
Co-Regularized Ensemble for Feature Selection

Yahong Han1,3, Yi Yang2, Xiaofang Zhou2

1School of Computer Science and Technology, Tianjin University, China
2School of Information Technology & Electrical Engineering, The University of Queensland

3Tianjin Key Laboratory of Cognitive Computing and Application
yahong@tju.edu.cn, yee.i.yang@gmail.com, zxf@itee.uq.edu.au

Abstract

Supervised feature selection determines feature rel-
evance by evaluating feature’s correlation with the
classes. Joint minimization of a classifier’s loss
function and an `2,1-norm regularization has been
shown to be effective for feature selection. How-
ever, the appropriate feature subset learned from
different classifiers’ loss function may be differ-
ent. Less effort has been made on improving the
performance of feature selection by the ensemble
of different classifiers’ criteria and take advantages
of them. Furthermore, for the cases when only
a few labeled data per class are available, over-
fitting would be a potential problem and the per-
formance of each classifier is restrained. In this pa-
per, we add a joint `2,1-norm on multiple feature
selection matrices to ensemble different classifiers’
loss function into a joint optimization framework.
This added co-regularization term has twofold role
in enhancing the effect of regularization for each
criterion and uncovering common irrelevant fea-
tures. The problem of over-fitting can be alleviated
and thus the performance of feature selection is
improved. Extensive experiment on different data
types demonstrates the effectiveness of our algo-
rithm.

1 Introduction
Feature selection aims to reduce redundancy and noise in the
original feature set. It has twofold role in improving both
the efficiency and accuracy of data analysis. During recent
years, feature selection has attracted much research atten-
tion [Gao et al., 2011; Nie et al., 2010; Cai et al., 2011;
Zhao and Liu, 2007; Yang et al., 2011]. Supervised feature
selection determines feature relevance by evaluating feature’s
correlation with the classes. It usually yields better and more
reliable performance than unsupervised feature selection be-
cause of the utilization of class labels. However, in many real
world applications, labeling a large number of training data is
tedious and time-consuming. Provided the number of labeled
training data is small, the performance of existing feature se-
lection algorithms is usually restrained. Therefore, it turns

out to be a great challenge to design a feature selection algo-
rithm for the cases when only a few labeled data per class are
available.

Suppose we have a supervised learning problem where the
number of features is very large (compared to the number
of labeled training data), but there is only a small number
of features that are relevant to the learning task. In such a
setting, over-fitting would be a potential problem. We can
apply feature selection to reduce the number of features. Al-
ternatively, we can use the technique of regularization to con-
trol the over-fitting phenomenon. For example, the penalty
term of `1-norm in Lasso [Tibshirani, 1996] is used to in-
duce sparse model, whereas the `2-norm in ridge regression
[Hoerl and Kennard, 1970] is used to discourage the co-
efficients from reaching large values. In order to evaluate
the importance of the selected features jointly, the `2,1-norm
regularized feature selection algorithms [Nie et al., 2010;
Cai et al., 2011] utilize `2,1-norm to control classifier’s capac-
ity and also ensure it is sparse in rows, making it particularly
suitable for feature selection.

SVM maximizes the geometric margin of training data.
The hyperplane for classification is constructed by finding a
subset of the most discriminative training data, i.e., the sup-
port vectors. Whereas, least square regression minimizes the
sum of squared residuals between an observed value and the
fitted value provided by a model and all the training data.
If we add an `2,1-norm to different loss functions of SVM
and least square regression, e.g., `2,1-norm SVM [Cai et al.,
2011] and `2,1-norm least square regression [Nie et al., 2010],
the selected feature subset learned from the same training set
may be different. This disagreement motivates us to ensem-
ble different criteria and take advantages of them, the goal of
which is to obtain an optimal feature subset. Minimization
of a co-regularization term has been shown to be an effective
way to reduce disagreement of different classifiers [Brefeld et
al., 2006; Sindhwani and Rosenberg, 2008]. In this paper, we
propose to ensemble different feature selection algorithms by
adding a joint `2,1-norm of multiple feature selection matrices
which correspond to different feature selection algorithms.
This joint `2,1-norm plays the role of co-regularization as fol-
lows. In each round of the alternating optimization algorithm
developed in this paper, the updated feature selection matri-
ces in the former rounds can be used to regularize the cur-
rent optimization criterion. Thus, the joint `2,1-norm can en-
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hance the regularization effect for each criterion. The benefits
are: On one hand, for the cases when the number of labeled
training data is small, co-regularization can further alleviate
over-fitting. On the other hand, common irrelevant or noisy
features in different feature selection matrices should be un-
covered, which results in an optimal feature subset.

Note that the co-regularized classifiers in this paper are
trained on the same training set represented in the same fea-
ture space, which is different from the multi-task learning
[Argyriou et al., 2008; Ma et al., 2012; Yang et al., 2013] and
the co-regularization methods in multi-view learning [Brefeld
et al., 2006; Sindhwani and Rosenberg, 2008]. Although
previous works [Opitz, 1999; Tsymbal et al., 2003] also ad-
dressed feature selection and ensembles, the goals are to im-
prove classification by re-sampling different feature subsets,
which is not for feature selection. How to ensemble different
classifiers by a co-regularized `2,1-norm for feature selection
has not been explored in previous works.

2 The Objective Function
In this section, we give the objective function of the co-
regularized Ensemble for Feature Selection (EnFS) algorithm
proposed in this paper. Later in the next section, we propose
an efficient algorithm to optimize the objective function. It
is worth mentioning that EnFS aims to select discriminative
features according to labels of the training data, where dif-
ferent models of supervised feature selection are integrated
through a co-regularization term, making it different from ex-
isting feature selection algorithms.

Denote X = {x1, x2, . . . , xn} as the training set, where
xi ∈ Rd(i = 1, . . . , n) is the i-th datum and n is the to-
tal number of training data. Suppose the n training data
x1, x2, . . . , xn are sampled from c classes, we define yi ∈
{0, 1}c×1(i = 1, . . . , n) as the label vector of xi. The j-
th element of yi is 1 if xi belongs to the j-th class, and 0
otherwise. X = [x1, x2, . . . , xn] ∈ Rd×n is the data ma-
trix. Y = [y1, y2, . . . , yn] ∈ {0, 1}c×n is the label matrix.
In this paper, I is the identity matrix. For a constant m,
1m ∈ Rm is a column vector with all of its elements being 1
and Hm = I − 1

m1m1Tm ∈ Rm×m is the centering matrix.
For an arbitrary matrix A ∈ Rr×p, its `2,1-norm is defined

as ||A||2,1 =
∑r
i=1

√∑p
j=1A

2
ij . T r(·) represents the trace

operator.
Suppose we have t feature selection matrices Wl ∈

Rd×c(l = 1, . . . , t), which are learned respectively from t
classifiers:

min
Wl

Ll(WT
l X,Y ) + λlJ

l(Wl), (1)

where l = 1, . . . , t and λl > 0 is the regularization parame-
ter of the l-th classifier. Function Ll and J l are the loss and
regularization functions, respectively. In Eq. (1), regulariza-
tion function J l has twofold role in controlling the capacity of
Wl to avoid over-fitting and inducing sparsity in Wl for fea-
ture selection. For example, as indicated in [Nie et al., 2010;
Yang et al., 2011], when minimizing the `2,1-norm of Wl,
some rows of Wl shrink to zero, making Wl particularly suit-
able for feature selection. As mentioned before, when using

Wl(l = 1, . . . , t) for feature selection, the selected appro-
priate feature subset may be different for different classifiers.
That is, if we uncover the common irrelevant or noisy compo-
nents inWl(l = 1, . . . , t), we can expect a better performance
of feature selection.

Denote W = [W1, . . . ,Wt] ∈ Rd×(
∑t

l=1 c) and define a
co-regularization function Ω(W ), the objective function of
the co-regularized ensemble for feature selection is

min
W

t∑
l=1

(
Ll(WT

l X,Y ) + λlJ
l(Wl)

)
+ αΩ(W ), (2)

where α > 0 is the regularization parameter. Note that,
the t classifiers in Eq. (2) are trained on the same training
set {X,Y }, making it different from the multi-task learn-
ing methods [Argyriou et al., 2008; Ma et al., 2012; Yang
et al., 2013]. The minimization problems in Eq. (2) can be
solved using an alternating optimization method. That is, the
remaining t− 1 feature selection matrices Wj(j = 1, . . . , l−
1, l + 1, . . . , t) are fixed when optimizing the l-th classifier.
Thus, the corresponding fixed parts in the co-regularization
function Ω(W ) can be used to regularize the l-th classifier for
the current iteration round. In this way, the problem of over-
fitting can be further alleviated, especially for the cases when
only a few labeled data per class are available. Furthermore,
the minimization of the co-regularization function Ω(W ) also
uncovers the common irrelevant or noisy components in the t
feature selection matrices Wl(l = 1, . . . , t). The optimal W
may lead to a better performance of feature selection than us-
ing each Wl(l = 1, . . . , t), which are estimated respectively
from each classifier.

In our EnFS algorithm, we use two representative loss
functions of multi-class SVM [Crammer and Singer, 2002]
and least square regression. The goal is to take advantages of
them and obtain an optimal feature subset. For each classifier,
we propose to select the features that are most correlated to
labels and rewrite Eq. (2) as follows for feature selection.

min
W

(
f svm(WT

1 X,Y ) + λ1||W1||2,1

+||WT
2 X + b1Tn − Y ||2F + λ2||W2||2,1

)
+α||W ||2,1, (3)

where b ∈ Rc×1 is the bias term for the least square regres-
sion. In Eq. (3), W = [W1,W2] and t = 2. Function f svm

is the multi-class hinge loss defined as [Crammer and Singer,
2002; Cai et al., 2011]

f svm(WT
1 X,Y ) =

n∑
i=1

(
1−wT

yi
xi + max

m6=yi

wT
mxi

)
+
, (4)

where W1 = [w1, . . . ,wc]. The index yi ∈ {1, . . . , c} and
yi = j if Yji = 1. In Eq. (3), with the term ||W1||2,1 and
||W2||2,1, our algorithm is able to evaluate the informative-
ness of all features jointly for the multi-class SVM and least
square regression, respectively. The co-regularization term
||W ||2,1, on the other hand, enables W1 and W2 to have the
same sparse patterns and share the common components. In
the optimization of Eq. (3), the fixed part of W1 in ||W ||2,1
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can be used to regularize the least square regression, and vice
versa, which can help to tackle the problem of over-fitting and
result in an optimal W for feature selection.

3 Optimization of EnFS Algorithm
In this section, we introduce the optimization of the objective
function in Eq. (3). In fact, there are two unknown variables
W1 and W2 to be estimated. We propose an alternating opti-
mization algorithm to solve the optimization problem in Eq.
(3).

Denote Wl = [w1
l , . . . , w

d
l ] (l = 1, 2) and W =

[w1, . . . , wd], where d is the number of features. We first
fix W2, and the optimization problem becomes:

min
W1

f svm(WT
1 X,Y ) + λ1||W1||2,1 + α||W ||2,1, (5)

following [Ma et al., 2012], we rewrite Eq. (5) as follows:

min
W1

f svm(WT
1 X,Y ) + λ1Tr(W

T
1 D1W1)

+α
(
Tr(WT

1 DW1) + Tr(WT
2 DW2)

)
, (6)

where D1 and D are diagonal matrices with each element on
the diagonal, i.e., d1ii and dii (i = 1, . . . , d), are respectively
defined as

d1ii =
1

2||wi1||2
and dii =

1

2||wi||2
. (7)

Omit the fixed part Tr(WT
2 DW2) in Eq. (6), we have

min
W1

f svm(WT
1 X,Y ) + λ1Tr(W

T
1 D1W1)

+αTr(WT
1 DW1)

⇒ min
W1

f svm(WT
1 X,Y )

+λ1Tr
(
WT

1 (D1 + µD)W1

)
, (8)

where µ = α/λ1. Denote U = D1 + µD we have

min
W1

f svm(WT
1 X,Y ) + λ1Tr(W

T
1 UW1). (9)

Eq. (9) is the objective function of multi-class `2,1-norm
SVM [Cai et al., 2011], which can be efficiently solved by
alternately updating W1 and U until convergency. When U is
fixed, let W ∗1 = U

1
2W and X∗ = U−

1
2X , objective function

in Eq. (9) is equivalent to

min
W1

f svm(WT
1 U

1
2U−

1
2X,Y ) + λ1(WT

1 UW1)

⇒ min
W∗

1

f svm(W ∗T1 X∗, Y ) + λ1Tr(W
∗T
1 W ∗1 ), (10)

which can be solved by Crammer’s algorithm [Crammer and
Singer, 2002] using LIBLINEAR [Fan et al., 2008]. Let Ŵ1

∗

be the solution of Eq. (10), we have

W1 = U−
1
2 Ŵ1

∗
. (11)

Then we fix W1, the objective function in Eq. (3) becomes

min
W2

||WT
2 X+ b1Tn −Y ||2F +λ2||W2||2,1 +α||W ||2,1, (12)

Algorithm 1 Ensemble Feature Selection (EnFS)
Input: Input data X ∈ Rd×n and labels Y ∈ {0, 1}c×n.
Regularization parameters λ1, λ2, and α
Output: Matrix W ∈ Rd×c

1: Set r = 0 and initialize W1 ∈ Rd×c and W2 ∈ Rd×c
randomly;

2: W = [W1,W2];
3: repeat
4: Compute the diagonal matrix Dr

1, Dr
2, and Dr accord-

ing to d1ii = 1
2||wi

1||2
, d2ii = 1

2||wi
2||2

, and dii = 1
2||wi||2 ;

5: repeat
6: Compute W ∗1 = U

1
2W and X∗ = U−

1
2X;

7: Solve Eq. (10) and compute W ∗1 ;
8: Update U by U = D1 + α

λ1
D;

9: until Convergence
10: Update W1 by W r+1

1 = U−
1
2 Ŵ1

∗
;

11: Update W2 by W r+1
2 = (XHnH

T
nX

T + λ2D2 +
αD)−1XHnY

T ;
12: Update W r+1 = [W1,W2];
13: r = r + 1;
14: until Convergence
15: Return W .

which is equivalent to

min
W2

||WT
2 X + b1Tn − Y ||2F + λ2Tr(W

T
2 D2W2)

+αTr(WT
2 DW2), (13)

where D2 is a diagonal matrix with each element d2ii (i =
1, . . . , d) on the diagonal, which is defined as

d2ii =
1

2||wi2||2
. (14)

By setting the derivative of Eq. (13) w.r.t. b to 0. we have

b =
1

n
Y 1n −

1

n
WT

2 X1n. (15)

Substituting Eq. (15) into Eq. (13) we obtain

min
W2

∥∥∥WT
2 X +

( 1

n
Y 1n −

1

n
WT

2 X1n
)
1Tn − Y

∥∥∥2
F

+λ2Tr(W
T
2 D2W2) + αTr(WT

2 DW2)

⇒ min
W2

∥∥∥WT
2 X

(
I − 1

n
1n1

T
n

)
− Y

(
I − 1

n
1n1

T
n

)∥∥∥2
F

+λ2Tr(W
T
2 D2W2) + αTr(WT

2 DW2)

⇒ min
W2

∥∥∥WT
2 XHn − Y Hn

∥∥∥2
F

+ λ2Tr(W
T
2 D2W2)

+αTr(WT
2 DW2). (16)

By setting the derivative of Eq. (16) w.r.t. W2 to 0, we have

XHnH
T
nX

TW2 + λ2D2W2 + αDW2 = XHnY
T . (17)

Therefore, we have

W2 = (XHnH
T
nX

T + λ2D2 + αD)−1XHnY
T . (18)
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Table 1: Dataset Description.
Dataset Size # of Features # of Classes
MIML 2000 128 5
MFlickr 25000 128 33
USPS 9298 256 10
YaleB 2414 1024 38
Protein 21516 357 3
SensIT 19705 100 3

Based on the above mathematical deduction, we propose
an alternating algorithm to optimize the objective function in
Eq. (3), which is summarized in Algorithm 1. Once W is
obtained, we sort the d features according to ||wi||F (i =
1, . . . , d) in descending order and select the top ranked ones.
The convergence of solving Eq. (9) by alternately updating
W1 and U has been proved in [Cai et al., 2011]. The object
function in Eq. (13) is equivalent to

min
W2

||WT
2 X + b1Tn − Y ||2F + λ2Tr

(
WT

1 (D1 +
α

λ2
D)W1

)
,

which is the object function of the `2,1-norm regularized least
square regression and its convergence has been proved in [Nie
et al., 2010]. Thus, when we alternately fix the values of
W1 and W2, the optimal solutions obtained from Algorithm
1 make the value of objective functions decreased and Algo-
rithm 1 is guaranteed to be converged.

4 Experiments
4.1 Experiment Setup
In our experiment, we have collected a diversity of 6 pub-
lic datasets to compare the performance of different fea-
ture selection algorithms. These datasets include two color
image datasets, i.e., MIML [Zhou and Zhang, 2007] and
MFlickr [Huiskes and Lew, 2008], one hand written digit im-
age dataset, i.e., USPS [Hull, 1994], one face image dataset,
i.e., YaleB [Georghiades et al., 2001], one protein gene data,
i.e., Protein [Wang, 2002], and one vehicle classification data
in distributed sensor networks, i.e., SensIT Vehicle [Duarte
and Hen Hu, 2004]. Detailed information of the six datasets
is summarized in Table 1. For MIML and MFlickr, we extract
the 128 dimensional color coherence as features for each im-
age. As there exists the multi-labeled samples in MIML and
MFlickr, we remove these samples and let each sample only
belong to one class.

We compare EnFS proposed in this paper with the follow-
ing feature selection algorithms.

• Full Features which adopts all the features for classifica-
tion. It is used as baseline method in this paper.

• Fisher Score [Duda et al., 2001] which depends on fully
labeled training data to select features with the best dis-
criminating ability.

• Feature Selection via Joint `2,1-Norms Minimization
(FSNM) [Nie et al., 2010] which employs joint `2,1-
norm minimization on both loss function and regular-
ization to realize feature selection across all data points.

• Sparse Multinomial Logistic Regression via Bayesian `1
Regularization (SBMLR) [Cawley et al., 2007] which
exploits sparsity by using a Laplace prior and is used for
multi-class pattern recognition. It can also be applied to
feature selection.
• Feature Selection via Spectral Analysis (FSSA) [Zhao

and Liu, 2007] which is a semi-supervised feature selec-
tion method using spectral regression.
• Multi-class `2,1-norm Support Vector Machine (SVM-

21) [Cai et al., 2011] which is an `2,1-norm regularized
SVM. It is one of the feature selection methods ensem-
bled in the proposed EnFS.
• `2,1-norm Least Square Regression (LSR-21) [Nie et al.,

2010] which is an `2,1-norm regularized least square re-
gression. It is another feature selection method ensem-
bled in the proposed EnFS.

In this experiment, we set λ1 and λ2 in Eq. (3) to the
same value for all the datasets. Thus, for the proposed EnFS,
parameters λ (denotes the same value of λ1 and λ2) and α
are tuned. To fairly compare different feature selection algo-
rithms, we tune all the parameters (if any) by a “grid-search”
strategy from {10−6, 10−5, . . . , 105, 106}. We set the number
of selected features as {10, 20, . . . , 90} for MIML, MFlickr,
and SensIT, {20, 40, . . . , 200} for USPS, {100, 200, . . . , 900}
for YaleB, and {30, 60, . . . , 300} for Protein. For all the al-
gorithms, we report the best results obtained from different
parameters. To investigate the performance of feature selec-
tion for the cases when only a few labeled data per class are
available, we set the number of labeled data per class to 5
and randomly sample these labeled data to form the training
sets. For each dataset, we repeat the sampling for 10 times
and report the average results.

In our experiment, each feature selection algorithm is first
performed to select features. Then three classifiers, i.e., linear
multi-class SVM [Crammer and Singer, 2002], least square
regression, and multi-class kNN (k = 1), are performed
based on the selected features respectively to investigate the
performance of feature selection. For the classifier of least
square regression, we learn a threshold from the labeled train-
ing data to quantize the continuous label prediction scores to
binary. We use Accuracy as evaluation metric in this paper.

4.2 Experimental Results and Discussions
First, we compare the performance of different feature selec-
tion algorithms. In Table 2, 3, and 4, We report the com-
parisons of feature selection algorithms on six datasets us-
ing multi-class SVM, least square regression, and multi-class
kNN (k = 1) as classifiers, respectively. We can see from
the three tables that the classification results of feature selec-
tion algorithms are generally better than that of Full Features,
except for SBMLR. Moreover, the feature number is reduced
by performing feature selection, resulting in the classification
much faster. Therefore, it is more efficient. We can also see
from these three tables that EnFS algorithm proposed in this
paper obtains the best performance. For all these methods,
the number of labeled data per class is set to 5. These re-
sults demonstrate that the proposed EnFS obtains better per-
formance for the cases when only a few labeled data per class
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Table 2: Comparisons of feature selection algorithms on six datasets in terms of Accuracy using linear multi-class SVM as
classifier. For each method, the results are obtained when the number of labeled data per class is set to 5.

Full Features Fisher Score FSNM SBMLR FSSA SVM-21 LSR-21 EnFS
MIML 0.3100 0.3309 0.3257 0.2311 0.3449 0.3204 0.3368 0.3531
MFlickr 0.1022 0.1577 0.2012 0.0628 0.1912 0.1476 0.2124 0.2634
USPS 0.7934 0.7967 0.7972 0.6867 0.7968 0.7955 0.7978 0.8025
YaleB 0.7761 0.7807 0.7793 0.7783 0.7771 0.7784 0.7827 0.7905
Protein 0.3623 0.3799 0.3869 0.3798 0.3868 0.3764 0.3868 0.3983
SensIT 0.6726 0.6853 0.6921 0.6302 0.6833 0.6795 0.6880 0.7028

Table 3: Comparisons of feature selection algorithms on six datasets in terms of Accuracy using least square regression as
classifier. For each method, the results are obtained when the number of labeled data per class is set to 5.

Full Features Fisher Score FSNM SBMLR FSSA SVM-21 LSR-21 EnFS
MIML 0.2474 0.2816 0.2911 0.2260 0.2741 0.2837 0.2963 0.3144
MFlickr 0.0481 0.0655 0.0816 0.0340 0.0657 0.0568 0.0707 0.0859
USPS 0.5265 0.5311 0.5391 0.4369 0.5286 0.5657 0.5602 0.5944
YaleB 0.6113 0.6247 0.6329 0.6155 0.6261 0.6238 0.6355 0.6470
Protein 0.1479 0.3126 0.3218 0.3262 0.3591 0.2099 0.3272 0.3678
SensIT 0.5836 0.5770 0.6127 0.5956 0.6069 0.5981 0.6096 0.6393

are available. Thirdly, we observe that, except for the USPS
and YaleB datasets, the performance of EnFS is conspicu-
ously better than that of SVM-21 and LSR-21. This obser-
vation validates that it is effective to add a co-regularization
term ||W ||2,1 (in Eq. (3)) to share the sparse patterns in W
and help to alleviate over-fitting. Finally, we observe that
classification using multi-class SVM and kNN achieve better
performance than the least square regression. The main rea-
son is, for classification evaluation of least square regression,
the threshold learned from the small size of training data (i.e.,
5 per class) leads to a bias in the quantization of continuous
label prediction scores.

To further investigate the effectiveness of ensemble by the
co-regularization term ||W ||2,1, we compare the performance
of SVM-21, LSR-21, and EnFS, when the numbers of labeled
data per class are set to {5, 6, . . . , 10}. The results are plotted
in Fig. 1, which are obtained by performing kNN (k = 1)
classifier based on the selected features. We can see from
Fig. 1 that the performance of EnFS is generally better than
that of SVM-21 and LSR-21 for all the numbers of labeled
data per class. As the numbers of labeled data per class are
small (compared to the sizes of six datasets, see Table 1), the
results in Fig. 1 further validates the effectiveness of EnFS in
alleviating the problem of over-fitting.

Fig. 2 demonstrates the learned matrixW of MIML dataset
using algorithms SVM-21, LSR-21, and EnFS, respectively.
Columns represent the classes and rows represent the 128
color coherence features. Firstly, we can observe from Fig. 2
that, when minimizing the `2,1-norm of W , many rows of W
shrink to zeros and results in a sparse pattern of feature selec-
tion for all classes. Secondly, it is clear in Fig. 2 that SVM-21
and LSR-21 output different sparse patterns of W by training
on the same set of labeled data. This disagreement of spars
patterns will result in different subsets of selected features.
Finally, the results in Fig. 2 demonstrate the ensemble effect
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(e) Protein
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Figure 1: Classification results of SVM-21, LSR-21, and
EnFS when the numbers of labeled data per class are set to
5, 6, 7, 8, 9, and 10, respectively. For all the six datasets,
the results are obtained by performing kNN (k = 1) classifier
based on the selected features.
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Table 4: Comparisons of feature selection algorithms on six datasets in terms of Accuracy using kNN (k = 1) as classifier. For
each method, the results are obtained when the number of labeled data per class is set to 5.

Full Features Fisher Score FSNM SBMLR FSSA SVM-21 LSR-21 EnFS
MIML 0.2966 0.3124 0.2857 0.2316 0.3294 0.3043 0.3188 0.3345
MFlickr 0.0986 0.1261 0.1584 0.0628 0.1487 0.1234 0.1534 0.1707
USPS 0.6889 0.7053 0.7019 0.5253 0.6952 0.7167 0.7151 0.7255
YaleB 0.5324 0.5763 0.5841 0.5419 0.5699 0.5886 0.5891 0.6012
Protein 0.3667 0.4319 0.4396 0.4496 0.4428 0.4119 0.4364 0.4507
SensIT 0.6697 0.6671 0.6893 0.4907 0.6858 0.6770 0.6798 0.6921
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Figure 2: The learned feature selection matrix W of MIML
using algorithms SVM-21, LSR-21, and EnFS. Columns rep-
resent the classes and rows represent the 128 color coherence
features. Dark blue denotes the values are close to zero.
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Figure 3: Convergence curves of the objective function value
in Eq. (3) using Algorithm 1. The figure show that the objec-
tive function value monotomically decreases until converged
by applying the proposed algorithm.

of EnFS for SVM-21 and LSR-21 clearly. For example, as
the numbers of sparse row in the learned W using SVM-21
and LSR-21 are different, EnFS makes a compromise.

Next, we study the convergence of the proposed EnFS in
Algorithm 1. Fig. 3 shows the convergence curves of our
EnFS algorithm according to the objective function value in
Eq. (3) on all the datasets. The figure shows that the objec-
tive function value monotonically decreases until converged
by applying the proposed algorithm. It can be seen that our
algorithm converges within a few iterations. For example, it
takes no more than 10 iterations for MFlickr and YaleB and
no more than 20 iterations for MIML, USPS, and SensIT. For
Protein, it takes 30 iterations to converge.

5 Conclusion
While supervised feature selection has been well explored in
lots of previous works, it is not straightforward to ensem-
ble different classifiers for a better performance of feature
selection, especially for the cases when the number of la-
beled training data is small. As over-fitting may be a poten-
tial problem in such a setting, we have proposed a method
of co-regularized ensemble for feature selection. The co-
regularized `2,1-norm can enhance the effect of regularization
and uncover common irrelevant features, so as to improve the
performance of feature selection in some cases. Ensemble
classifiers in the proposed EnFS are trained on the same train-
ing set represented in the same feature space, making it dif-
ferent from the multi-task learning methods and existing co-
regularization algorithms in multi-view learning. To show the
ensemble effect of the proposed general framework of EnFS,
we ensemble SVM and least square regression to show the
performance improvement of feature selection. It is worth
noting that, when one of the ensembled classifiers uncovers
the irrelevant features, classifier ensemble for feature selec-
tion not necessarily improves the performance. That is to say,
performance improvement of classifier ensemble for feature
selection is data dependant, which will be further explored in
the future. EnFS also has an extension ability of incorporating
other criteria of classification into the optimization process or
define new form of regularization term.
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