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ABSTRACT 
This paper reports on a replication of earlier studies into a 

possible hierarchy of programming skills. In this study, the 

students from whom data was collected were at a university that 

had not provided data for earlier studies. Also, the students were 

taught the programming language “Python”, which had not been 

used in earlier studies.  Thus this study serves as a test of whether 

the findings in the earlier studies were specific to certain 

institutions, student cohorts, and programming languages.  Also, 

we used a non–parametric approach to the analysis, rather than the 

linear approach of earlier studies. Our results are consistent with 

the earlier studies. We found that students who cannot trace code 

usually cannot explain code, and also that students who tend to 

perform reasonably well at code writing tasks have also usually 

acquired the ability to both trace code and explain code. 

Categories and Subject Descriptors 

K.3 [Computers & Education]: Computer & Information 

Science Education – Computer Science Education. 

General Terms 

Measurement, Experimentation, Human Factors. 

Keywords 

Novice programmers, CS1, tracing, comprehension, taxonomy. 

1. INTRODUCTION 
Some recent studies of novice programmers have focused upon 

the concept of a hierarchy of programming skills.  Toward the 

bottom of the hierarchy is knowledge of basic programming 

constructs (e.g. what an “if” statement does). At the top of the 

hierarchy is the ability to write non–trivial, correct code using 

those programming constructs.  

Whalley et al. (2006) investigated an intermediate skill in the 

hierarchy. They reported on a study in which students in an end–

of–semester exam were given a question that began “In plain 

English, explain what the following segment of Java code does”. 

It was found that some students responded with a correct, line–

by–line description of the code while other students responded 

with a correct summary of the overall computation performed by 

the code (e.g. “the code checks to see if the elements in the array 

are sorted”, which is a reasonable summary of what the code in 

that question did). Furthermore, the better a student performed on 

other programming–related tasks in that same exam, the more 

likely the student was to provide a correct summary of the overall 

computation performed by the code in the “explain in plain 

English” question.  In a follow up to that study, Lister et al. 

(2006) found that when the same “explain in plain English” 

question was given to academics, they almost always offered a 

summary of the overall computation performed by the code, not a 

line–by–line description.  The authors of that study concluded that 

the ability to provide such a summary of a piece of code ─ to “see 

the forest and not just the trees” ─ is an intermediate skill.   

Philpott, Robbins and Whalley (2007) found that students who 

could only trace code correctly less than 50% of the time could 

not usually explain similar code.  To express their result in terms 

of a hierarchy of programming skills, the ability to trace code is 

lower in the hierarchy than the abilty to explain code.   

Sheard et al. (2008) found that the ability of students to explain 

code correlated positively with their ability to write code. 

Lopez et al. (2008) analyzed student responses to an end–of–first–

semester exam.  A stepwise regression was used to construct a 

hierarchical path diagram. At the bottom of their hierarchy were 

exam questions that required basic knowledge. Highest in the 

intermediate levels of the path diagram were the ability to provide 

a summary for “explain in English” questions and the ability to 

trace iterative code.  Figure 1 shows the higher portion of the 

Lopez et al. hierarchy.  The points students earned on tracing 

iterative code accounted for only 15% of the variance in the 

points earned on the writing question (i.e. R2 = 0.15).  Also, the 

points students earned on “Explain” questions accounted for only 

7% of the variance on points earned on the writing question.  

However, in combination, the tracing and “Explain” questions 

accounted for 46% of the variance in the writing question (as 

indicated in Figure 1 by R2 = 0.46 within the box headed 

“Writing”).   

In this paper, we report on our own study of the relationships 

between tracing iterative code, explaining code, and writing code. 

The data we used was collected in an exam that students took at 

the end of a one–semester introductory course on programming. 

These students attended the university of the second and third 

authors. Students from this university had not participated in any 

of the earlier studies summarized above.   Also, these students 

were taught the programming language “Python”, a language not 
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used in any of the earlier studies. Thus this study serves as a test 

of whether the findings in the earlier studies were specific to 

certain institutions, student cohorts, and programming languages.  

 

Figure 1:  A portion of the stepwise regression model from 

Lopez et al. (2008). 

2. STUDENT SCREENING 
This study focuses upon the programming skills located high in 

the hierarchy of Lopez et al. (i.e. the skills in Figure 1). Therefore, 

we first need to screen the data, to eliminate students who 

manifest weaknesses in skills lower in the hierarchy of Lopez et 

al.  In the exam that the students took, three questions tested the 

students at the lower levels of the hierarchy.  Two of those 

questions required students to trace simple non–iterative code. 

Both questions contained “if” statements, one with nested “if” 

statements and a disjunctive “if” condition.  The third question 

required students to describe an algorithm, in English, for finding 

the smallest and largest number, when the numbers are written on 

marbles in a bag. A detailed analysis of student responses to this 

third question has appeared elsewhere (Fidge and Teague, 2009).  

There were 146 students who answered all three of these 

questions well. That assessment of these 146 students was done as 

a routine part of grading the whole exam, and was done prior to 

our analysis presented in this paper.  Our analysis is restricted to 

these 146 students.  

3. THE INSTRUMENT 
The remainder of the exam paper included (1) three questions 

where students traced iterative code; (2) four “Explain in plain 

English” questions; and (3) a code writing question.  (The exam 

also included a second code writing question that is not analyzed 

in this paper.)  To ensure consistency of grading, each question on 

the exam was graded by one person. All of the exam questions 

analyzed in this paper were written by the second author of this 

paper.  This section describes those exam questions.  

3.1 Tracing Iterative Code 
Each of these tracing questions began with the following 

instruction: What is printed when the following Python code 

segment is executed? The three pieces of code were as follows: 

● losses = [1, 25, 4, 9, 16]  
  net = 100  

  for loss in losses:  

      net = net - loss  

  print net  

... the correct answer, which is 45, was provided by 86% of the 

146 students.   

● def exceeds(nums1, nums2): # parameters 
  # are two equally long lists of numbers  

    last = -1  

    for index in range(len(nums1)):  

        if nums1[index] < nums2[index]:  

            last = index  

    return last  

print exceeds([1, 5, 2, 4, 2], 

              [4, 2, 4, 7, 1])  

... the correct answer, which is 3, was provided by 64% of the 

146 students. The function returns the largest index where the 

number in list nums2 exceeds that in nums1 (or −1 if this is 

never the case). 

● def residual(num, den):  
    if num < den:  

        return num  

    else:  

        return residual(num - den, den)  

  print residual(8, 3)  

... the correct answer, which is 2, was provided by 92% of the 

146 students. The function returns the remainder of an integer 

division. 

Table 1 provides the distribution of scores that the 146 students 

manifested on these three tracing questions.  

Number of Tracing   

Tasks Correct 

Number of 

Students 

Percentage of 

Students 

3 86 59% 

2 38 26% 

1 18 12% 

0  4  3% 

Table 1: Student scores on the tracing questions (n=146). 

3.2 Explain in Plain English Questions 
All four of these questions began with the following instruction: 

Explain, in plain English, the purpose of the following Python 

function.  (Do not say how the code works.  Instead say what the 

function would be used for.) The four functions given were: 

● def mystery(names): # names is assumed to  
                      # be a list of strings  

    return max(map(len, names))  

A suitable answer, such as “It returns the length of the longest 

name (string) in the list”, was provided by 61% of the 146 

students. 

● def enigma(nums): # nums is assumed to  
                    # be a list of numbers  

    for index in range(len(nums) - 1):  

        if nums[index] > nums[index + 1]:  

            return False  

    return True 

Writing 

R2 = 0.46 

p < 0.0001 

 

Tracing of 

iterative Code 

 

Explain in 

plain English 

 

R2 = 0.15 

R2 = 0.07 R2 = 0.30 
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A suitable answer, such as “It checks to see if the list is 

sorted”, was provided by 71% of the 146 students. This is the 

same question (rewritten into Python) as used in some earlier 

studies (Whalley et al., 2006; Sheard et al., 2008). 

● def puzzle(nums): # nums is assumed to  
                    # be a list of numbers  

    answer = []  

    for num in nums:  

        if num >= 0:  

            answer = answer + [num]  

    return answer 

A suitable answer, such as “It returns the given list of numbers 

with all the negative numbers removed”, was provided by 75% 

of the 146 students. 

● def conundrum(text, bound): # parameters 
  # are a string and a natural number  

    if len(text) >= bound:  

        return text[0:bound]  

    else:  

        return text +  

            (' ' * (bound - len(text))) 

A suitable answer, such as “It makes the given text 'bound' 

characters long, either by truncating it if it's too long, or by 

padding it on the right with spaces if it's too short”, was 

provided by 88% of the 146 students. 

The assessment of whether students gave a suitable answer to any 

of these “Explain” questions was made by one person, as a routine 

part of grading the exam, prior to the analysis presented in this 

paper.  Table 2 provides the distribution of scores that the 146 

students manifested on these four “Explain” questions.  
 

Number of Good  

Explanations 

Number of 

Students 

Percentage of 

Students 

4 56 38% 

3 47 32% 

2 27 18% 

1 11  8% 

0  5  3% 

Table 2: Student scores on the “Explain” questions (n=146). 

3.3 The Code Writing Question 
The code writing question required students to search for elements 

that occurred exactly twice in an array. If a student used certain 

pre–defined Python functions (which were pointed out in a 

“hint”), then a solution could be written using a single loop. 

Without these functions, two nested loops are required. The 

grading guidelines for this question specified that “Any working 

implementation is acceptable — efficiency is not a [grading] 

criterion ... Ignore trivial syntax errors.” Just over half (53%) of 

the students provided a “good” answer, an answer which was 

either a correct answer or an answer containing only minor, easily 

corrected bugs (e.g. the omission of a variable initialization). 

4. PAIR WISE RELATIONSHIPS 
This section examines the pair wise relationships between student 

performance on tracing, explaining and writing. 

4.1 Tracing and Writing 
Table 3 shows the percentage of students who gave what was 

deemed to be a good answer to the writing task, broken down 

according to the number of tracing tasks answered correctly.  For 

example, of the 86 students who answered all three tracing tasks 

correctly, 65% answered the writing task well.  Most students who 

scored less than 50% on tracing did poorly on writing.  

Tracing Tasks  

Correct 

No. of 

Students 

Percentage of Good Answers 

to Writing Question 

3 86 65% 

2 38 53% 

1 18 11% 

0  4  0% 

Table 3: The percentage of students who gave a good answer 

to the writing task, for each score on the tracing tasks.   

4.2 Explaining and Writing 
Table 4 shows the percentage of students who provided a good 

answer to the writing task, broken down according to the number 

of good answers to the “Explain in Plain English” questions. Most 

students who scored 50% or less on the explanation tasks did 

poorly on the writing task. 

Number of Good  

Explanations 

Number of 

Students 

Percentage of Good Answers  

to Writing Question 

4 56 70% 

3 47 55% 

2 27 33% 

1 11 27% 

0  5 20% 

Table 4: The percentage of students who gave a good answer 

to the writing task, for each score on the “Explain” tasks. 

4.3 Tracing and Explaining 
Table 5 shows the percentage of students who gave a good 

explanation for each of the “Explain” tasks, broken down 

according to their performance on the tracing tasks. For each 

“Explain” problem, a chi–square test compares the percentage of 

students who answered 2 or 3 of the tracing tasks correctly (i.e. 

the percentage above the respective χ2 value) against the students 

who answered only 1 of the tracing tasks correctly (i.e. the 

percentage below the χ2).  A χ2 ≥ 4 is significant at p ≤ 0.05 

(since the degree of freedom is 1), so only “puzzle” does not 

manifest a statistically significant relationship. 

In Table 5, our decision to break the tracing scores into 2 “bins” 

was based upon the earlier work of Philpott, Robbins and Whalley 

(2007), who found that students who could only trace code 

correctly less than 50% of the time could not usually explain 
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similar code.  For three of our four explanation tasks, our results 

are consistent with their results. 

Tracing  

Tasks  

Correct  

mystery enigma puzzle conundrum 

     2 or 3 68% 78% 77% 93% 

 χ2 = 10.7 χ2 = 15.9 χ2 = 2.0 χ2 = 15.7 

         1 28% 33% 61% 61% 

Table 5: Percentage of students giving good explanations on 

the four “Explain” tasks, broken down according to the 

number of tracing tasks answered correctly (n=146).    

Table 6 gives a breakdown of the number of students with various 

combinations of scores on the tracing and “Explain” tasks. In this 

table, the 9 students who scored zero on either the tracing tasks or 

the “Explain” tasks were omitted, hence n < 146. 

Number of Good Explanations on the Four 

Explain in Plain English Questions Tracing  

Score 
1 or 2 3 or 4 

2 or 3 24 98 

1 10  5 

Table 6:  The number of students with various combinations of 

scores on the tracing and “Explain” tasks (n=137). 
 

5. TRACING, EXPLAINING & WRITING 
Table 7 summarizes the relationships between writing and the 

combination of tracing and explaining, as manifested by our 

students on the writing task.  For example, the lower left cell of 

Table 7 (i.e. the cell containing “10%”) shows the data for 

students who scored a tracing score of 1 and an explanation score 

of either 1 or 2. From the equivalent cell in Table 6, we see that 

10 students recorded such a combination of scores. Table 7 shows 

that 1 of those 10 students (i.e. 10%) gave a good answer to the 

writing question.  

If we move vertically from that lower left cell of Table 7, to the 

upper left cell, then the score on explanation remains as 1 or 2, 

but the tracing score increases to 2 or 3.  From the equivalent cell 

in Table 6, we see that 24 students recorded such a combination 

of scores. Table 7 shows that 11 of those 24 students (i.e. 46%) 

scored well on the writing task. The χ2 value of 4.0 between these 

upper and lower left cells of Table 7 indicates that the 

performance difference on writing between these two cells is 

statistically significant. (For all χ2 values listed in Table 7, the 

degrees of freedom (df) = 1, so χ2 ≥ 4 is significant at p ≤ 0.05.)   

For the two upper cells in Table 7, where the tracing score is 2 or 

3, the associated χ2 value of 3.8 approaches the traditional p < 

0.05 threshold for statistical significance, and is well within the 

common p < 0.1 threshold, so we will regard the difference 

between these two cells as statistically significant.   

In general, the χ2 values between vertically or horizontally 

separated cells in Table 7 are not well above the 4.0 threshold for 

statistical significance, but that is consistent with the findings of 

Lopez et al. – skill in tracing alone is a factor in manifesting skill 

at code writing, but a stronger factor is combined skill in tracing 

and explaining. 

 

Table 7:  Percentage of good answers to the writing task for 

combined scores on tracing and “Explain” tasks (n=137).   

Some caution should be exercised in considering the three chi–

square values in the middle and lowest rows of Table 7.  A 

common statistical rule is that all cells in a 2 by 2 chi–square 

contingency table should contain a value (i.e. a frequency) greater 

than or equal to 5 (some argue that these frequencies should be at 

least 10).   From an inspection of Tables 6 and 7, this is clearly 

not the case for these three chi–square values. This rule does hold 

for the chi–square value in the upper row, where the smallest 

frequency in the associated contingency table is 11. 

Given the need to have reasonable values in the contingency table 

of a chi–square analysis, we could only place the scores on 

explanation into two “bins” (rather than the maximum possible 

four bins, in which each of the bins represented a specific total 

point score on the four explanation questions). Given two bins, 

the natural choice was a bin for ≤ 50% performance (i.e. 1 or 2 

good explanations) and a bin for >50% performance (i.e. 3 or 4 

good explanations).    

6. DISCUSSION AND CONCLUSION 
Our results are consistent with the findings of earlier studies. That 

is, we have also found that there are statistically significant 

relationships between tracing code, explaining code, and writing 

code.  As the Lopez et al. study indicated, while skill in tracing 

alone is a factor in manifesting skill at code writing, it is the 

combination of tracing and explaining that is most closely 

associated with skill in writing 

We used a non–parametric statistical analysis (i.e. the chi–square 

test) whereas Lopez et al. and others looked for linear 

relationships in the data.  We feel that the relationships between 

tracing, explaining, and writing need not be linear, so a non–

parametric approach is more appropriate.   

Our data does not support the idea of a strict hierarchy; where the 

ability to trace iterative code would precede any ability to explain 

code, and where the development of both tracing and explaining 

would precede any ability to write code. Table 6 shows that five 

students did better on explaining code than tracing code (although 

we wonder whether these students made shrewd guesses), and 

Table 7 shows that one student scored well on writing despite 

performing poorly on both tracing and explaining.  Rather than 
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arguing for a strict hierarchy, we merely argue that, for most 

students, some minimal competence at tracing code precedes 

some minimal competence at explaining code, and after a student 

has minimal competence in both of these skills, the two skills 

reinforce each other and develop in parallel.   

Similarly, we merely argue that that some minimal competence at 

both tracing and explaining precedes some minimal competence at 

systematically writing code. After a student has minimal 

competence in all these skills, the skills then reinforce each other 

and develop in parallel.  Having written a small piece of code, it is 

important that a student be able to pause, inspect the code, and see 

that the code actually does what the student intended. Also, when 

programmers struggle to see a bug by such an inspection, but the 

output from running the code shows that a bug is present, they 

may resort to tracing the code.  Therefore, writing code provides 

many opportunities to improve tracing and explanation skills, 

which in turn help to improve writing skills.  

It is our view that novices only begin to improve their code 

writing ability via extensive practice in code writing when their 

tracing and explaining skills are strong enough to support a 

systematic approach to code writing. Students who are weak at 

tracing and/or explaining cannot write systematically. Instead, in a 

desperate effort to pass their course, they will experiment 

haphazardly with their code − a behavior often reported by 

computing educators.  Until students have acquired minimal 

competence in tracing and explaining, it may be counter 

productive to have them write a great deal of code. We do not 

advocate that students be forced to demonstrate minimal 

competence in tracing and explaining before they write any code. 

(Indeed, we suspect that such an approach would lead to 

motivational problems in students.) However, we do advocate that 

educators pay greater attention to tracing and explaining in the 

very early stages of introductory programming courses, and that 

educators discuss with their students how these skills are used to 

avoid a haphazard approach to writing code. 

Computing educators today perpetuate the pedagogical practices 

from their own student days. Two of the authors of this paper (and 

many of the readers?) were novices when programming was done 

with punched cards and overnight batch runs. In such an 

environment, teachers did not need to explicitly encourage 

students to think carefully about their code before attempting their 

next compile–and–run. If students did otherwise, a careless error 

could waste a whole day. For today’s novices, however, who are 

learning in an era where the next compile–and–run is only a 

mouse–click away, it is tantalizingly easy but ultimately futile for 

a novice to pursue a strategy of trying to get the computer to do 

the thinking for them. Today’s educator needs to place greater 

explicit pedagogical emphasis on the importance of, and the 

practice of, the tracing and explaining skills that lead to 

systematic code writing.  

While the recent work on a hierarchy of programming skills is a 

novel empirical approach to the study of novice programmers 

(particularly in its use of data collected in the “natural setting” of 

end–of–semester exams), a belief in the importance of tracing 

skills, and skills like explanation, are present in quite old 

literature on novice programmers. For example, Perkins et al. 

(1989) discussed the importance and role of tracing as a 

debugging skill, and Soloway (1986) advocated the explicit 

teaching of “mental simulation” to students.   

It is easy to put “explain in plain English” questions into an exam 

and verify that students can see “the forest” and not just “the 

trees”, but how does one teach a novice who does not yet see “the 

forest”?  The authors of this paper believe that this is an area ripe 

for pedagogical innovation.  We believe that one promising 

technique for helping students to see “the forest” is the concept of 

the roles of variables (Kuittinen and Sajaniemi, 2004). 
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