
Further Evidence of a Relationship between Explaining,

Tracing and Writing Skills in Introductory Programming

Raymond Lister
Faculty of Engineering and Information Technology

University of Technology, Sydney
NSW 2007, Australia

raymond@it.uts.edu.au

Colin Fidge and Donna Teague
Faculty of Science and Technology,
Queensland University of Technology,

Brisbane, Australia

{c.fidge, d.teague}@qut.edu.au

ABSTRACT
This paper reports on a replication of earlier studies into a

possible hierarchy of programming skills. In this study, the

students from whom data was collected were at a university that

had not provided data for earlier studies. Also, the students were

taught the programming language “Python”, which had not been

used in earlier studies. Thus this study serves as a test of whether

the findings in the earlier studies were specific to certain

institutions, student cohorts, and programming languages. Also,

we used a non–parametric approach to the analysis, rather than the

linear approach of earlier studies. Our results are consistent with

the earlier studies. We found that students who cannot trace code

usually cannot explain code, and also that students who tend to

perform reasonably well at code writing tasks have also usually

acquired the ability to both trace code and explain code.

Categories and Subject Descriptors

K.3 [Computers & Education]: Computer & Information

Science Education – Computer Science Education.

General Terms

Measurement, Experimentation, Human Factors.

Keywords

Novice programmers, CS1, tracing, comprehension, taxonomy.

1. INTRODUCTION
Some recent studies of novice programmers have focused upon

the concept of a hierarchy of programming skills. Toward the

bottom of the hierarchy is knowledge of basic programming

constructs (e.g. what an “if” statement does). At the top of the

hierarchy is the ability to write non–trivial, correct code using

those programming constructs.

Whalley et al. (2006) investigated an intermediate skill in the

hierarchy. They reported on a study in which students in an end–

of–semester exam were given a question that began “In plain

English, explain what the following segment of Java code does”.

It was found that some students responded with a correct, line–

by–line description of the code while other students responded

with a correct summary of the overall computation performed by

the code (e.g. “the code checks to see if the elements in the array

are sorted”, which is a reasonable summary of what the code in

that question did). Furthermore, the better a student performed on

other programming–related tasks in that same exam, the more

likely the student was to provide a correct summary of the overall

computation performed by the code in the “explain in plain

English” question. In a follow up to that study, Lister et al.

(2006) found that when the same “explain in plain English”

question was given to academics, they almost always offered a

summary of the overall computation performed by the code, not a

line–by–line description. The authors of that study concluded that

the ability to provide such a summary of a piece of code ─ to “see

the forest and not just the trees” ─ is an intermediate skill.

Philpott, Robbins and Whalley (2007) found that students who

could only trace code correctly less than 50% of the time could

not usually explain similar code. To express their result in terms

of a hierarchy of programming skills, the ability to trace code is

lower in the hierarchy than the abilty to explain code.

Sheard et al. (2008) found that the ability of students to explain

code correlated positively with their ability to write code.

Lopez et al. (2008) analyzed student responses to an end–of–first–

semester exam. A stepwise regression was used to construct a

hierarchical path diagram. At the bottom of their hierarchy were

exam questions that required basic knowledge. Highest in the

intermediate levels of the path diagram were the ability to provide

a summary for “explain in English” questions and the ability to

trace iterative code. Figure 1 shows the higher portion of the

Lopez et al. hierarchy. The points students earned on tracing

iterative code accounted for only 15% of the variance in the

points earned on the writing question (i.e. R2 = 0.15). Also, the

points students earned on “Explain” questions accounted for only

7% of the variance on points earned on the writing question.

However, in combination, the tracing and “Explain” questions

accounted for 46% of the variance in the writing question (as

indicated in Figure 1 by R2 = 0.46 within the box headed

“Writing”).

In this paper, we report on our own study of the relationships

between tracing iterative code, explaining code, and writing code.

The data we used was collected in an exam that students took at

the end of a one–semester introductory course on programming.

These students attended the university of the second and third

authors. Students from this university had not participated in any

of the earlier studies summarized above. Also, these students

were taught the programming language “Python”, a language not

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ITiCSE’09, July 6–9, 2009, Paris, France.

Copyright 2009 ACM 978-1-60558-381-5/09/07...$5.00.

161

used in any of the earlier studies. Thus this study serves as a test

of whether the findings in the earlier studies were specific to

certain institutions, student cohorts, and programming languages.

Figure 1: A portion of the stepwise regression model from

Lopez et al. (2008).

2. STUDENT SCREENING
This study focuses upon the programming skills located high in

the hierarchy of Lopez et al. (i.e. the skills in Figure 1). Therefore,

we first need to screen the data, to eliminate students who

manifest weaknesses in skills lower in the hierarchy of Lopez et

al. In the exam that the students took, three questions tested the

students at the lower levels of the hierarchy. Two of those

questions required students to trace simple non–iterative code.

Both questions contained “if” statements, one with nested “if”

statements and a disjunctive “if” condition. The third question

required students to describe an algorithm, in English, for finding

the smallest and largest number, when the numbers are written on

marbles in a bag. A detailed analysis of student responses to this

third question has appeared elsewhere (Fidge and Teague, 2009).

There were 146 students who answered all three of these

questions well. That assessment of these 146 students was done as

a routine part of grading the whole exam, and was done prior to

our analysis presented in this paper. Our analysis is restricted to

these 146 students.

3. THE INSTRUMENT
The remainder of the exam paper included (1) three questions

where students traced iterative code; (2) four “Explain in plain

English” questions; and (3) a code writing question. (The exam

also included a second code writing question that is not analyzed

in this paper.) To ensure consistency of grading, each question on

the exam was graded by one person. All of the exam questions

analyzed in this paper were written by the second author of this

paper. This section describes those exam questions.

3.1 Tracing Iterative Code
Each of these tracing questions began with the following

instruction: What is printed when the following Python code

segment is executed? The three pieces of code were as follows:

● losses = [1, 25, 4, 9, 16]
 net = 100

 for loss in losses:

 net = net - loss

 print net

... the correct answer, which is 45, was provided by 86% of the

146 students.

● def exceeds(nums1, nums2): # parameters
 # are two equally long lists of numbers

 last = -1

 for index in range(len(nums1)):

 if nums1[index] < nums2[index]:

 last = index

 return last

print exceeds([1, 5, 2, 4, 2],

 [4, 2, 4, 7, 1])

... the correct answer, which is 3, was provided by 64% of the

146 students. The function returns the largest index where the

number in list nums2 exceeds that in nums1 (or −1 if this is

never the case).

● def residual(num, den):
 if num < den:

 return num

 else:

 return residual(num - den, den)

 print residual(8, 3)

... the correct answer, which is 2, was provided by 92% of the

146 students. The function returns the remainder of an integer

division.

Table 1 provides the distribution of scores that the 146 students

manifested on these three tracing questions.

Number of Tracing

Tasks Correct

Number of

Students

Percentage of

Students

3 86 59%

2 38 26%

1 18 12%

0 4 3%

Table 1: Student scores on the tracing questions (n=146).

3.2 Explain in Plain English Questions
All four of these questions began with the following instruction:

Explain, in plain English, the purpose of the following Python

function. (Do not say how the code works. Instead say what the

function would be used for.) The four functions given were:

● def mystery(names): # names is assumed to
 # be a list of strings

 return max(map(len, names))

A suitable answer, such as “It returns the length of the longest

name (string) in the list”, was provided by 61% of the 146

students.

● def enigma(nums): # nums is assumed to
 # be a list of numbers

 for index in range(len(nums) - 1):

 if nums[index] > nums[index + 1]:

 return False

 return True

Writing

R2 = 0.46

p < 0.0001

Tracing of

iterative Code

Explain in

plain English

R2 = 0.15

R2 = 0.07 R2 = 0.30

162

A suitable answer, such as “It checks to see if the list is

sorted”, was provided by 71% of the 146 students. This is the

same question (rewritten into Python) as used in some earlier

studies (Whalley et al., 2006; Sheard et al., 2008).

● def puzzle(nums): # nums is assumed to
 # be a list of numbers

 answer = []

 for num in nums:

 if num >= 0:

 answer = answer + [num]

 return answer

A suitable answer, such as “It returns the given list of numbers

with all the negative numbers removed”, was provided by 75%

of the 146 students.

● def conundrum(text, bound): # parameters
 # are a string and a natural number

 if len(text) >= bound:

 return text[0:bound]

 else:

 return text +

 (' ' * (bound - len(text)))

A suitable answer, such as “It makes the given text 'bound'

characters long, either by truncating it if it's too long, or by

padding it on the right with spaces if it's too short”, was

provided by 88% of the 146 students.

The assessment of whether students gave a suitable answer to any

of these “Explain” questions was made by one person, as a routine

part of grading the exam, prior to the analysis presented in this

paper. Table 2 provides the distribution of scores that the 146

students manifested on these four “Explain” questions.

Number of Good

Explanations

Number of

Students

Percentage of

Students

4 56 38%

3 47 32%

2 27 18%

1 11 8%

0 5 3%

Table 2: Student scores on the “Explain” questions (n=146).

3.3 The Code Writing Question
The code writing question required students to search for elements

that occurred exactly twice in an array. If a student used certain

pre–defined Python functions (which were pointed out in a

“hint”), then a solution could be written using a single loop.

Without these functions, two nested loops are required. The

grading guidelines for this question specified that “Any working

implementation is acceptable — efficiency is not a [grading]

criterion ... Ignore trivial syntax errors.” Just over half (53%) of

the students provided a “good” answer, an answer which was

either a correct answer or an answer containing only minor, easily

corrected bugs (e.g. the omission of a variable initialization).

4. PAIR WISE RELATIONSHIPS
This section examines the pair wise relationships between student

performance on tracing, explaining and writing.

4.1 Tracing and Writing
Table 3 shows the percentage of students who gave what was

deemed to be a good answer to the writing task, broken down

according to the number of tracing tasks answered correctly. For

example, of the 86 students who answered all three tracing tasks

correctly, 65% answered the writing task well. Most students who

scored less than 50% on tracing did poorly on writing.

Tracing Tasks

Correct

No. of

Students

Percentage of Good Answers

to Writing Question

3 86 65%

2 38 53%

1 18 11%

0 4 0%

Table 3: The percentage of students who gave a good answer

to the writing task, for each score on the tracing tasks.

4.2 Explaining and Writing
Table 4 shows the percentage of students who provided a good

answer to the writing task, broken down according to the number

of good answers to the “Explain in Plain English” questions. Most

students who scored 50% or less on the explanation tasks did

poorly on the writing task.

Number of Good

Explanations

Number of

Students

Percentage of Good Answers

to Writing Question

4 56 70%

3 47 55%

2 27 33%

1 11 27%

0 5 20%

Table 4: The percentage of students who gave a good answer

to the writing task, for each score on the “Explain” tasks.

4.3 Tracing and Explaining
Table 5 shows the percentage of students who gave a good

explanation for each of the “Explain” tasks, broken down

according to their performance on the tracing tasks. For each

“Explain” problem, a chi–square test compares the percentage of

students who answered 2 or 3 of the tracing tasks correctly (i.e.

the percentage above the respective χ2 value) against the students

who answered only 1 of the tracing tasks correctly (i.e. the

percentage below the χ2). A χ2 ≥ 4 is significant at p ≤ 0.05

(since the degree of freedom is 1), so only “puzzle” does not

manifest a statistically significant relationship.

In Table 5, our decision to break the tracing scores into 2 “bins”

was based upon the earlier work of Philpott, Robbins and Whalley

(2007), who found that students who could only trace code

correctly less than 50% of the time could not usually explain

163

similar code. For three of our four explanation tasks, our results

are consistent with their results.

Tracing

Tasks

Correct

mystery enigma puzzle conundrum

 2 or 3 68% 78% 77% 93%

 χ2 = 10.7 χ2 = 15.9 χ2 = 2.0 χ2 = 15.7

 1 28% 33% 61% 61%

Table 5: Percentage of students giving good explanations on

the four “Explain” tasks, broken down according to the

number of tracing tasks answered correctly (n=146).

Table 6 gives a breakdown of the number of students with various

combinations of scores on the tracing and “Explain” tasks. In this

table, the 9 students who scored zero on either the tracing tasks or

the “Explain” tasks were omitted, hence n < 146.

Number of Good Explanations on the Four

Explain in Plain English Questions Tracing

Score
1 or 2 3 or 4

2 or 3 24 98

1 10 5

Table 6: The number of students with various combinations of

scores on the tracing and “Explain” tasks (n=137).

5. TRACING, EXPLAINING & WRITING
Table 7 summarizes the relationships between writing and the

combination of tracing and explaining, as manifested by our

students on the writing task. For example, the lower left cell of

Table 7 (i.e. the cell containing “10%”) shows the data for

students who scored a tracing score of 1 and an explanation score

of either 1 or 2. From the equivalent cell in Table 6, we see that

10 students recorded such a combination of scores. Table 7 shows

that 1 of those 10 students (i.e. 10%) gave a good answer to the

writing question.

If we move vertically from that lower left cell of Table 7, to the

upper left cell, then the score on explanation remains as 1 or 2,

but the tracing score increases to 2 or 3. From the equivalent cell

in Table 6, we see that 24 students recorded such a combination

of scores. Table 7 shows that 11 of those 24 students (i.e. 46%)

scored well on the writing task. The χ2 value of 4.0 between these

upper and lower left cells of Table 7 indicates that the

performance difference on writing between these two cells is

statistically significant. (For all χ2 values listed in Table 7, the

degrees of freedom (df) = 1, so χ2 ≥ 4 is significant at p ≤ 0.05.)

For the two upper cells in Table 7, where the tracing score is 2 or

3, the associated χ2 value of 3.8 approaches the traditional p <

0.05 threshold for statistical significance, and is well within the

common p < 0.1 threshold, so we will regard the difference

between these two cells as statistically significant.

In general, the χ2 values between vertically or horizontally

separated cells in Table 7 are not well above the 4.0 threshold for

statistical significance, but that is consistent with the findings of

Lopez et al. – skill in tracing alone is a factor in manifesting skill

at code writing, but a stronger factor is combined skill in tracing

and explaining.

Table 7: Percentage of good answers to the writing task for

combined scores on tracing and “Explain” tasks (n=137).

Some caution should be exercised in considering the three chi–

square values in the middle and lowest rows of Table 7. A

common statistical rule is that all cells in a 2 by 2 chi–square

contingency table should contain a value (i.e. a frequency) greater

than or equal to 5 (some argue that these frequencies should be at

least 10). From an inspection of Tables 6 and 7, this is clearly

not the case for these three chi–square values. This rule does hold

for the chi–square value in the upper row, where the smallest

frequency in the associated contingency table is 11.

Given the need to have reasonable values in the contingency table

of a chi–square analysis, we could only place the scores on

explanation into two “bins” (rather than the maximum possible

four bins, in which each of the bins represented a specific total

point score on the four explanation questions). Given two bins,

the natural choice was a bin for ≤ 50% performance (i.e. 1 or 2

good explanations) and a bin for >50% performance (i.e. 3 or 4

good explanations).

6. DISCUSSION AND CONCLUSION
Our results are consistent with the findings of earlier studies. That

is, we have also found that there are statistically significant

relationships between tracing code, explaining code, and writing

code. As the Lopez et al. study indicated, while skill in tracing

alone is a factor in manifesting skill at code writing, it is the

combination of tracing and explaining that is most closely

associated with skill in writing

We used a non–parametric statistical analysis (i.e. the chi–square

test) whereas Lopez et al. and others looked for linear

relationships in the data. We feel that the relationships between

tracing, explaining, and writing need not be linear, so a non–

parametric approach is more appropriate.

Our data does not support the idea of a strict hierarchy; where the

ability to trace iterative code would precede any ability to explain

code, and where the development of both tracing and explaining

would precede any ability to write code. Table 6 shows that five

students did better on explaining code than tracing code (although

we wonder whether these students made shrewd guesses), and

Table 7 shows that one student scored well on writing despite

performing poorly on both tracing and explaining. Rather than

164

arguing for a strict hierarchy, we merely argue that, for most

students, some minimal competence at tracing code precedes

some minimal competence at explaining code, and after a student

has minimal competence in both of these skills, the two skills

reinforce each other and develop in parallel.

Similarly, we merely argue that that some minimal competence at

both tracing and explaining precedes some minimal competence at

systematically writing code. After a student has minimal

competence in all these skills, the skills then reinforce each other

and develop in parallel. Having written a small piece of code, it is

important that a student be able to pause, inspect the code, and see

that the code actually does what the student intended. Also, when

programmers struggle to see a bug by such an inspection, but the

output from running the code shows that a bug is present, they

may resort to tracing the code. Therefore, writing code provides

many opportunities to improve tracing and explanation skills,

which in turn help to improve writing skills.

It is our view that novices only begin to improve their code

writing ability via extensive practice in code writing when their

tracing and explaining skills are strong enough to support a

systematic approach to code writing. Students who are weak at

tracing and/or explaining cannot write systematically. Instead, in a

desperate effort to pass their course, they will experiment

haphazardly with their code − a behavior often reported by

computing educators. Until students have acquired minimal

competence in tracing and explaining, it may be counter

productive to have them write a great deal of code. We do not

advocate that students be forced to demonstrate minimal

competence in tracing and explaining before they write any code.

(Indeed, we suspect that such an approach would lead to

motivational problems in students.) However, we do advocate that

educators pay greater attention to tracing and explaining in the

very early stages of introductory programming courses, and that

educators discuss with their students how these skills are used to

avoid a haphazard approach to writing code.

Computing educators today perpetuate the pedagogical practices

from their own student days. Two of the authors of this paper (and

many of the readers?) were novices when programming was done

with punched cards and overnight batch runs. In such an

environment, teachers did not need to explicitly encourage

students to think carefully about their code before attempting their

next compile–and–run. If students did otherwise, a careless error

could waste a whole day. For today’s novices, however, who are

learning in an era where the next compile–and–run is only a

mouse–click away, it is tantalizingly easy but ultimately futile for

a novice to pursue a strategy of trying to get the computer to do

the thinking for them. Today’s educator needs to place greater

explicit pedagogical emphasis on the importance of, and the

practice of, the tracing and explaining skills that lead to

systematic code writing.

While the recent work on a hierarchy of programming skills is a

novel empirical approach to the study of novice programmers

(particularly in its use of data collected in the “natural setting” of

end–of–semester exams), a belief in the importance of tracing

skills, and skills like explanation, are present in quite old

literature on novice programmers. For example, Perkins et al.

(1989) discussed the importance and role of tracing as a

debugging skill, and Soloway (1986) advocated the explicit

teaching of “mental simulation” to students.

It is easy to put “explain in plain English” questions into an exam

and verify that students can see “the forest” and not just “the

trees”, but how does one teach a novice who does not yet see “the

forest”? The authors of this paper believe that this is an area ripe

for pedagogical innovation. We believe that one promising

technique for helping students to see “the forest” is the concept of

the roles of variables (Kuittinen and Sajaniemi, 2004).

ACKNOWLEDGEMENT
Raymond Lister’s work on this project was funded by the

Australian Learning and Teaching Council, under their fellowship

program.

7. REFERENCES
[1] Fidge, C. and Teague, D. (2009) Losing their Marbles:

Syntax–Free Programming for Assessing Problem–Solving

Skills. 11th Australasian Computing Education Conference,

Wellington, New Zealand, 75–82.

[2] Kuittinen, M, and Sajaniemi, J. (2004) Teaching Roles of

Variables in Elementary Programming Courses. 9th Annual

SIGCSE Conference on Innovation and Technology in

Computer Science Education, Leeds, UK, 57–61.

[3] Lister, R., Simon, B., Thompson, E., Whalley, J. L., and

Prasad, C. (2006). Not seeing the forest for the trees: novice

programmers and the SOLO taxonomy. 11th Annual

SIGCSE Conference on Innovation and Technology in

Computer Science Education, Bologna, Italy, 118–122.

[4] Lopez, M., Whalley, J., Robbins, P., and Lister, R. 2008.

Relationships between reading, tracing and writing skills in

introductory programming. 4th International Workshop on

Computing Education Research, Sydney, Australia, 101–

112.

[5] Perkins, D. and Martin, F. (1986) Fragile Knowledge and

Neglected Strategies in Novice Programmers. In Soloway,

E. and and Spohrer, J, Eds (1989), Studying the Novice

Programmer. Lawrence Erlbaum Associates, Hillsdale, NJ,

1989. pp. 213–229.

[6] Philpott, A, Robbins, P., and Whalley, J. (2007): Accessing

The Steps on the Road to Relational Thinking. 20th Annual

Conference of the National Advisory Committee on

Computing Qualifications, Nelson, New Zealand, 286.

[7] Sheard, J., Carbone, A., Lister, R., Simon, B., Thompson, E.,

and Whalley, J. L. (2008). Going SOLO to assess novice

programmers. 13th Annual Conference on Innovation and

Technology in Computer Science Education, Madrid, Spain,

209–213.

[8] Soloway, E. (1986). Learning to program = Learning to

construct mechanisms and explanations. Communications of

the ACM, 29(9). pp. 850–858.

[9] Whalley, J. L., Lister, R., Thompson, E., Clear, T., Robbins,

P., Kumar, P. K. A., & Prasad, C. (2006). An Australasian

Study of Reading and Comprehension Skills in Novice

Programmers, using the Bloom and SOLO Taxonomies. 8th

Australasian Computing Education Conference, Hobart,

Australia. 243–252.

165

