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Abstract— This paper presents an algorithm for localizing an
unmanned aerial vehicle (UAV) in GPS denied environments.
Localization is performed with respect to a pre-built map of the
environment represented using the distance function of a binary
mosaic, avoiding the need for extraction and explicit matching
of visual features. Edges extracted from images acquired by an
on-board camera are projected to the map to compute an error
metric that indicates the misalignment between the predicted
and true pose of the UAV. A constrained extended Kalman filter
(EKF) framework is used to generate an estimate of the full
6-DOF location of the UAV by enforcing the condition that the
distance function values are zero when there is no misalignment.
Use of an EKF also makes it possible to seamlessly incorporate
information from any other system on the UAYV, for example,
from its auto-pilot, a height sensor or an optical flow sensor.
Experiments using a hexarotor UAV both in a simulation
environment and in the field are presented to demonstrate the
effectiveness of the proposed algorithm.

I. INTRODUCTION

Small autonomous Unmanned Aerial Vehicles (UAVs)
such as quadrotors or hexarotors are becoming increasingly
common in a broad range of applications. Many of these
applications require a UAV to follow a path or move to a
location defined in the 3D Cartesian space. Typically, the
UAV location obtained using a GPS receiver is therefore ad-
equate in many situations. However, incorporating robustness
to GPS failure is widely accepted as important, particularly in
law enforcement and defence applications. UAVs have been
built with navigation units that are able to fuse information
from one or more of the multitude of sensors including an
on-board inertial measurement unit, a magnetometer, a height
sensors, a barometer and optical flow sensors, typically using
an extended Kalman filter (EKF). Such a system can generate
sufficiently accurate estimates of the attitude of the UAV
making it feasible to control and stabilise the UAV. The
Cartesian position of the UAV become observable only when
a GPS receiver is connected to the navigation unit. The
challenge addressed in this paper is how to provide position
when information from the GPS receiver is momentarily lost.

Integration of information from an on-board camera and
a body mounted inertial measurement system is one of
the most promising approaches to navigate in environments
without GPS information. In this paper, we focus on using
images from a camera looking at the terrain below. We
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consider the situation that the UAV is flying at a sufficient
height so that we can assume that the terrain is locally planar.
We also assume that an a-priori geo-referenced map of the
environment is available. Although the UAV attitude with an
accuracy adequate for control purposes is available from its
navigation system, a small angular error results in a large
change to the image captured from a camera. Therefore, we
focus on solving the complete six degrees-of-freedom (DOF)
localisation problem to estimate the UAV state. This work
extends the distance function based 3-DOF localisation on
2D occupancy grid maps presented in [1].

The localisation strategy used in this paper is as follows.
We use a distance function based technique for representing
the map of the environment [2], [1]. This is achieved
by first obtaining a binary edge map of the terrain and
computing its signed distance function. We use a cubic-
spline approximation to extract high resolution information
from the map and its spatial derivatives in a compact form.
Although computing distance function and its derivatives is
computationally expensive, this needs to be done only once.
We extract edges from the image captured by the on board
camera and compute value of the distance function and its
uncertainty at each edge pixel, using the map and the latest
available 6-DOF state of the UAV. This is done at run-
time but consists of simply a few function look ups. We
then use the fact that the distance function value at each
edge pixel should be zero at the correct alignment in an
EKF framework to compute the 6-DOF state estimate of
the UAV. We implement the pseudo-observation technique to
enforce this constraint and use the sum of squares of distance
function values at each edge pixel to reduce the dimension
of the resulting observation equation. We demonstrate that
the EKF can function using a motion model based on the
velocities and angular velocities of the UAV or with the UAV
motion modelled as a random walk.

We argue that the method proposed in this paper has a
number of significant advantages over image based tech-
niques proposed in literature. Use of edges extracted from
images make the strategy robust to illumination changes
as well as makes it computationally light, as tracking,
association, and explicit matching of visual features in the
environment is not required. The observation equation has
the same computational cost, independent of the height from
which the image is taken, in contrast to template matching
techniques that require resizing images and therefore can be
costly to implement. Furthermore, only the edge pixels need
to be processed, rather than the whole image. In addition,



the availability of sound information on the uncertainty as-
sociated with the measurements makes it possible to exploit
conventional EKF strategies to reject measurements resulting
from noise due to the edge extraction process or from edges
that are visible in the camera image but not present in the
pre-built map. Thus when building the map, only edges that
are always likely to be visible can be used.

The paper is organised as follows. Section II reviews the
related literature. Section III presents a brief description
of the UAV platform and the specific task for which the
proposed algorithm was first developed. Section IV details
the methodology including the formulation of the EKF. Ex-
perimental results are presented in Section V, while Section
VI concludes the paper.

II. RELATED WORK

As mentioned in Section I, vision based sensing techniques
for mapping and navigation of UAVs using information from
an on-board camera and inertial information from a body
mounted inertial measurement system are quite common.

Yol et. al [3] proposed a template based image registration
method in which the UAV camera motion obtained be
maximising a mutual information based similarity function
between the images acquired by the on-board camera and
geo-referenced images. Amidi et al. [4] presented a vision-
based odometer based on a stereo pair pointed at the ground
together with a gyroscopes to determine the UAV pose. In
order to address significantly high drift in traditional GPS
aided inertial navigation system in estimating the UAV pose
during extended GPS outages, Madison et al. [5] proposed a
method to augment the navigation system with an onboard
camera to track visual landmarks to infer vehicle motion.
Using an EKF framework the vehicle states and the inertial
locations of 3D features are estimated. Langelaan [6] has
presented a framework to compute the UAV state (position,
orientation, and velocity) and the positions of obstacles in
the environment using a sigma point Kalman filter to enable
control and navigation of small autonomous UAVs operating
in cluttered environments, using a monocular camera and
inertial measurements as sensing. Here the state estimation
problem was formulated as bearings only Simultaneous Lo-
calisation And Mapping (SLAM).

An inertial-aided vision-based localization and mapping
algorithm is proposed by Yang et al. [7]. However, this
is specifically developed for a UAV operating in riverine
environments. The algorithm exploits a two-view geometry
formulation using captured features surrounding rivers and
their corresponding points reflected in the river using a light
weight monocular camera to triangulate locations, and an
Inertial Measurement Unit (IMU) fitted to the UAV is used
to compliment the estimates.

Work reported in Wu et al. [8] uses Harris corner detector
based features extracted from a monocular camera that
are then fused with information from an IMU in an EKF
framework to address navigation and mapping problems. At

Fig. 1: Hexarotor UAV

the beginning, when GPS is available, UAV uses feature point
observations of landmarks in the surrounding environment to
map out the landmarks in 3D inertial space. Once accurate
feature locations are available, observations from the camera
can be subsequently used to determine the pose of the aircraft
in the absence of GPS. This, however, requires accurate data
association.

III. DESCRIPTION OF UAV PLATFORM

This work was motivated by the need to develop a reliable
localisation framework for hexarotor UAVs that are used
by team VICTOR in the Mohamed Bin Zayed International
Robotics Challenge (MBZIRC) competition in March, 2017.
The competition is composed of three stages: stage one
and three requires a UAV to autonomously land on a truck
moving on the figure-of-eight track drawn in the arena, and
for a team of UAVs to autonomously and cooperatively pick
up objects that are scattered around the arena.

The UAV platform of choice for team VICTOR is a
custom-built hexa-rotor helicopter (Fig. 1). This UAV is
designed for a much higher payload capacity and longer
endurance than the commercially available hexa-rotor he-
licopters to be able to complete the challenges posed
at the competition. The platform is equipped with a
Pixhawk™ flight controller unit and an on-board ARM
computer. This flight controller comes with an in-built IMU
and several other sensors such as an on-board GPS with
a compass. An RTK GPS module, a laser range finder, a
PX4FLOW™  optical sensor and two cameras connected
externally to the flight controller. The first of these cameras
is a 5 MP perspective camera mounted on the UAV body
using a gimbal to maintain its optical axis normal to the
ground plane while the second camera is a fish-eye camera
with 180° field of view fixed to the UAV body pointing
downwards.

The images captured by either the perspective camera or
the fish-eye camera are to be used as inputs for localisation.

We run all high-level software modules using the on-
board NVIDIA™ Jetson TX1 computer. We rely on Robot
Operating System (ROS), which is an open source set of
software libraries and tools to build the software framework



(b)

Fig. 2: Visual sensors mounted on the platform. (a). LiDar,
Px4Flow and fisheye camera mounted on UAV . (b). Gimbal
used to mount the perspective camera

() (b)

Fig. 3: (a) Map of the arena created by stitching UAV images.
(b) Cleaned-up map used for localization.

to interface low level drivers and high-level algorithms such
as localisation.

IV. METHODOLOGY
A. Map of the Environment

In order to localise, the UAV uses a pre-built map repre-
sented using the distance function of a binary mosaic that
correspond to the edges that are present in the environment.
Fig. 3a shows the initial map built using the images acquired
using the on board camera. This map has been pruned to
remove spurious noise from the map while retaining the
prominent edge image (Fig. 3b) to use as the final map.

B. Sensing the Environment

Once an image is captured through the on board camera
(perspective camera or the fish-eye camera), it is processed
to correct each pixel location for radial and tangential lens
distortions. Subsequently, the undistorted image is passed

Fig. 4: Typical images seen by the UAV camera at an
approximate altitude of 20 metres, and corresponding edge
images

|
L
Fig. 5: Selected edge pixels projected on the ground plane.
Before and after alignment.

through an edge detector to identify edge pixel points
(As, w;) that are used in the observation model. Fig. 4
shows some typical camera images captured during the real
experiment. It can be seen that lighting conditions of the
environment varies across images, but, the edge detection
process can be made robust to these changes.

Detected pixels belonging to an edge form the observation
vector, z. Each of the edge pixels on the image plane are
transformed into their original location on the ground plane
with respect to the camera coordinate frame using the camera
projection model. The blue dots on Fig. 5 represent a set
of edge pixels of the image (Fig. 5) captured from the
perspective camera. This process only takes approximately
6ms to complete.

C. Distance Function Based Observation Model

Distance functions are implicit shape representations com-
monly used within the computer vision community. For a



Fig. 6: Distance field of the arena

given binary image with the set of boundaries V', the distance
function value at a given location X, is computed via (1),
which specifies the Euclidean distance from that pixel to the
nearest boundary pixel v; in V' [9]. Fig. 6 shows the distance
field of the synthetically generated MBZIRC arena in Gazebo
simulation environment.

DF(x) = min, [x — v (1)

Vi€

The distance function as described in (1) quantises these
distances into cell numbers. Furthermore, derivatives of the
distance functions are not continuous at points which belong
to the edges of the binary map or to the cut-locus [10]. As the
purpose of the exercise is to use the distance functions as the
basis for an observation model within an EKF framework,
a cubic spline approximation based interpolation algorithm
is used to compute the distance function and its derivatives
at any given location in the map. The parameters of the
spline function are precomputed and stored so that the
computational effort required during runtime is minimised.
Future references to distance function in this paper refer to
the interpolated continuous version.

We further define the sign of the distance function based
on the colour of the initial binary map. Distances correspond-
ing to points in black regions hold a positive value while
points in white region holds a negative value. This guarantees
that the gradient of distance function is continuous at the
edges of the binary map.

The observation vector z; € z; z; = (\;, i), of a single
binary image obtained by the camera, consisting of n edge
points with coordinates (A, ) on the image plane can be
projected from the current estimate of the 6DOF UAV pose
x = (x, y, z(altitude), w(roll), O(pitch), ¢(yaw))', using
(2) to obtain the observation vector in 2D space X, on the
ground plane.

AiRi1+piRi2—fRi3
X = Lo; | _ T+ Z/\z‘Rs,lmez,QJrfR?,,s (2)
(T - AiRo 1+piRa2—fR2 3

Yo y+ Z/\z‘Ra,l—uiRs,2+fR3.3

where, R is the 3D rotation matrix representing the UAV
pose, R(v, 0, ¢), and f is the focal length of the camera.
When the projected edge points and the map are fully
aligned, the sum of squared distance function values at these
points is expected to be zero. Therefore, setting the expected

measurement to zero in (3) yields the measurement equation
(4) that is suitable for robot localisation.

n—1

h(x,2z) =Y _ DF(x,,)* = d, 3)
=0
h(x,z) =0 @)

D. Formulation of the Extended Kalman Filter

Traditional formulation of the EKF requires an observation
equation of the form z = h(x). The alternative formulation
that is proposed below can directly deal with an implicit form
of the measurement equation.

1) Prediction: Let the estimate of the UAV pose xj,;,—1 =
(Thjk—1, Yklk—1, Zklk—1> Vklk—1> Okjk—1, Pkjk—1) . be
subjected to a control command of u; = (vbwk)—r, where
vy is the linear velocity (in x, y, and z directions) and wy, is
the angular velocity (in 1, 6, and ¢ directions) over a period
of At.

Then the predicted location of the UAV is given by (5)
and its covariance by (6).

Xpk—1 = F(Xp_1)p—1, UrAt) (5)

Pyjj—1 = VFPy 11 VF + VF,Q,VFE]  (6)

where VFy and VF,, are respectively the Jacobian of the
control function F' with respect to x and u, obtained by
linearising about the UAV pose estimate X;_1,—1 , while
Q. is the control noise covariance matrix.

2) Observation: Equation (4) provides the observation
function, h(x,z) = 0.

Assuming that each selected pixel point of the edge image
z, corrupted by noise 7 with N'(0,02) in both A\ and p
directions, the covariance of the measurement vector is given
by the diagonal matrix, ¥, = diag(c?, o?).

3) Update: Update equations can be written as follows,
where the filter gain K is given by,

K = Py—1Vh (VA Py VR + VRE, VR (7)

The state update:

Xplk = Xpjk—1 + K(—h(Xpr-1,2)) ®)

while the covariance update is,

Prr = (I = KVh) Py 9

The Jacobians V1, and Vh, at the appropriate linearisation
points can be easily calculated using the DF'.

As previously mentioned, DF' and its derivatives can be
precomputed and stored to be used during the runtime to
efficiently compute the gradients of DF' and the Jacobians
above. The remaining components of the gradient can then
be analytically derived from (2).
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Fig. 7: Flight path of the UAV during Gazebo simulation. Estimation without the use of odometry.
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Fig. 8: Pose error and the relevant covariances during simu-
lation without using odometry.

Fig. 4 and Fig. 5 shows spurious measurements resulting
from the edge extraction process. This is to be expected in a
practical situation as the objects that did not exist during the
mapping process can exist in the environment. Changes to
the illumination and shadows can also contribute to this. An
innovation gate (with a 20 bound) is used to rejects these
measurements before they reach the update stage.

V. EXPERIMENTAL RESULTS

In this section we validate the proposed algorithm using
simulation and experimental data.

For simulations, we use the Gazebo robot simulation
software provided with ROS Kinetic Kame. The simulated
UAV flies at varying altitudes and captures images using a
monocular camera that is mounted on the robot’s body. The
Pixhawk controller firmware estimates the UAV velocities
and odometry based on physics properties of the simulation.
Ground-truth is known.

For the real experiment we used images obtained from
the normal camera. The UAV is controlled by a Pixhawk
Autopilot device. RTK GPS unit is also present on the UAV
and is used only for ground-truth. Map shown in Fig. 3b is
used for localization.

A. Simulation Results

During the simulation, the UAV is flown in altitudes
varying between 20 - 40 metres and travels a total distance
of 1km. Fig. 7 shows a comparison between ground-truth
and the estimated poses. Odometry generated from the UAV
flight system is also plotted. This odometry is used within
the EKF framework during the prediction phase. However, as
the flight system cannot estimate the z and y components of
the UAV linear velocity in the absence of GPS, we consider
those components to be zero, and use a larger uncertainty to
capture the transition.

It can be seen that the estimation closely follows the
ground-truth trajectory. However, when the UAV moves out
of the range of the arena (275 seconds into simulation,
Fig. 8), the errors increase when the image captured by the
camera is completely blank, as soon as the UAV is back in
range, the estimate continues to track the trajectory well.
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Fig. 9: Flight path of the UAV during the field trials.

B. Field Trials

Results from estimation during field trials are shown in
Fig. 9. Position updates from RTK-GPS system is only
available at a 1Hz frequency and are plotted against the
estimated pose. However, it is not reliable and depends
on environment conditions. We use these GPS readings for
ground-truth purposes.

It can be seen that the estimates closely follow the ground-
truth trajectory.

VI. CONCLUSION

In this paper, we presented an algorithm for localizing
a UAV in absence of GPS signals. We use experiments
conducted both in simulation and field trials to demonstrate
the effectiveness of the proposed algorithm. The results
reported demonstrate that the estimated pose closely follow
ground-truth trajectories even when an odometry estimate of
the UAV is not present. It is also seen that the algorithm
is able to reject observations from edges extracted from the
images that contain noise and artefacts that are not present
in the map.

Our future work will focus on incorporating information
from other sensors mounted on the UAV for example the
optical flow sensor. We also aim to explore the utility of
tightly coupling the information from an IMU and other
sensors in a single EKF framework.

One major limitation of the work presented is the as-
sumption that the map of the environment that the UAV
traverses is planar. Relaxing this assumption using a full three
dimensional distance map or exploring whether maintaining
only a planar map and relying on the outlier rejection
capability of the EKF is adequate, are also of interest.

[2]

[4]

[5]

[6]

[7]

[9]

[10]

REFERENCES

L. Dantanarayana, G. Dissanayake, R. Ranasinghe, and
T. Furukawa, “An extended Kalman filter for localisation
in occupancy grid maps,” in 2015 IEEE 10th International
Conference on Industrial and Information Systems (ICIIS).
IEEE, 12 2015, pp- 419-424. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7399048
L. Dantanarayana, G. Dissanayake, and R. Ranasinge,
“C-LOG: A Chamfer Distance Based Algorithm for
Localisation in Occupancy Grid-maps,” CAAI Transactions
on Intelligence Technology, 10 2016. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S2468232216300555

A. Yol, B. Delabarre, A. Dame, J.-E. Dartois, and E. Marchand,
“Vision-based absolute localization for unmanned aerial vehicles,”
in 2014 IEEE/RSJ International Conference on Intelligent Robots
and Systems. 1EEE, 9 2014, pp. 3429-3434. [Online]. Available:
http://ieeexplore.ieee.org/document/6943040/

0. Amidi, T. Kanade, and K. Fujita, “A visual odometer for
autonomous helicopter flight,” Robotics and Autonomous Systems,
vol. 28, no. 2-3, pp. 185-193, 8 1999. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0921889099000160

R. Madison, G. Andrews, P. DeBitetto, S. Rasmussen, and
M. Bottkol, “Vision-Aided Navigation for Small UAVs in GPS-
Challenged Environments,” in AIAA Infotech@Aerospace 2007
Conference and Exhibit. Reston, Virigina: American Institute
of Aeronautics and Astronautics, 5 2007. [Online]. Available:
http://arc.aiaa.org/doi/10.2514/6.2007-2986

J. W. Langelaan, “State Estimation for Autonomous Flight in
Cluttered Environments,” Journal of Guidance, Control, and
Dynamics, vol. 30, no. 5, pp. 1414-1426, 9 2007. [Online]. Available:
http://arc.aiaa.org/doi/10.2514/1.27770

J. Yang, A. Dani, S.-J. Chung, and S. Hutchinson, “Inertial-Aided
Vision-Based Localization and Mapping in a Riverine Environment
with Reflection Measurements,” in AIAA Guidance, Navigation, and
Control (GNC) Conference. Reston, Virginia: American Institute
of Aeronautics and Astronautics, 8 2013. [Online]. Available:
http://arc.aiaa.org/doi/10.2514/6.2013-5246

Allen D. Wu, Eric N. Johnson, Michael Kaess, Frank Dellaert, and
Girish Chowdhary, “Autonomous Flight in GPS-Denied Environments
Using Monocular Vision and Inertial Sensors,” Journal of Aerospace
Information Systems, vol. 10, no. 4, pp. 172-186, 4 2013. [Online].
Available: http://arc.aiaa.org/doi/10.2514/1.1010023

M. Y. Liu, O. Tuzel, A. Veeraraghavan, and R. Chellappa, “Fast
directional ~chamfer matching,” in 2010 IEEE Computer
Society  Conference on  Computer  Vision and  Pattern
Recognition. 1EEE, 6 2010, pp. 1696-1703. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5539837
M. Jones, J. Baerentzen, and M. Sramek, “3D distance fields: a survey
of techniques and applications,” IEEE Transactions on Visualization
and Computer Graphics, vol. 12, no. 4, pp. 581-599, 7 2006.
[Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/16805266
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1634323





