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Abstract
Dictionary learning is a method of acquiring a collection of atoms for subsequent signal re-

presentation. Due to its excellent representation ability, dictionary learning has been widely

applied in multimedia and computer vision. However, conventional dictionary learning algo-

rithms fail to deal with multi-modal datasets. In this paper, we propose an online multi-modal

robust non-negative dictionary learning (OMRNDL) algorithm to overcome this deficiency.

Notably, OMRNDL casts visual tracking as a dictionary learning problem under the particle

filter framework and captures the intrinsic knowledge about the target from multiple visual

modalities, e.g., pixel intensity and texture information. To this end, OMRNDL adaptively

learns an individual dictionary, i.e., template, for each modality from available frames, and

then represents new particles over all the learned dictionaries by minimizing the fitting loss

of data based on M-estimation. The resultant representation coefficient can be viewed as

the common semantic representation of particles across multiple modalities, and can be uti-

lized to track the target. OMRNDL incrementally learns the dictionary and the coefficient of

each particle by using multiplicative update rules to respectively guarantee their non-nega-

tivity constraints. Experimental results on a popular challenging video benchmark validate

the effectiveness of OMRNDL for visual tracking in both quantity and quality.

Introduction
Visual tracking has been widely applied in many real-world tasks, such as video surveillance,
but it poses significant challenges for computer vision community. Serious appearance varia-
tions such as illumination changes and cluttered backgrounds are obstacles to performing ef-
fective tracking in complex scenarios including multiple similar targets [1]. Various tracking
techniques have been proposed to tackle these challenges, and recently, a strand of works that
applies dictionary learning to visual tracking has achieved great success. Mei and Ling [2] origi-
nally proposed the L1 tracker (L1T) for robustly tracking the target under the particle filter
framework. However, L1T and its variants [3, 4] suffer from one of the following drawbacks: 1)
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they leave the dictionary unchanged and thus often drift away from the target, or 2) traditional
dictionary update strategies result in poor performance. Hence, it is essential to adaptively
learn the dictionary to overcome the above drawbacks.

Dictionary learning aims to find an over-complete dictionary from training examples and
learns sparse representations for these samples by using as few atoms as possible. The learned
dictionary therefore significantly influences the quality of sparse representation. Recently,
many dictionary learning methods have been proposed that incorporate additional constraints
over either the dictionary or the sparse representations. Due to its effectiveness, dictionary
learning has been widely used in computer vision such as image de-noising [5, 6], image seg-
ment [7] and image classification [8–10]. However, since the existing methods need to main-
tain a large collection of training samples in memory, they cannot deal with large-scale or
streaming datasets such as video sequences.

Online learning has become a good alternative to improve the scalability of dictionary learn-
ing [11–15]. Marial et al. [11] proposed online dictionary learning based on stochastic optimi-
zation which elegantly scales well for large-scale datasets. Xie et al. [12] proposed projecting
each descriptor into its local-coordinate system by utilizing locality constraints, followed by in-
crementally updating the dictionary in a gradient descent fashion. However, these methods as-
sume that noise obeys the Gaussian distribution, and this assumption may be violated by data
that is corrupted by outliers. To avoid this drawback, Lu et al. [13] proposed the online robust
dictionary learning (ORDL) method which employs the L1 loss in data fitting. This scheme has
been found to be useful for reconstructing partially occluded objects. Although these online al-
gorithms reconstruct the objects well, they underperform in classification tasks. Recently, Yang
et al. [14] proposed the online discriminative dictionary learning (ODDL) method for visual
tracking which filters the positive particle by simultaneously minimizing a reconstruction error
and a classification error. Wang et al. [15] proposed the online robust non-negative dictionary
learning (ONNDL) method which creates a robust non-negative dictionary to adaptively
model the appearance template for visual tracking in an online fashion. However, the afore-
mentioned methods cannot deal with multi-modal datasets.

To overcome this deficiency, this paper proposes an online multi-modal robust non-nega-
tive dictionary learning (OMRNDL) method which imposes the non-negative constraint over
both the dictionary and sparse coding. These non-negative constraints not only induce more
sparse representation but also make the L1 regularization term differentiable. To incorporate
multi-modal features, OMRNDL learns an individual non-negative dictionary over each mo-
dality of the data, and captures the intrinsic aspect of each modality of the target by sharing
identical representation between these modalities. To reduce the influence of outliers,
OMRNDL fits all modalities by utilizing M-estimation. OMRNDL can be easily integrated into
the particle filter framework for visual tracking where each new particle can be represented by
the learned sparse representation across multi-modality features. Interestingly, OMRNDL can
be viewed as a multi-modal non-negative dictionary learning framework and can include
ONNDL as a special case. To optimize OMRNDL, we have developed an algorithm that incre-
mentally learns the multi-modal dictionaries and the representation coefficients by utilizing
multiplicative update rules (MUR) which guarantee non-negativity constraints. The experi-
mental results of visual tracking on twenty-two video sequences from the popular challenging
video benchmark [16] suggest the effectiveness of OMRNDL in both quantity and quality.

Analysis
There is a rich literature on visual tracking, and more details about the existing trackers can be
found in the 2006 survey [17] and recent benchmark [16] comparing the state-of-the-art
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trackers. We briefly review the work related to our method including sparse representation-
based trackers, multi-modal learning and non-negative matrix factorization.

Sparse representation has been extensively applied in visual tracking. Mei and Ling [2] pro-
posed the L1 tracker (L1T) which is the first work to apply sparse coding to visual tracking and
simply uses holistic object samples to compile the dictionary. Such templates are often vulnera-
ble to noise because they neither take the background knowledge into account nor exploit well-
studied dictionary update strategies. To incorporate the background information, Liu et al.
[18] utilized the K-selection method to construct a dictionary prior to tracking. However, the
dictionary remains unchanged during the tracking procedure, thus the dictionary is not adap-
tive to new samples. To overcome this deficiency, Jia et al. [19] proposed an adaptive structural
local sparse appearance model to update the dictionary by detecting appearance changes and
replacing the old template with the new object sample. Similarly, Zhang et al. [3] adopted the
structure constraints in the multi-task learning framework to reject the occluded samples. In
contrast, Yang et al. [14] presented a discriminative dictionary learning based tracking method
which models the object appearance by incorporating the discriminative and reconstructive
power of the dictionary. Wang et al. [15] proposed a robust non-negative dictionary learning
method to adaptively model the appearance template in an online fashion. This tracker also
utilizes the background to generate discriminative sparse coding; however, these trackers mere-
ly harness a single modality feature in dictionary learning.

Besides the aforementioned trackers, other visual tracking approaches related to our pro-
posed method include multi-modal learning and (robust) nonnegative matrix factorization
(NMF). Multi-modal learning can derive common semantic representation across multi-
modal features in various fields [20–22]. It has been found that combining multi-modal fea-
tures is highly beneficial for vision tasks such as facial expression generation [23], pose estima-
tion [24], image retrieval [25], classification [26] and clustering [27, 28]. As for NMF [29, 30],
it is a popular dimension reduction method. Different from traditional learning methods [31–
33], it incorporates non-negative constraints over both the basis and coefficient to derive parts-
based representation, which is consistent with psychological intuition to facilitate human inter-
pretation [34]. NMF variants [35–42] and online versions [11, 43, 44] have been widely applied
to computer vision to benefit from this property.

Results

Online Multi-modal Robust Non-negative Dictionary Learning
(OMRNDL)
Due to the efficacy of combining multi-modal features, we integrate the multi-modal features
into dictionary learning and propose an online multi-modal robust non-negative dictionary
learning (OMRNDL) method. The tracking procedures for visual tracking-based sparse repre-
sentation can be categorized as the template update and particle representation. The former de-
pends on the dictionary learning approach, while the latter calculates the sparse coding of each
particle over the learned dictionary. Both procedures can be formulated in the same way, so for
brevity, OMRNDL focuses on the first procedure.

The Proposed Model. Assume that n samples are captured from the video frames. Each
sample has multi-modal features fXi 2 Rmiggi¼1 where g represents the number of modalities,
and xi represents the i-th modal feature ami-dimensional vector. We can concatenate the i-th
modal feature of all samples into a matrix Xi 2 Rmi . Since different modalities of the same sam-
ple can be regarded as different views generated from a common basic feature, it is reasonable
to assume that multiple modalities share common representation in the dictionary learning
framework. In this sense, OMRNDL learns the common semantic representation V 2 Rr×n
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across multi-modal features and simultaneously derives multiple dictionaries Di 2 Rmi×r over
each modality such that

min
Di2Oþ;V�0

1

2

Xg

i¼1
aikXi � DiVk2F þ lkVk1; ð1Þ

where αi trades off the i-th modal reconstructive error, and λ is the regularized parameter for
sparse coding and O+ = {yjyT y� 1, y� 0}. According to (Eq 1), each learned dictionary can
capture the distinctive aspect of each modality while the common semantic representation V
denotes the coefficients of the examples.

The problem (Eq 1) is usually solved by using thresholding-based methods [45], but such
methods cannot be extended in online fashion. We therefore impose a non-negativity con-
straint over the representation V to make the objective function in (Eq 1) differentiable as kVk1
= ∑ij Vij if V is non-negative. We also impose non-negativity constraints over all dictionaries
because the data are usually non-negative. In contrast to NMF, which learns a lower-rank basis
matrix, the OMRNDL model (Eq 1) learns over-complete dictionaries to store sufficient tem-
plates for tracking.

Nevertheless, OMRNDL has some limitations: 1) it is assumed that the data noise distribu-
tion obeys Gaussian distribution in practice, and 2) it requires the entire dataset to reside in
memory during the training procedure and thus is prohibitive for large-scale problems. To
overcome the first deficiency, we introduce robust M-estimator functions to improve its ro-
bustness to outliers, e.g.,

min
Di2Oþ ;V�0

1

2

Xg

i¼1
ai
X
j;k

φiðxijk � ðDiVÞjkÞ þ lkVk1; ð2Þ

where φi denotes the robust M-estimator function of the i-th modality, and xijk denotes the k-th

entry of the j-th example of the i-th modality. The robust M-estimator functions [46] such as
the Huber loss function and L1 loss function have been extensively applied in various applica-
tions. We provide a multi-modal framework for robust non-negative dictionary learning which
includes ONNDL as a special case. Like ONNDL, our model utilizes the Huber loss function as
the robust M-estimator function, i.e.,

φiðrÞ ¼

1

2
r2 jrj < m

mjrj � 1

2
m2 otherwise

; ð3Þ

8>><
>>:

where μ is the parameter in the Huber loss.
The objective (Eq 2) cannot process large-scale datasets because it requires the entire set of

training set to reside in the memory during the learning procedure. Thus, it cannot be applied
to practical visual tracking tasks.

Optimization Algorithm. For efficient learning, the dictionary is updated in an online

fashion and sparse coding is then calculated. Let ðXiÞl 2 Rmi�nlþ denote the object samples of the
i-th modality received at the l-th frame with l� 0, where nl denotes the number of received

samples, and ðDiÞl 2 Rmi�rþ denotes the dictionary of the i-th modality. The training set is ini-
tialized by the ground truth of the first frame. At the (l+1)-th frame, OMRNDL receives

ð~XiÞlþ1 2 Rmi�dþ , and learns the dictionary (Di)l+1 and the sparse coding Vl+1 on the matrix

ðXiÞlþ1 ¼ ½ðXiÞl; ð~XiÞlþ1� 2 Rmi�nlþ1þ , where nl+1 = nl + d and (Xi)l+1 maintains samples of both
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the l-th frame and the (l + 1)-th frame. Like (Eq 2), we have

min
ðDiÞlþ12Oþ;
Vlþ1�0

f ¼ 1

2

Xg

i¼1
ai

X
j;k

φiððxijkÞlþ1 � ððDiÞlþ1Vlþ1ÞjkÞ þ lkVlþ1k1: ð4Þ

The optimization of (Eq 4) can employ the iterative reweighted least square (IRLS) method
[47]. To optimize (Eq 4), IRLS needs to recursively iterate the following two procedures until
convergence, i.e.,

min
ðDiÞlþ12Oþ;
Vlþ1�0

h ¼ 1

2

Xg

i¼1
ai
X
jk

wi
j;k ðxij;kÞlþ1 � ððDiÞlþ1Vlþ1Þjk
� �2

þ lkVlþ1k1; ð5Þ

and

wi
jk ¼ yiððxij;kÞlþ1 � ððDiÞlþ1Vlþ1ÞjkÞ; ð6Þ

where wi
jk is the weight of the k-th entry of the j-th sample of the i-th modality in the matrix

formWi and the weight function θi(rjk) of (Eq 3) is defined as follows:

yiðrjkÞ ¼
1 jrjkj < m

m
jrjkj

otherwise
: ð7Þ

8><
>:

It is relatively easier to optimize (Eq 5) than to optimize
(Eq 4). However, the objective (Eq 5) is jointly non-convex with respect to Di and V, where
i = 1, . . ., g. To efficiently optimize (Eq 5), we can iteratively optimize one factor with the other
factors fixed.

To distinguish the template update and the particle representation, we first optimize the dic-
tionaries Di, i = 1, � � �, g with V fixed. Like [15], we update each row of (Di)l+1 rather than all
the rows, as for (Di)l+1. We first find its derivative as follows:

@h

@ðDi
k�Þlþ1

¼ �ðXlþ1Þk�Li
kðVlþ1ÞT þ ðDi

k�Þlþ1Vlþ1Li
kðVlþ1ÞT ; ð8Þ

where Li
k is the diagonal matrix with the diagonal elements being the k-th row ofWi.

To keep the learned historical knowledge, we utilize the projected gradient descent method

to update ðDi
k�Þlþ1:

ðDi
k�Þlþ1 ¼ POþ ðDi

k�Þl � b
@h

@ðDi
k�Þlþ1

 !
; ð9Þ

where PO+(Y) projects the matrix Y on the domain O+, and β> 0 is the step size using 0.02 in
our experiments. To update the dictionary in an online fashion, we introduce the forgetting

factor ρ> 0, and define the following auxiliary variables: ðAi
kÞl ¼ ðXlÞk�Li

kðVlÞT and
ðBi

kÞl ¼ VlLi
kðVlÞT , and update

ðAi
kÞlþ1 ¼ rðAi

kÞl þ ð~Xlþ1Þk�ðLi
kÞlþ1ð~V lþ1ÞT ; ð10Þ
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and

ðBi
kÞlþ1 ¼ rðBi

kÞl þ ~V lþ1ðLi
kÞlþ1ð ~V lþ1ÞT : ð11Þ

According to Eqs (9), (10) and (11), we obtain

ðDi
k�Þlþ1 ¼ PþOððDi

k�Þl � bððDi
k�ÞlðBi

kÞl � ðAi
kÞlÞ: ð12Þ

Due to the symmetric property of each dictionary, we can update these dictionaries via rule

(Eq 12). Meanwhile, we merely calculate the sparse coding ~V lþ1 of ð~XiÞlþ1 rather than that of
(Xi)l+1.

To optimize V, we recursively iterate the following update rule until convergence

Vlþ1
tþ1  Vlþ1

t 	

Xg

i¼1
aiðDiÞTðWi

t 	 ðXiÞlþ1Þ
Xg

i¼1
aiðDiÞTðWi

t 	 ðDiVlþ1
t ÞÞ

; ð13Þ

and

ðwi
jkÞtþ1 ¼ yiððxij;kÞlþ1 � ððDiÞlþ1Vlþ1

tþ1ÞjkÞ; ð14Þ

where t denotes the step of the iteration round,	 signifies the element-wise product, and the
weightWi

tþ1 ¼ ðwi
jkÞtþ1. We summarize the multi-modal non-negative sparse coding and dic-

tionary learning in Table 1 and Table 2, respectively.
The main memory cost of Table 2 lies in Eqs (10) and (11), thus the space complexity is

Oðgr2 þPg
i¼1

mirÞ. Since its memory space is irrelevant to the number of samples, OMRNDL can

be applied to large-scale datasets such as video sequences.
OMRNDL Tracker. We apply OMRNDL for visual tracking-based on the particle filter

framework [48]. The particle filter framework samples a number of particles from each frame
of the video according to six affine parameters: 1) horizontal translation, 2) vertical translation,
3) scale, 4) aspect ratio, 5) rotation, and 6) skewness. These are modeled by six independent
zero-mean Gaussian distributions with six predefined variance values. Each particle is cropped
into a fixed-size pixel array according to the shape of the object and then reshaped into a long
vector. This framework tracks the target by filtering the most likely particle from each frame
according to the tracking model.

Table 1. Multi-modal Non-negative Sparse Coding.

Input Multi-modal examples Xi and the learned dictionary Di, where i = 1, � � �, g.
Output V and Wi.

1: Initialize t = 1, Wt
i using a matrix full of one and V1.

2: repeat

3: Update Vt via (Eq 13).

4: Calculate Wi
t via (Eq 14) for i = 1, � � �, g.

5: t t + 1.

6: until {The stopping criterion kht�ht�1k2kht�1k2 < ε is satisfied, where the tolerance ε is set to 10−3.}

7: V = Vt and Wi ¼ Wi
t .

doi:10.1371/journal.pone.0124685.t001
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We can choose different features as multi-modal features, such as pixel intensity, RGB
color, LBP [49], SIFT [50], HoG [51], GIST [52] and SURF [53]. Generally, LBP [49] represents
the texture of an image which is suitable for a tracked object on a uniform background. HoG
[51] achieves success in pedestrian detection because it describes the typical profile of the per-
son. SIFT [50] extracts the scale- and rotation-invariant features of the object which is helpful
for tracking objects which have drastic changes in scale and in-plane rotation. Unlike SIFT,
GIST [52] holistically represents the scale-invariant features of the object. SURF [53] is able to
learn robust features quickly. To implement our OMRNDL tracker, we select image gray pixels
and the corresponding textures as two modalities, i.e., g = 2, because they are simple and easy
to implement and work with.

Like most visual trackers, our tracker assumes that the ground-truth bounding box in the
first frame is available and regards it as an initial positive particle. We group the sampled parti-
cles into two categories: the positive particle and the negative particle. The positive particle
contains target candidates that are consecutively filtered from each frame using the particle fil-
ter framework. The negative particles contain cluttered backgrounds that are randomly selected
from all particles except the positive particle. To filter the positive particle from the total num-
ber of particles, the OMRNDL tracker learns object templates Di

o using OMRNDL (Table 2) on
the positive particles. The OMRNDL tracker constructs background templates Di

b using the
negative particles to avoid the drift problem seen in [15]. For each view, both object and back-
ground templates are adaptively updated every five frames.

By concatenating Di
o and D

i
b to form a new dictionary Di, the OMRNDL tracker represents a

particular particle v
*
over all the views by the linear combination of the dictionary:

min
h
*

Xg

i¼1
ai
X
jk

φið v*jk � ðDi h
*Þjk Þ þ lk h* k1; ð15Þ

where Di ¼ ½Di
o;D

i
b� and h

*

are decomposed into two components, h
* ¼ ½h*o; h

*

b�. The objective
(Eq 15) can be solved by Table 1. Additionally, (Eq 15) implies that the non-negative particle

v
*
can be viewed as the summation of two non-negative components, i.e., Di

o h
*

o and D
i
b h
*

b, and
that these reflect the contributions of the object and background template, respectively. The
more difference there is between the two components, the more likely it is that the candidate

Table 2. Online Multi-modal Robust Non-negative Dictionary Learning (OMRNDL).

Input: The arriving multi-modal examples ð~X~iÞlþ1, the auxiliary variables ðAi
kÞl and ðBi

kÞl, and the learned
dictionary (Di)l, where i = 1, � � �, g.
Output: The learned dictionaries (Di)l+1, ðAi

kÞlþ1 and ðBi
kÞlþ1, where i = 1, � � �, g.

1: Initialize t = 1, ðAi
kÞl1 and ðBi

kÞl1.
2: repeat

3: Calculate the sparse coding ð~V~Þlþ1 and the weight Wi by Table 1.

4: Calculate ðAi
kÞlt and ðBi

kÞlt with Eqs (10) and (11), respectively.

5: Update ðDiÞlt via (Eq 12), for i = 1, � � �, g.
6: t t + 1.

7: until {The stopping criterion kht�ht�1k2kht�1k2 < ε is satisfied, where the tolerance ε is set to 10−2.}

8: ðDiÞlþ1 ¼ ðDiÞlt, ðAiÞlþ1 ¼ ðAiÞlt and ðBiÞlþ1 ¼ ðBiÞlt.
doi:10.1371/journal.pone.0124685.t002
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particle is positive. Therefore, the OMRNDL tracker calculates a weight for each particle over
all the modalities:

r ¼ e
�d
Xg

i¼1
aiðkDi

o h
*

ok1�kDi
b
h
*

bk1Þ

 !
;

ð16Þ

where δ denotes a predefined constant that favors object templates rather than background
templates and e denotes the exponential function. The higher the weight, the more likely it it
that the particle contains the target, thus we select the candidate with the highest weighted par-
ticle as the tracking result. The OMRNDL tracker is presented in Table 3.

To observe the importance of the integration of both modalities, we separately test
OMRNDL and ONNDL to compare the weights of the particles which are crucial for the choice

Fig 1. Comparisons between OMRNDL and ONNDL on the frames 81–85 of david3. The figure compares the weights of the most likely candidates, and
the basis learned by OMRNDL and ONNDL on the frames 81–85 of david3, respectively. The first row denotes the video frames together with the bounding
box obtained by OMRNDL (in red) and ONNDL (in green), respectively. The second and third rows show the tracking procedures of OMRNDL and ONNDL
for determining the positive particles, respectively. The higher the weight assigned for the candidate, the more likely it is the positive particle, and thus we
select the candidate with the highest weights as the tracking particle. To show the advantage of OMRNDL, each row still contains two sub-rows: 1) the
selected particle and the corresponding weight, and 2) the learned basis and the weights of all the particles.M1,M2 andCM denote the weights of the
selected particles when using the gray pixel intensity, the LBP descriptor and their combination, respectively.

doi:10.1371/journal.pone.0124685.g001
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of the positive particles. Fig 1 depicts the tracking procedures of both OMRNDL and ONNDL
over the frames 81–85 of david3, where the object is occluded by a tree. Due to such occlusion,
ONNDL fails to select the positive particle while OMRNDL succeeds to do that by taking the
advantage of combing two modalities. In Fig 1,M1,M2 and CM denote the weights of the parti-
cles when using the gray pixel intensities, the LBP descriptor and fuse of them, respectively.

Fig 1 shows that theM1 values of both OMRNDL and ONNDL are significantly different,
and the former is much larger than the latter. This mainly results from the difference between
qualities of their learned dictionaries. This also implies that OMRNDL can learn more dynamic
appearances than ONNDL because of the integration of both modalities. For the selection of
positive particles, the second row of Fig 1 shows thatM1 in frames 82 and 83 are relatively larg-
er butM2 are smaller, while the opposite situations happen in frames 84 and 85, i.e., eitherM1

orM2 is insufficient for assigning high weight for targeted particle. However, the OMRNDL
tracker can consistently adopt the combined weights to assign the highest CM weights for the
positive particles. This is because the resultant CM weights can avoid biasing any single modal-
ity. Thus, the OMRNDL tracker can boost the tracking performance of ONNDL by making use
of multiple modalities.

Experiments
This section validates the OMRNDL tracker by comparing it with IVT [54], L1T [2], TLD [55],
VTD [56], Frag [57], MIL [58], NMF tracker(NMFT) [59], IOPNMF tracker(IOPNMFT) [60]
and ONNDL [15] on twenty-two video sequences from the popular benchmark [16] including
basketball, bolt, boy, car4, carDark, carScale, crossing, david, david2, david3, deer, faceocc1,
faceocc2, fish, football, mountainBike, shaking, skating1, trellis, walking, walking2 and woman.
These sequences are publicly available online at http://cvlab.hanyang.ac.kr/tracker_
benchmark_v10.html, and include a range of appearance variations such as drastic change in
illumination and the presence of occlusion. The challenges of these video sequences are listed
in Table 4. It reflects that these benchmarks cover most categories of challenges. We implement
the interfaces of NMFT, IOPNMFT, ONNDL and OMRNDL under the benchmark framework
[16], and conduct the experiments by running the benchmark code.

Our tracker was implemented in Matlab R2010a on a workstation which contains four
3.4GHz Intel (R) Core (TM) processors and 8GB RAM. To make use of multi-modal features,
we extracted two types of features: pixel intensities and local binary patterns (LBP, [49]). For

Table 3. OMRNDL Tracker.

Input: The (l + 1)-th video frame Il+1.

Output: Tracking location Il+1(v*).

1: Sample a set of candidate particles fvigKk¼1, where vi denotes the i-th particle, using the particle filter
framework. Then transform them into multi-modal features.

2: Update the object templates Di
o by OMRNDL according to the multi-modal features of the previously

collected positive particles, if the number of particles meets the predefined constant. Otherwise, perform
line 3 directly.

3: Use both the background templates Di
b and the object templates Di

o of the total modalities to yield the
weights ρ(Il+1(vk)) of each candidate particle using (Eq 16).

4: Select the positive particle by i ¼ argmaxk¼1;���;K rðIlþ1ðvkÞÞ.
5: Il+1(v*) = Il+1(vi).

doi:10.1371/journal.pone.0124685.t003
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the OMRNDL tracker, we set all parameters αi from {0.5, 1, 2}, λ = 1 and ρ = 0.99 in our experi-
ments. Its current implementation runs at the rate of about 5–20 frames per second (fps).

Qualitative Comparison
Fig 2 shows key frame bounding boxes reported by all ten trackers on the 22 video sequences.
In the basketball, bolt and boy sequences, the tracked targets are persons moving very quickly.
In basketball, the video sequences exhibit background clutter when many players run together.
In bolt, the tracked object is small with low resolution and shows drastic changes in pose. In
boy, the head of the target changes quickly. Fig 2(a) and 2(b) shows that our OMRNDL per-
forms consistently well in all three video sequences. In the car4, carDark and carScale se-
quences, moving cars are being driven on the road in day, night and field environments. In
car4, the video sequences undergo serious illumination changes when the vehicle runs through
a tunnel or under trees. In carDark, the tracked car is small with low contrast and small
changes in illumination. In carScale, the scale of the target car changes drastically. Fig 2(b) and
2(c) shows that NMFT, IOPNMFT, ONNDL and OMRNDL succeed in tracking the target in
all three video sequences. In the crossing sequence, the target walks cross the road in dark
shade, which blurs the target. Fig 2(d) shows that IVT, MIL, NMFT and OMRNDL remove the
effect of the dark shade to successfully track the person. In david, david2 and david3, the video
sequences record David in indoor and outdoor environments. According to Figs 2(d) and 3(a),

Table 4. Challenges of Tested Sequences.

Video Illumination Occlusion Scaling Motion Cluttering Rotation Deformation

basketball ✓ ✓ ✓ ✓ ✓

bolt ✓ ✓ ✓

boy ✓ ✓ ✓ ✓

car4 ✓ ✓ ✓ ✓

carDark ✓ ✓

carScale ✓ ✓ ✓ ✓

crossing ✓ ✓ ✓ ✓ ✓

david ✓ ✓ ✓ ✓

david2 ✓

david3 ✓ ✓ ✓ ✓

deer ✓ ✓ ✓

faceocc1 ✓

faceocc2 ✓ ✓ ✓

fish ✓

football ✓ ✓ ✓

mountainBike ✓ ✓

shaking ✓ ✓ ✓ ✓

skating1 ✓ ✓ ✓ ✓ ✓ ✓

trellis ✓ ✓ ✓ ✓

walking ✓ ✓ ✓

walking2 ✓ ✓

woman ✓ ✓ ✓ ✓ ✓

Each row stands for a video sequence while each column denotes a challenge. Thus, the location of ‘✓’ indicates that the video sequence covers the

corresponding challenge.

doi:10.1371/journal.pone.0124685.t004
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both ONNDL and OMRNDL benefit from adaptive dictionaries and consistently demonstrate
stable performance in david and david2. In david3, although he undergoes the complete occlu-
sion when David walks through the tree, OMRNDL still tracks him successfully. The deer se-
quences shown in the first row of Fig 3(b) track the head of a fast moving deer. The
background easily induces drift in the trackers due to the similarity of several deer. OMRNDL
succeeds in tracking the object completely. In both faceocclu1 and faceocclu2, shown in Fig 3(b)
and 3(c), the drastic occlusion changes result in extensive drift of the trackers in some frames.
However, both ONNDL and OMRNDL perform stably. In fish, the unstable camera makes the
target appear to be moving quickly. Fig 3(c) shows that OMRNDL performs stably. In football,
the tracked hat of the football player is often cluttered by the similar background. As shown in
Fig 3(d), OMRNDL, L1T and Frag perform well in this sequence compared with the other
trackers. InmountainBike, OMRNDL still performs well. In shaking and skating1, the tracked
targets of three sequences are exposed to drastic changes in illumination on the stage. Row (a)
of Fig 4 shows that OMRNDL consistently performs better than other trackers. In trellis, the
target walks in a black background while undergoing a change in illumination. The dark back-
ground causes many trackers to drift, but OMRNDL still performs well. In walking, a man un-
dergoes a scale change in the scene, while walking2 includes a walker walking down an aisle.

Fig 2. The tracking results of ten trackers in terms of the bounding box. The tracking results of IVT, L1T, TLD, VTD, Frag, MIL, NMFT, IOPNMFT,
ONNDL and OMRNDL on (a) basketball & boy, (b) bolt & car4, (c) carDark & carScale, and (d) crossing & david.

doi:10.1371/journal.pone.0124685.g002
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However, the second row of Fig 4(b) shows that most trackers perform well in walking. The tar-
get in walking 2 undergoes partial occlusion when someone walks behind him. In woman, the
tracked woman is partially occluded by cars. This often induces drift in many trackers, but
both ONNDL and OMRNDL succeed in tracking the subject.

Quantitative Comparison
To quantify the performance of OMRNDL for visual tracking, we evaluate the trackers com-
pared [2, 15, 54–58] in terms of success rate and precision [16]. The OMRNDL tracker reports
high success rates for most of the tested videos under different attributions, such as variations
in illumination and scale.

Fig 5 compares the success rate of ten tested trackers on 22 video sequences. OMRNDL per-
forms very better compared with the other trackers under most of attributions such as motion
blur and low resolution. It also shows that OMRNDL can effectively handle illumination varia-
tions, scale changes, background clutter, motion blur, etc., and thus it can works well for object
tracking. This is attributed to the integration among multi-modal features and effective repre-
sentation power of the learned robust dictionaries.

Fig 3. The tracking results of ten trackers in terms of the bounding box. The tracking results of IVT, L1T, TLD, VTD, Frag, MIL, NMFT, IOPNMFT,
ONNDL and OMRNDL on (a) david2 & david3, (b) deer & faceocc1, (c) faceocc2 & fish, and (d) football &mountainBike.

doi:10.1371/journal.pone.0124685.g003
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Fig 4. The tracking results of ten trackers in terms of the bounding box. The tracking results of IVT, L1T, TLD, VTD, Frag, MIL, NMFT, IOPNMFT,
ONNDL and OMRNDL on (a) shaking & skating1, (b) trellis &walking, and (c)walking2 &woman.

doi:10.1371/journal.pone.0124685.g004

Fig 5. Success rate of ten trackers versus different thresholds under different attributions on twenty-two video sequences. Success rate of ten
trackers versus different thresholds under different attributions including illumination variation, rotation, scale variation, occlusion, deformation, motion blur,
fast motion, background clutter and low resolution on twenty-two video sequences.

doi:10.1371/journal.pone.0124685.g005
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The precision of ten tested trackers on 22 video sequences is shown in Fig 6. OMRNDL
achieves consistently better performance than the other trackers under different attributions
and has the highest precision. It also indicates that OMRNDL can tightly enclose the targeted
objects in all the tested sequences because it can robustly learn dictionaries for each modality
to represent the tracked object in an adaptive manner. This induces the robustness of
OMRNDL to different challenges and further avoids the object drifting.

In summary, the OMRNDL tracker outperforms the other trackers in terms of both success
rate and precision, and performs consistently well on a variety of videos.

Conclusion
This paper proposes an efficient online multi-modal robust dictionary learning (OMRNDL)
method to learn a non-negative dictionary for each view in an online fashion. OMRNDL learns
the common semantic representation from multiple visual cues, and thus enhances the robust-
ness of the sparse coding to outliers, e.g., particles that contain no target. Since OMRNDL
keeps the memory overheads constant when dealing with streaming datasets, it is well-suited
to tracking a single target on flying videos. Experimental results on a well-known challenging
video benchmark suggest its effectiveness by both quantitative comparison and
qualitative comparison.
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