, 0. 42; CuSO4·5H2O, 0.391; FeCl3, 1.45; Na2MoO4·2H2O, 1.26; and yeast 

extract, 30. 

2.3. MBBR experimental set-up and operation 

Three bench-scale MBBR systems with a working volume of 12 L were used. Three 

reactors were initially filled with non-acclimatized sponge carriers at the filling ratios of 10% 

(R-10), 20% (R-20) and 30% (R-30), and were inoculated using activated sludge from a 

secondary sedimentation tank in a local municipal wastewater treatment plant, Tianjin, China, 

with the initial mixed liquor suspended solids (MLSS) of 2.8 g/L. During the start-up period 

of 15 days, the carriers in three reactors were acclimatized to the synthetic wastewater at the 

same hydraulic retention time (HRT) of 24 h. Afterwards, the reactors were operated in 

continuous mode in parallel at the HRT of 12 h for 85 days. The dissolved oxygen (DO) 

concentration in R-10, R-20 and R-30 ranged from 5.0-6.5 mg/L due to the aeration that lasted 

throughout the entire operational period. The air flow was kept at around 0.09 m3/ h in all 

MBBRs. Ambient temperature was around 25 ± 1 C and pH was maintained at around 7.0 by 
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adjusting it with NaCO3 or H2SO4 in all MBBRs.  

2.4. Batch experiments  

Aerobic and anoxic batch assays were conducted to evaluate nitrification and denitrification 

rates of biomass attached to carriers, which were undertaken separately from three different 

MBBRs at designated intervals of around 15 days throughout the experimental period lasting 

85 days. The measurements were conducted five times using sponge carriers in MBBRs for 

determining the nitrification rate (represented by ammonium oxidation rate, AOR) as well as 

the denitrification rate (DNR). In all batch assays samples were collected for 12 h at 2 hour 

intervals. When collection finished, the samples were filtered through 0.45 μm filters and 

analyzed immediately.  

Determination of AOR: Five replicate sponge carriers were randomly selected from each 

MBBR reactor, and then the attached-growth biomass of sponge carriers was collected into 

three 250 mL beakers by hand squeezing and rinsing the sponge cubes with deionized water, 

respectively. After being mixed using thorough stirring, 50 mL mixture was taken from each 

of the three beakers and added into three 500 mL Erlenmeyer flasks, respectively. In the 

meantime, the synthetic substrate was prepared by diluting NH4Cl and KH2PO4 in deionized 

water, and then three 300 mL of the synthetic substrate was added into three flasks separately. 

The initial concentrations of NH4
+-N of and KH2PO4 were 44.36±1.36 mg/L and 50 ±1.87 

mg/L, respectively. KH2PO4 was added to avoid limited nutrient caused by phosphorus during 

cultivation.DO concentration for each flask was kept at around 5.5 mg/L via aeration. All the 

filtrated samples were analyzed for the concentration of NH4
+-N. AOR was calculated by the 

decrease in NH4
+-N concentration over time and divided by the initial AGB in the reaction 
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[Gong et al., 2012]. 

 

Where [NH4
+-N] removed is the amount of ammonium removed in the reaction (mg), T is the 

reaction time (h), and AGBi is the amount of biomass used in the reaction (g). 

Determination of DNR: Five sponge carriers randomly taken from each of the three reactors 

were cut up into small cubes and put into three 500 mL serum bottoms containing 250 mL 

deionized water that had been flushed by nitrogen. Then the attached growth biomass on the 

sponge carriers was detached by ultrasound. Afterwards, 50 mL mixture was taken from all 

three beakers and added into the flasks. Meanwhile, NaNO3, KH2PO4 and glucose were 

dissolved in deionized water as the substrate. The addition of glucose served to provide the 

carbon source and ensure carbon was not the limiting factor. Three 300 mL of the substrate 

was added into three flasks. The initial concentrations of NO3-N, KH2PO4 and glucose were 

46.23±2.08 mg/L, 50±1.88 mg/L and 1000±10.27 mg/L, respectively. Following this, ATU of 

1 mg/L was added as the nitrification inhibitor into the synthetic substrate to eliminate the 

influence of nitrifiers. For the denitrification rate test, the flasks were flushed with nitrogen 

for 10 min and then tightly sealed. All flasks were placed on a shaker at 25 °C and 120 rpm 

for 12 h. The filtrated samples were tested for NO3
--N concentrations. DNR was calculated by 

the decrease in NO3
--N concentration over time and divided by the initial AGB in the reaction 

[Gong et al., 2012]. 

 

Where [NO3
--N] removed is the amount of removed nitrate in the reaction (mg), T is the reaction 

time (h) and AGBi is the amount of biomass used in the reaction (g). 
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2.5. Analytical methods 

TOC was measured using a TOC analyzer (TOC-VWP, Shimadzu, Japan). NH4
+-N, 

NO2
--N and NO3

--N were analyzed utilizing an ion chromatograph analyzer (ICS-1500, 

THEMORS, US). The total nitrogen (TN) was the sum of NH4
+-N, NO2

--N and NO3
-–N. SND 

were calculated according to the study of Zhang et al. (2016). MLSS and mixed liquor 

suspended solids (MLVSS) were measured according to the Standard Methods (APHA, 

2005).  

3. Results and discussion 

3.1. MBBR performance 

Fig.1 depicts the performance of the three MBBRs in terms of NH4
+-N, TN removal, SND 

MLSS, MLVSS and AGB. As can be seen from Fig.1, the efficiencies of more than 93.6±2.6% 

TOC and 95.1±4.4% NH4
+-N on average were achieved in three MBBRs. Fig.1 indicated that 

R-20 had the highest average removal efficiencies of 95.7±1.5% TOC and 97.6±2.7% NH4
+-N. 

Nevertheless there was no obvious difference in the treatment efficiencies of TOC and 

NH4
+-N in the three reactors with different filling ratios.  

It is well known TN removal mainly depends on simultaneous nitrification and 

denitrification (SND) performance in aerobic MBBRs. SND takes place in MBBR systems 

because of the oxygen concentration gradient within the biocarrier, which results in an anoxic 

microenvironment in the biocarrier’s inner layer or the biofilm near the attached surface 

(Khan et al., 2011; Masłon´ and Tomaszek, 2015). Although R-10, R-20 and R-30 had similar 

NH4
+-N removal efficiency, R-20 and R-30 indicated better TN removal because of higher 

SND performance (Fig.1). The highest removal efficiency of TN in R-10, R-20 and R-30 was 
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84.5%, 93.6% and 95.3%, respectively which correspond to the best SND performance of 

90.9%, 97.6% and 100%. In addition, TN in the effluent mainly consisted of NH4
+-N and 

NO3
--N with the NO2

--N concentration being less than 0.60 mg/L. Based on the results, this 

gives an indication that TN removal and SND were limited by DNR. Overall, filling ratio had 

little influence on TOC and NH4
+-N removal, but affected TN removal (77.1±7.4% in R-10 

compared to 86.4±8.9% in R-30). Considering the overall treatment performance, the filling 

ratio of 20% was suitable for the sponge- based MBBR. 

Referring to the three reactors, MLSS and MLVSS of the MBBR increased as the filling 

ratio also increased (Fig.1). The suspended solids in MBBR were mainly derived from the 

detachment of the biomass onto the carriers resulting from the hydraulic shear force and 

collision. Therefore larger sponge carrier volume resulted in higher MLSS and MLVSS which 

ranged from 0.1607±0.0451- 0.4057±0.0377 g/L and 0.1420±0.0527 -0.3513±0.0837 g/L, 

respectively. From the comparison with the amount of biomass attached to the sponge carriers 

presented in Fig.1, R-10 and R-20 had a similar amount of biomass on per gram sponge 

(around 0.29 g AGB/g sponge), which were higher than R-30. The results demonstrated that 

more biomass grew in the sponge carriers in R-10 and R-20 compared to R-30. It is well 

known that the metabolism of the microorganisms on the carriers depended on the mass 

transfer in the reactor, since the substrates (e.g. oxygen, carbon and nitrogen sources) had to 

permeate through the carriers’ inside and be transported to the microbial cells (Nicolella et al., 

2000). Hence, it was concluded that the fluidization and mass transfer in R-10 and R-20 were 

better than in R-30 due to the lower filling ratio, which affected the growth of biomass 

attached to the carriers. 
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Fig. 1. 

3.2 Nitrification and denitrification rates of sponge biocarriers  

3.2.1 Nitrification rate of the sponge biocarriers in MBBRs  

Five nitrification experiments (N1, N2, N3, N4 and N5) were conducted on sponge carriers 

to determine the nitrification rate (represented by AOR) throughout three MBBRs’ operation. 

AOR of sponge carriers in the three MBBRs are presented in Table 1. In terms of the 

nitrification rate, the highest average values of AOR were observed in R-30 carriers with 

2.1826±0.0717 mg NH4
+-N/g AGB /h, followed by R-20 and R-10. The values of AOR 

demonstrated the sponge carriers in R-30 had the maximum amount of NH4
+-N degradation, 

which indicated R-30 had more AOB within per gram AGB or higher activity of AOB 

compared to R-10 and R-20. While there were no obvious differences between R-10 and R-20 

with reference to AOR, with the approximate NH4
+-N degradation capacity depending on per 

gram biomass (1.6455±0.0561 mg NH4
+-N/g AGB /h and 1.7341±0.0334 mg NH4

+-N/g AGB 

/h, respectively). Although the carrier in R-30 exhibited the highest AOR, NH4
+-N removal 

efficiency of R-30 (96.0±3.5%) was slightly lower than that of R-20 (97.6±2.7%). It indicated 

that the filling ratio reached up to 30%, while the NH4
+-N treatment performance of MBBR 

did not correspondingly improve when the filling ratio increased. Furthermore, the porous 

carriers has the excellent porous structure, which can promote biofilm accumulation by 

providing a large surface area and protect the biofilm from fluid shearing and collision by 

providing sheltered anchoring points. However, the porous has the drawback of the low mass 

transfer efficiency (Chen et al., 2015). Consequently, the sponge biocarriers possess the above 

characters as one of the porous carriers. For this reason, this suggested the reduction in the 
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substrates being transferred to the biomass in the biocarriers in MBBR was caused by an 

increase in the filling ratio utilizing the same oxygen supply. In other words, volume of 

carriers (i.e. higher filling ratio) has an adverse influence to the circulation of the sponge 

carriers in the reactor under the same DO supply, which made it difficult for the mass to 

transfer deep inside the porous sponge carrier and sequentially reduced the mass transfer 

efficiency.  

Table 1.  

3.2.2 Denitrification rate of the sponge biocarriers in MBBRs  

Five experiments (N1, N2, N3, N4 and N5) were conducted at around 15-day intervals for 

every MBBR to determine the denitrification rate of biocarriers. DNR of the sponge carriers 

in three MBBRs are summarized in Table 2. Based on the results shown in Table 2, the values 

of DNR followed the order: R-30  R-20  R-10, increasing with the filling ratio. This 

behavior was consistent with TN removal performance of three reactors. The sponge carriers 

in R-30 exhibited the maximum DNR with 5.0852±0.0891 mg NO3
--N/g AGB/h. Therefore, 

this could account for R-30’s better TN removal and SND performance compared to the other 

two reactors besides the filling ratio, in spite of minimum AGB per gram sponge among three 

reactors. The denitrification capacity of the carriers in R-10 was close to R-20 (Table 2), 

hence the difference in the R-10 and R-20 TN removal efficiencies was caused by the total 

amount of the attached biomass on the carriers in the reactor varying from the filling ratio.  

The sponge carrier’s volume (3.6 L under 30% filling ratio) multiplied by the sponge density 

(28 kg/m3), the total mass of sponge in the R-30 was 100.8 g. Combined with the AGB value 

(0.2526±0.0838 g AGB/g sponge) and DNR of R-30, all TN in the influent can theoretically 
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be removed by the treatment. However, 86.4±8.9% TN removal of R-30 was achieved and 

this was approximately 1% higher than that of R-20, despite the fact that both reactors were 

being operated under the same conditions. Hence, the filling ratio influenced the mass transfer 

of nutrients and substrates to the microbial community embedded in the sponge biofilm 

(Young et al., 2016). In contrast, the larger filling ratio reduced the substrates’ transfer in R-30. 

Moreover, the substrates’ diffusion in the biofilm depended on flow velocities across the 

biofilm. Any increases in flow velocity resulted in larger localized concentration gradients in 

the biofilm and faster rates of diffusion through the biofilm (Li et al., 2016b). Furthermore the 

flow velocity in aerated MBBR is linked to the aeration flow. Consequently, the aeration 

supply should be adjusted by the filling ratio variation of the aerated MBBR for better mass 

transfer. The aeration flow not only provides dissolved oxygen, but also enables biocarriers to 

move in the MBBR system. Also, DO and velocity of biocarrier movement do wield an 

influence on the performance of the MBBR. Nevertheless, both the filling ratio and air flow 

rate involve the costs for operating the MBBR system. Therefore the results proved again that 

the optimum filling ratio of sponge-based MBBR was 20%.  

Table 2.  

4. Conclusions 

Nitrogen removal’s behavior in a sponge based MBBR was successfully investigated via 

DNR, AOR and SND performance. Interestingly, R-20 could lead to highest AGB while the 

values of AOR and DNR as well as TN removal and SND followed the order: R-30 > R-20 > 

R-10. The carriers in R-30 exhibited maximum AOR and DNR but lower AGB.  
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Figures 

Figure captions: 

Fig.1. TOC, NH4
+-N, TN removal efficiencies, SND, MLSS, MLVSS and AGB in three MBBRs with 

different filling ratios (mean data). AGBa: the amount of AGB per gram of sponge. 
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Fig.1.  

 

 

 

 

 

 

  

40

45

50

55

60

65

70

75

80

85

90

95

100

0.1

0.2

0.3

0.4

0.5

0.6

R-10 R-20 R-30

R
em

ov
al

 e
ff

ci
en

cy
 (%

)

M
L

SS
, M

L
V

SS
(g

/L
) 0

r 
A

G
B

a 
( 

g 
A

G
B

/g
 s

po
ng

e)

MBBRs

MLSS MLVSS AGBa TOC removal

NH4+-N removal TN removal SND



  

18 

Tables 

Table captions: 

Table 1. The ammonium oxidation performance of sponge biocarriers in aerobic batch assays 

Table 2. The denitrification performance of sponge biocarriers in anoxic batch assays 
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Table 1. The ammonium oxidation performance of sponge biocarriers in aerobic batch assays 

Experiment N1 N2 N3 N4 N5 AVE 

AOR 
(mg NH4

+-N/g AGB/h) 

R-10 1.6443±0.0216 1.5837±0.0401 1.6260±0.0445  1.6231±0.0302  1.7505±0.0543  1.6455±0.0561 

R-20 1.7300±0.0223 1.6950±0.0533 1.7711±0.0328  1.7010±0.0201  1.7737±0.0325  1.7341±0.0334 
R-30 2.1011±0.0304 2.0981±0.0607 2.1961±0.0506 2.2664±0.0241  2.2513±0.0518 2.1826±0.0717 

AOR: obtained by dividing the amount of NH4
+-N degradation with the reaction time by the AGB; 

AVE: the mean value with standard deviation. 
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Table 2. The denitrification performance of sponge biocarriers in anoxic batch assays 

Experiments DN1 DN2 DN3 DN4 DN5 

DNR 
(mg NO3

--N /g AGB/h) 

R-10 4.2677±0.0554 4.0441±0.0940 4.0194±0.1001 4.0870±0.1205 4.1690±0.1124 4

R-20 4.5546±0.0521 4.7251±0.0777 4.4987±0.0920 4.5108±0.1159 4.6458±0.1008 4

R-30 4.9146±0.0684 5.0924±0.0646 5.1573±0.0508 5.1067±0.0649 5.1548±0.0742 5

DNR: obtained by dividing the amount of NO3
--N degradation with the reaction time by the AGB; 

AVE: the mean value with standard deviation. 
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Highlights 

 The AOR and DNR of the biocarriers increased with increasing filling ratio.  

 There was no obvious difference in AOR and DNR between R-10 and R-20. 

 The optimum filling ratio of sponge-based MBBR was 20% with highest AGB and TN 

removal. 

 The AGB amount of the carriers varied in MBBRs with different filling ratios. 

 


