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Abstract- This paper presents a novel oversampling 
technique that addresses highly imbalanced data distribution. At 
present, the imbalanced data that have anomalous class 
distribution and underrepresented data are difficult to deal with 
through a variety of conventional machine learning technologies. 
In order to balance class distributions, an adaptive subspace self­
organizing map (ASSOM) that combines the local mapping 
scheme and globally competitive rule is proposed to artificially 
generate synthetic samples focusing on minority class samples. 
The ASSOM is conformed with feature-invariant characteristics, 
including translation, scaling and rotation, and it retains the 
independence of basis vectors in each module. Specifically, basis 
vectors generated via each ASSOM module can avoid generating 
repeated representative features that offer nothing but heavy 
computational load. Several experimental results demonstrate 
that the proposed ASSOM method with supervised learning 
manner is superior to other existing oversampling techniques. 

I. INTRODUCTION 

Learning from imbalanced data has attracted a growing 
attention in the research society in recent years as it is present 
in a variety of real-world application problems, e.g., medical 
diagnosis [1], anomaly detection [2], [3], financial fraud 
detection [4] and biomedical engineering [5], [6]. Under these 
circumstances, the use of computationally intelligent methods 
is good potential to play an essential role for solving these 
problems; however, there are still many new challenges for 
this research topic. 

Specifically, a classification task can regard as an 
imbalanced problem whenever some types of data distribution 
significantly dominate the others. In this paper, for simplicity, 
we focus on the two-class imbalanced classification problem, 
which is a topic of major interest in research community. The 
underlying challenge manifests itself in two common fonns, 
relative imbalance and absolute imbalance. Relative 
imbalance occurs when minority samples are well represented 
but severely outnumbered by majority samples whereas 
absolute imbalance arises in datasets in which minority 
samples are definitely scarce and underrepresented. Either 
fonn of imbalance poses a great challenge to conventional 
classification algorithms as it becomes extremely hard to 
detect minority class samples. The reason comes from the fact 
that the algorithm tends to favor the majority class samples or 
simply omit the minority class samples in the training process 
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and thereby results in a biased classifier. This phenomenon 
becomes troublesome when the detection of minority class 
samples is crucially important, such as cancer diagnosis. 

Current solutions to the imbalance problem can be divided 
into two categories: the internal method and the external 
method. The internal method targets imbalance problem by 
modifying the underlying classification algorithm. A popular 
approach in this category is the cost-sensitive learning [7]. It 
uses a cost-matrix for different types of errors or instance to 
facilitate the learning direction from an imbalance data set. A 
higher cost for misclassifying a minority class sample 
compensate for the scarcity of the minority class. In [8] , a cost­
sensitive framework for applying support vector machine is 
proposed. In [9], Zhou and Liu investigated the applicability 
of cost-sensitive neural networks on imbalance classification 
problem. By contrast, the external method aims at dealing with 
imbalance problem by manipulating the input data to form a 
more balance data set. The external method can further be 
divided into undersampling and oversampling. Undersampling 
methods compensate for the imbalance problem by reducing 
the instances of the majority class. In [lO], a cluster-based 
undersampling approach is proposed. In contrast to 
undersampling methods that remove majority class sample, 
the oversampling methods balance the data set by generating 
synthetic samples for minority classes. The synthetic minority 
over-sampling technique (SMOTE) [11] algorithm generates 
an arbitrary number of synthetic minority samples to eliminate 
the classifier learning bias. A collection of extension works 
based on the SMOTE algorithm has been proposed to deal with 
imbalance classification problem, e.g., the Borderline­
SMOTE [12], SMOTE-Boost [13], MWMOTE [14], 
ADASYN [15]. In [16], an oversampling method based on the 
combination of multivariate Gaussian distribution and 
interpolation-based algorithm is developed. In this paper, we 
proposed an adaptive subspace self-organizing map (ASSOM) 
oversampling method to address the imbalance problem. The 
ASSOM holds the feature-invariant characteristic, including 
translation, scaling and rotation. By assuring independence of 
basis vectors of each module, we can generate representative 
synthetic samples for the minority class. 

II. ADAPTIVE-SUBSPACE SELF-ORGANIZING MAP 

The ideal of using subspaces, which is a subset of the 
largest principal components, for data generation, is an 

Chin-Teng Lin is with the Faculty of Engineering and Information 
Technology, University of Technology Sydney, Sydney, Australia; the Brain 
Research Center and the Lifetime Chair Professor of Electrical Engineering 
and Computer Science, National Chiao Tung University, Hsinchu, Taiwan; 
the International Faculty of Center for Advanced Neurological Engineering 
University of California, San Diego, USA; Honorary Professorship of 
University of Nottingham, England, UK (email : chin-teng.lin@uts.edu .au). 



emerging technology. Since the eigenvectors of the input 
correlation matrix are called as the principal components, 
which composed by the corresponding linear subspaces. As 
shown in Fig. 1, the proposed ASSOM model, which is 
extended by the concept of self-organizing map (SOM) that is 
used to model neural functions, has attracted much attention 
on our insight. Therefore, in this section, we describe the 
algorithm of ASSOM in the presence of structure and learning 
scheme. 

An invariant feature of the input vector X represents the 
signal subspaces. A linear subspace L of dimensionality H is 
in general defmed as given the linearly independent basis 
vectors bv ... bH , and the reconstructed signal is obtained as 
shown in Eq. (1); however, there exist infmitely many 
equivalent combination of the bh , which is not unique, for the 
same L. In the parameter learning phase, this study utilizes a 
gradient descent (GD) algorithm to achieve updating fashion. 
The detailed functions of each layer are described below. 

A. ASSOM Structure 

The inputs in Layer 1 are crisp values. Only the current 

states X = (xv···, xn ) are fed as inputs to this layer. 

Each node in layer 2 can be represented as a linear­
subspace neural unit. Each node is a linearly independent basis 
vector. The output function of layer 2 is written as: 
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Figure I. Architecture of ASSOM. 

approximate the winner of inputs. The representative winner 
can be defmed by the expression: 

(3) 

or equivalently, 

c = argmin{Illx1(lr} 
lIES 

(4) 

where i and S are denoted by the nwnber of modules and the 
(1) total number of input samples, respectively. 

where bh is denoted by orthononnal fonn and H is denoted by 
the nwnber of hidden nodes. Here, a set of equivalent 
orthonormal basis vectors for L can be computed by the 
familiar Gram-Schmidt process. The reconstructed signal 
relies on orthononnal basis; in other words, reconstructed 
signal x belongs to L is the orthogonal projection of x onto L. 

We expect that the reconstructed signal is approximately 
similar to the original signal; thus, the criterion using 
Euclidean distance as IIxll = Ilx - xII is presented to 
determine whether they are similar or even the same. Finally, 
a projection operator matrix P is defmed as Eq. (2) and its 
property holds p2 = P and pT = P. 

(2) 

where x = Px and x = (I - P)x, in which I represents an 
identity matrix. 

B. Learning Scheme 

Due to inherit the learning mechanism from an SOM, an 
ASSOM also possesses the abilities of competitive learning for 
parameter learning, which are vital contributions leading the 
effectiveness and robustness of system. Firstly, we would like 
to describe the procedure of competitive learning. The 
different modules are made to compete on the input signal 
subspaces to find the minimwn distance as winner is an 
important information represented as a given signal subspace 
best wins, and consequently, the updated weight vectors in 
each module followed by the representative winner. As the 
modules in the neighborhood of the winner are adapted to 
represent the input better, the neighboring modules gradually 

After obtaining the winning module via a competitive 
learning, then free parameters of other modules must be 
adjusted dependently by the factor in terms of distance 
between their input subspace and the subspace of the winning 
module to effectively achieve the phase oflearning. Therefore, 
we defme the objective to minimize the error function. The 
error function, which is considered two factors corresponding 
to the neighborhood factors h~ as follows: 

h~ = ex{ - (C2~?2l (5) 

The values of the projection error Xi is 

E=Ih~ Illx l (tf 
lIES 

(6) 

Consequently, this GD algorithm is perfonned for each 
piece of incoming datum. By using the GD algorithm for the 
updated basis vectors of each module, we have 

. . 8E 
b~ (t+l)=b~ (t)-17-. -

8b~ (t) 
(7) 

where the factor 11 is a learning rate and the derivation is 
computed as: 

8E . ( r \ 
- . - = -2h~ I x(t)x(t) p~ 
8b~ (t) IES 

(8) 

Based on the Eqs. (7) and (8), the basis vectors are updated 
as follows: 

(9) 
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In the case of rotation operation, the learning rate 11 should 
be such that it guarantees a monotonically increasing function 
of Ilxill or a monotonically decreasing function of Ilxij!. For 
the monotonic correction, we must be proportional to x(t) Tbh, 
and thus, one of the simplest ways is to divide the learning rate 
11 by the crisp value Ilxill/llxll. Let us note the learning rate as 
A, and Eq. (9) then is computed as: 

b~ (t + 1) = [1 +:fi x(t)x(t) T .b~ (t) (10) 
Ilx' (t)llllx(t)11 

where );:i = Ah~. 
During the learning process, we set the magnitude of small 

components of the basis vectors bh to zero for reducing those 
degrees of freedom; thus, the bh is forced to approximate the 
dominant frequency components. If we denote the basis 
vectors bh = [bhv ... ,bhNF, then the corrected values bh by 
a dissipation effect can be described by 

(11) 

where £ is a small fraction of magnitude can be expressed as 
the following equation. 

(12) 

where a is a small constant. Based on the dissipation effect, it 
must be applied after the process of the GD algorithm and prior 
to normalization. Finally, the learning steps of an ASSOM are 
concluded as follows: 

Once we receive each piece of training data, the procedure 
will be divided into the following steps. 

Step 1: Find the winning module by Eq. (3) or Eq. (4). 
Step 2: Update the basis vectors of each module via a 

gradient descent algorithm. 
Step 3: Orthonormalize the basis vectors of each module via 

the Gram-Schmidt process. 

B. Supervised Learning 

To effectively display the performance of using different 
oversampling methods, we apply artificial neural networks 

(ANNs) during the supervised learning in recognition tasks. 
ANNs are one of the nonparametric learning methods, and its 
mathematical model is motivated in accordance with 
biological neural networks, which imitates the structure and 
behavior of biological neurons. Specifically, ANNs can be 
used for solving a learning problem even if there are lacks of 
any mathematical models from the problems. In addition, 
ANNs have been successfully used in solving function 
approximation, pattern recognition, classification or signal and 
image processing. In this study, we use feedforward ANNs for 
verifying the improved performance after using different 
oversampling methods. 

III. EXPERIMENTAL RESULT 

Five benchmark datasets from UCI machine learning 
repository [17] and KEEL dataset [18] are employed to 
tentative the proposed method compared with other existing 
oversampling or synthetic data generation technologies. In 
order to significantly reveal the advantage of the proposed 
method, four assessment metrics, including recall, precision, 
G-mean, and F-score, are achieved such this intent. Finally, the 
results demonstrate that we need to take the oversampling 
techniques into account to avoid the classification of minority 
party will be dominated by majority party. Specifically, the 
information contributions from minority party are more 
important than those from majority party. 

This section presents the performance of the ASSOM and 
compares it with other state-of-the-art methods. The proposed 
ASSOM in this paper has been successfully validated on nine 
real-world imbalanced problems from the UCI machine 
learning repository [17] and the KEEL dataset repository [18] , 
including Abalone, Breast cancer, Ecoli, Phoneme and Glass,. 
These sets are chosen in such a way that they have different 
characteristic of samples, features, classes, and imbalanced 
ratios. Some of these datasets possesses samples of more than 
two classes. For simplicity, these datasets are transformed in 
to a two-class problem in this study. Table I describes the 
relevant items associated with data attributes and properties. 
As shown in Table I, there exist highly imbalanced ratios in 
the presence of the problems of two categories. 

Extensive experiments using the ANN as the supervised 
learning method demonstrate the performance of each dataset 
on the classification task after employing different 

TABLE I. GENERAL INFORMATION OF THE IMBALANCED DATA SETS 

Data set name 
# of total 

# of attributes Minority class Majority class 
# of minority # of majority 

examples examples examples 

Abalone 731 7 Class of ' 18 ' Class of '9' 42 689 

Breast cancer 683 9 
Class of Class of 

239 444 
'malignant' ' benign ' 

Ecoli 336 7 Class of ' im' All other classes 77 259 

Phoneme 5404 5 Class of ' I ' Class of '0 ' 1586 3818 

Glass 214 9 Class of' 5,6,7' All other classes 51 163 



oversampling approaches. The proposed method is evaluated 
by the before-and after test to show the improvement 
compared to the classifiers constructed based on primitive 
datasets, which these datasets do not be oversampled. After the 
before-and after test, the ASSOM is further compared the 
state-of-the-art oversampling approaches, including SMOTE 
[11] and ADASYN, to show the improvement realized by the 
proposed method. 

For each comparative model in the validation process, 70% 
of the data are randomly selected to build the training data set, 
while the remaining serves as test data. To maintain the 
imbalanced ratio in each dataset, the selection of majority and 
minority samples are processed from the original dataset, 
respectively. Further, to prevent the bias of initial states of 
parameters during the supervised learning procedure, the 
classification task has been conducted 50 times to evaluate 
each comparative classifier. This overall process of validation 
is repeated 5 times; hence, the average of the total 250 runs is 
compared against other methods. 

The validation results with different oversampling 
approaches on the five datasets are shown in Table II. The best 
performance in Table II is shown in bold face . The results 
show that our proposed ASSOM achieves top three 
performing methods in each assessment matrix. The ASSOM 
exhibits better performance than SMOTE and ADASYN for 
most of the real-world problems. 

To better show the improvement of the proposed ASSOM, 
all the comparative approaches are ranked based on the result 
of each assessment metric. Under each assessment metric, the 

oversampling algorithm with the best performance is scored 4 
points, and the worst one is scored 1 point. Consequently, we 
compute the average rank of the four assessments metrics 
across the nine datasets to quantify the relative performance. 
By further averaging these four assessment metrics, an overall 
assessment matrix is integrated to evaluate these comparative 
approaches. The best performance which possesses the highest 
points are shown in the last row of Table II. The average 
overall rank of the ASSOM is 3.55, which is higher than any 
of the other state-of-the-art approaches. These experimental 
results suggest that our proposed ASSOM model can bring a 
significant improvement in performance for the imbalance 
correction. 

IV. CONCLUSION 

In this paper we proposed a promising and powerful 
method, ASSOM, which can effectively evolve useful samples 
using invariant features associated with rotation, translation 
and scaling. To solve the imbalanced issues in the recognition 
problems, synthetic data are intuitively generated into the 
minority class to reach the amount of majority samples; 
therefore, classifiers via such an oversample technology 
strategy is able to obtain a superior performance compared 
with those ones that are train with imbalanced samples. 

The principal contributions of ASSOM contain twofold. 
One is the learning ability, and the other one is the use of the 
subspace concept. The learning procedure of an ASSOM is 
extended from SOM. As a result, the distinguished abilities of 
ASSOM yet include competitive learning and adaptive 

TABLE II. A VERAGE PERFORMANCE COMPARISON FOR DIFFERENT OVERSAMPLING METHODS 

Dataset Measure Original SMOTE ADASYN ASSOM 

Recall 0.401 ±0.156 0.765±O.l25 0.51J ±0.112 0.622±0.093 

Abalone 
Precision 0.4l4±0.132 0.355±0.049 0.345±0.085 0.446±0.094 
F value 0.394±0.123 0.483±0.061 0.407±0.086 0.5I3±0.076 
G mean 0.606±0.132 0.832±0.068 0.687±0.078 0.766±0.057 

Recall 0.862±0.065 0.94±0.036 0.902±0.057 0.958±0.025 

Breast cancer 
Precision 0.937±0.031 0.934±0.022 0.936±0.025 0.947±0.027 
F value 0.896±0.039 0.937±0.02 0.918±0.031 0.952±0.021 
G mean 0.9 I 3±0.035 0.952±0.0 18 0.933±0.029 0.964±0.016 
Recall 0.714±0.094 0.864±0.072 0.734±0.089 0.887±0.074 

Ecoli 
Precision 0.645±0.089 0.664±0.082 0.655±0.075 0.681±0.066 
F value 0.674±0.073 0.746±0.052 0.689±0.063 0.766±0.044 
G mean 0.791 ±0.056 0.863±0.034 0.803±0.049 0.879±0.034 

Recall 0.817±0.111 0.863±0.068 0.79±0.104 0.88±0.108 

Glass 
Precision 0.8±0.102 0.842±0.078 0.857±0.089 0.836±0.096 
F value 0.8±0.067 0.849±0.054 0.817±0.074 0.852±0.079 
G mean 0.87±0.056 0.903±0.038 0.867±0.059 0.908±0.074 
Recall 0.717±0.023 0.869±0.0 17 0.901±0.016 0.837±0.027 

Phoneme 
Precision 0.743±0.015 0.648±0.0 17 0.604±0.014 0.662±0.018 
F value 0.73±0.014 0.742±0.0I3 0.723±0.012 0.739±0.012 
Gmean 0.802±0.012 0.836±0.01 0.824±0.01 0.829±0.01 

Recall 0.7022 0.8602 0.7676 0.8368 

Precision 0.7078 0.6886 0.6794 0.7144 
Average 

F value 0.6988 0.7514 0.7108 0.764 

G mean 0.7964 0.8772 0.8228 0.8692 

Recall 1.2 3.2 2.2 3.4 
Precision 2.4 2.2 2 3.4 

Average Rank 
F value 1.2 3.2 1.8 3.8 
G mean 1.2 3.4 1.8 3.6 

Average overall rank 1.5 3 1.95 3.55 



learning strategy to effectively adjust all free parameters. The 
competitive learning is able to locate the optimal model, and 
the updated weights followed by the winner of which is with 
the smallest distance to the signal subspace of input domain. 
Subsequently, the learning procedure of ASSOM mainly 
adjusts the subspace of the winning module in order to make 
free weights of each module for approaching the raw signal in 
the input subspace. 

In addition, unlike the comparative methods that mostly 
exploit the notion of KNN to artificially generate useful 
samples in this study, the ASSOM using subspace concept is 
the first proposed to substitute conventional KNN evolved 
approaches. Experimental results demonstrated the proposed 
ASSOM with the learning mechanism and the use of subspace 
concept is much more effective and robust and outperforms its 
rivals. 
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