
On Tree-Preserving Constraints

Shufeng Kong1, Sanjiang Li1?, Yongming Li2, and Zhiguo Long1

1 QCIS, FEIT, University of Technology Sydney, Australia
Shufeng.Kong@student.uts.edu.au

Sanjiang.Li@uts.edu.au
Zhiguo.Long@student.uts.edu.au

2 College of Computer Science, Shaanxi Normal University, China
liyongm@snnu.edu.cn

Abstract. Tree convex constraints are extensions of the well-known row convex
constraints. Just like the latter, every path-consistent tree convex constraint net-
work is globally consistent. This paper studies and compares three subclasses of
tree convex constraints which are called chain-, path- and tree-preserving con-
straints respectively. While the tractability of the subclass of chain-preserving
constraints has been established before, this paper shows that every chain- or
path-preserving constraint network is in essence the disjoint union of several in-
dependent connected row convex constraint networks, and hence (re-)establish
the tractability of these two subclasses of tree convex constraints. We further
prove that, when enforcing arc- and path-consistency on a tree-preserving con-
straint network, in each step, the network remains tree-preserving. This ensures
the global consistency of the tree-preserving network if no inconsistency is de-
tected. Moreover, it also guarantees the applicability of the partial path-consistency
algorithm to tree-preserving constraint networks, which is usually more efficient
than the path-consistency algorithm for large sparse networks. As an application,
we show that the class of tree-preserving constraints is useful in solving the scene
labelling problem.

1 Introduction

Constraint satisfaction problems (CSPs) have been widely used in many areas, such as
scene labeling [10], natural language parsing [15], picture processing [16], and spatial
and temporal reasoning [5,14]. Since deciding consistency of CSP instances is NP-hard
in general, lots of efforts have been devoted to identify tractable subclasses. These sub-
classes are usually obtained by either restricting the topology of the underlying graph
of the constraint network (being a tree or having treewidth bounded by a constant) or
restricting the type of the allowed constraints between variables (cf. [17]).

In this paper, we are mainly interested in the second type of restriction. Monta-
nari [16] shows that path-consistency is sufficient to guarantee that a network is glob-
ally consistent if the relations are all monotone. Van Beek and Dechter [17] generalise
monotone constraints to a larger class of row convex constraints, which are further gen-
eralised to tree convex constraints by Zhang and Yap [20]. These constraints also have
the nice property that every path-consistent constraint network is globally consistent.
? Corresponding author.



However, neither row convex constraints nor tree convex constraints are closed un-
der composition and intersection, the main operations of path-consistent algorithms.
This means enforcing path-consistency may destroy row and tree-convexity. Deville et
al. [6] propose a tractable subclass of row convex constraints, called connected row con-
vex (CRC) constraints, which are closed under composition and intersection. Zhang and
Freuder [18] also identify a tractable subclass for tree convex constraints, called locally
chain convex and strictly union closed constraints. They also propose the important no-
tion of consecutive constraints. Kumar [13] shows that the subclass of arc-consistent
consecutive tree convex (ACCTC) constraints is tractable by providing a polynomial
time randomised algorithm. But, for the ACCTC problems, “it is not known whether
there are efficient deterministic algorithms, neither is it known whether arc- and path-
consistency ensures global consistency on those problems.” [18]

In this paper, we study and compare three subclasses of tree convex constraints
which are called, respectively, chain-, path- and tree-preserving constraints. Chain-
preserving constraints are exactly “locally chain convex and strictly union closed” con-
straints and ACCTC constraints are strictly contained in the subclass of tree-preserving
constraints. We first show that every chain- or path-preserving constraint network is in
essence the disjoint union of several independent CRC constraint networks and then
prove that enforcing arc- and path-consistency on a tree-preserving constraint network
ensures global consistency. This provides an affirmative answer to the above open prob-
lem raised in [18]. Note also that our result is more general than that of Kumar [13] as
we do not require the constraint network to be arc-consistent. Moreover, when enforc-
ing arc- and path-consistent on a tree-preserving constraint network, in each step, the
network remains tree-preserving. This guarantees the applicability of the partial path-
consistency algorithm [2] to tree-preserving constraint networks, which is usually more
efficient than the path-consistency algorithm for large sparse networks. We further show
that a large subclass of the trihedral scene labelling problem [10,12] can be modelled
by tree-preserving constraints.

In the next section, we introduce basic notations and concepts that will be used
throughout the paper. Chain-, path-, and tree-preserving constraints are discussed in
Sections 3, 4, and 5, respectively. Application of tree-preserving constraints in the scene
labelling problem is shown in Section 6. Section 7 briefly discusses the connection with
majority operators [11] and concludes the paper.

2 Preliminaries

Let D be a domain of a variable x. A graph structure can often be associated to D such
that there is a bijection between the vertices in the graph and the values in D. If the
graph is connected and acyclic, i.e. a tree, then we say it is a tree domain of x. Tree
domains arise naturally in e.g. scene labeling [18] and combinatorial auctions [4]. We
note that, in this paper, we have a specific tree domain Dx for each variable x.

In this paper, we distinguish between tree and rooted tree. Standard notions from
graph theory are assumed. In particular, the degree of a node a in a graph G, denoted
by deg(a), is the number of neighbors of a in G.



Definition 1. A tree is a connected graph without any cycle. A tree is rooted if it has
a specified node r, called the root of the tree. Given a tree T , a subgraph I is called a
subtree of T if I is connected. An empty set is a subtree of any tree.

Let T be a (rooted) tree and I a subtree of T . I is a path (chain, resp.) in T if each
node in I has at most two neighbors (at most one child, resp.) in I . Given two nodes
p, q in T , the unique path that connects p to q is denoted by πp,q .

Suppose a is a node of a tree T . A branch of a is a connected component of T \{a}.

Throughout this paper, we always associate a subtree with its node set.

Definition 2. A binary constraint has the form (xδy), where x, y are two variables with
domains Dx and Dy and δ is a binary relation from Dx to Dy , or δ ⊆ Dx ×Dy . For
simplicity, we often denote by δ this constraint. A value u ∈ Dx is supported if there
exists a value v in Dy s.t. (u, v) ∈ δ. In this case, we say v is a support of u. We say a
subset F of Dx is unsupported if every value in F is not supported. Given A ⊆ Dx, the
image of A under δ is defined as δ(A) = {b ∈ Dy : (∃a ∈ A)(a, b) ∈ δ}. For A = {a}
that contains only one value, without confusion, we also use δ(a) to represent δ({a}).

A binary constraint network consists of a set of variables V = {x1, x2, ..., xn} with
a finite domain Di for each variable xi ∈ V , and a set ∆ of binary constraints over the
variables of V . The usual operations on relations, e.g., intersection (∩), composition
(◦), and inverse (−1), are applicable to constraints. As usual, we assume that there is at
most one constraint for any ordered pair of variables (x, y). Write δxy for this constraint
if it exists. In this paper, we always assume δxy is the inverse of δyx, and if there is no
constraint for (x, y), we assume δxy is the universal constraint.

Definition 3. [8,9] A constraint network ∆ over n variables is k-consistent iff any
consistent instantiation of any distinct k − 1 variables can be consistently extended to
any k-th variable. We say ∆ is strongly k-consistent iff it is j-consistent for all j ≤ k;
and say ∆ is globally consistent if it is strongly n-consistent. 2- and 3-consistency are
usually called arc- and path-consistency respectively.

Definition 4. Let x, y be two variables with finite tree domains Tx = (Dx, Ex) and
Ty = (Dy, Ey) and δ a constraint from x to y. We say δ, w.r.t. Tx and Ty , is

- tree convex if the image of every value a in Dx (i.e. δ(a)) is a (possibly empty)
subtree of Ty;

- consecutive if the image of every edge in Tx is a subtree in Ty;
- path-preserving if the image of every path in Tx is a path in Ty .
- tree-preserving if the image of every subtree in Tx is a subtree in Ty .

In case Tx and Ty are rooted, we say δ, w.r.t. Tx and Ty , is

- chain-preserving if the image of every chain in Tx is a chain in Ty .

Chain-preserving constraints are exactly those “locally chain convex and strictly union
closed” constraints defined in [18].

CRC constraints are special tree convex constraints defined over chain domains.
The following definition of CRC constraints is equivalent to the one given in [6].



Definition 5. Let x, y be two variables with finite tree domains Tx and Ty , where Tx
and Ty are chains. A constraint δ from x to y is connected row convex (CRC), w.r.t. Tx
and Ty , if both δ and δ−1 are chain-preserving.

The class of CRC constraints is tractable and closed under intersection, inverse, and
composition [6].

Definition 6. A binary constraint network ∆ over variables in V and tree domains
Tx (x ∈ V ) is called tree convex, chain-, path-, or tree-preserving if every constraint
δ ∈ ∆ is tree convex, chain-, path-, or tree-preserving, respectively. A CRC constraint
network is defined similarly.

Proposition 1. Every chain-, path-, or tree-preserving constraint (network) is con-
secutive and every path-preserving constraint (network) is tree-preserving. Moreover,
every arc-consistent consecutive tree convex (ACCTC) constraint (network) is tree-
preserving.

Not every consecutive tree convex constraint (or chain-preserving constraint) is tree-
preserving, but such a constraint becomes tree-preserving if it is arc-consistent.

Lemma 1. [20] Let T be a tree and suppose ti (i = 1, .., n) are subtrees of T . Then⋂n
i=1 ti is nonempty iff ti ∩ tj is nonempty for every 1 ≤ i 6= j ≤ n.

Lemma 2. Let T be a tree and t, t′ subtrees of T . Suppose {u, v} is an edge in T . If
u ∈ t and v ∈ t′, then t ∪ t′ is a subtree of T ; if, in addition, u 6∈ t′ and v 6∈ t, then
t ∩ t′ = ∅.

Using Lemma 1, Zhang and Yap [20] proved

Theorem 1. A tree-convex constraint network is globally consistent if it is path-consistent.

3 Chain-Preserving Constraints

Zhang and Freuder [18] have proved that any consistent chain-preserving network can
be transformed to an equivalent globally consistent network by enforcing arc- and path-
consistency. This implies that the class of chain-preserving constraints is tractable. We
next show that every chain-preserving constraint network ∆ can be uniquely divided
into a small set of k CRC constraint networks ∆1, ...,∆k s.t. ∆ is consistent iff at least
one of ∆i is consistent.

We first recall the following result used in the proof of [18, Theorem 1].

Proposition 2. Let ∆ be a chain-preserving constraint network over tree domains Tx
(x ∈ V ). If no inconsistency is detected, then ∆ remains chain-preserving after enforc-
ing arc-consistency.

We note that these tree domains over variables in V may need adjustment in the
process of enforcing arc-consistency. Here by adjustment we mean adding edges to the
tree structure so that it remains connected when unsupported values are deleted.



Definition 7. Let T be a tree with root. A chain [a, a∗] in T is called an irreducible
perfect chain (ip-chain) if (i) a is the root or has one or more siblings; (ii) a∗ is a leaf
node or has two or more children; and (iii) every node in [a, a∗) has only one child.

Note that it is possible that a = a∗. In fact, this happens when a is the root or has one or
more siblings and has two or more children. An ip-chain as defined above is a minimum
chain which satisfies (1) in the following lemma.

Lemma 3. Suppose δxy and δyx are arc-consistent and chain-preserving w.r.t. rooted
trees Tx and Ty . Assume [a, a∗] ⊆ Tx is an ip-chain. Then

δyx(δxy([a, a∗])) = [a, a∗] (1)

and δxy([a, a∗]) is also an ip-chain in Ty .

Proof. W.l.o.g., we suppose â is the parent of a, a′ is a sibling of a, and a1, a2, ..., ak
(k ≥ 2) are the children of a∗.

Because δxy and δyx are arc-consistent and chain-preserving, δxy([a, a∗]) is a non-
empty chain in Ty , written [b, b∗], and so is δyx([b, b∗]). Suppose δyx([b, b∗]) is not
[a, a∗]. This implies that either â or one of a1, a2, ..., ak is in δyx([b, b∗]).

Suppose â ∈ δyx([b, b∗]). Then there exists b̂ ∈ [b, b∗] such that (â, b̂) ∈ δxy .
By b̂ ∈ [b, b∗] = δxy([a, a∗]), we have a+ ∈ [a, a∗] s.t. (a+, b̂) ∈ δxy . There-
fore, [â, a+] is contained in δyx(δxy({â})). Recall that a′ is a sibling of a. Because
δyx(δxy([â, a′])) contains â, a′, a+, it cannot be a chain in Tx. A contradiction. There-
fore, â 6∈ δyx([b, b∗]).

Suppose, for example, a1 ∈ δyx([b, b∗]). Then there exist b′ ∈ [b, b∗] s.t. (a1, b
′) ∈

δxy and ā ∈ [a, a∗] s.t. (ā, b′) ∈ δxy . We have δyx(δxy({ā}) ⊇ [ā, a1] and δyx(δxy([ā, a2])
contains {ā, a1, a2}, which is not a subset of a chain. Therefore, ai 6∈ δyx([b, b∗]).

So far, we have proved δyx(δxy([a, a∗])) = [a, a∗]. We next show [b, b∗] is also
an ip-chain. First, we show every node in [b, b∗) has only one child. Suppose not and
b′ ∈ [b, b∗) has children b1, b2 with b1 ∈ (b′, b∗]. Since δxy([â, a∗]) is a chain that
contains [b, b∗], we know (â, b2) is not in δxy . Furthermore, as δyx({b′, b2}) is a chain
in Tx and the image of b2 is disjoint from [a, a∗], we must have (ai, b2) ∈ δxy for some
child ai of a∗. Note that then δxy([a, ai]) contains [b, b∗] and b2 and thus is not a chain.
This contradicts the chain-preserving property of δxy . Hence, every node in [b, b∗) has
only one child. In other words, [b, b∗] is contained in an ip-chain [u, v].

By the result we have proved so far, we know δxy(δyx([u, v])) = [u, v] and δyx([u, v])
is contained in an ip-chain in Tx. Because [a, a∗] = δyx([b, b∗]) ⊆ δyx([u, v]) is an ip-
chain, we know δyx([u, v]) is exactly [a, a∗]. Therefore, we have [u, v] = δxy(δyx([u, v]))
= δxy([a, a∗]) = [b, b∗]. This proves that [b, b∗] is an ip-chain in Ty . ut

Using the above result, we can break Tx into a set of ip-chains by deleting the edges
from each node a to its children if a has two or more children. Write Ix for the set of
ip-chains of Tx. Similar operation and notation apply to Ty . It is clear that two different
ip-chains in Ix are disjoint and δxy naturally gives rise to a bijection from Ix to Iy .

Lemma 4. Suppose ∆ is an arc-consistent and chain-preserving constraint network
over tree domains Tx (x ∈ V ). Fix a variable x ∈ V and let Ix = {I1x, ..., I lx} be



the set of ip-chains of Tx. Then, for every y 6= x in V , the set of ip-chains in Ty is
{δxy(I1x), δxy(I2x), ..., δxy(I lx)}. Write ∆i for the restriction of ∆ to Iix. Then each ∆i

is a CRC constraint network and ∆ is consistent iff at least one ∆i is consistent.

The following result asserts that the class of chain-preserving constraints is tractable.

Theorem 2. Let ∆ be a chain-preserving constraint network. If no inconsistency is
detected, then enforcing arc- and path-consistency determines the consistency of∆ and
transforms ∆ into a globally consistent network.

Proof. First, by Proposition 2, we transform∆ into an arc-consistent and chain-preserving
constraint network if no inconsistency is detected. Second, by Lemma 4, we reduce the
consistency of ∆ to the consistency of the CRC constraint networks ∆1, ...,∆l. By
[6], we know enforcing path-consistency transforms a CRC constraint network into
a globally consistent one if no inconsistency is detected. If enforcing arc- and path-
consistency does not detect any inconsistency, then the result is a set of at most l glob-
ally consistent CRC networks ∆′i, the union of which is globally consistent and equiv-
alent to ∆. ut

Lemma 4 also suggests that we can use the variable elimination algorithm for CRC
constraints [19] to more efficiently solve chain-preserving constraints.

4 Path-Preserving Constraints

Fig. 1. (a) A chain- but not path-preserving constraint; (b) A path- but not chain-preserving con-
straint; (c) A tree-preserving but neither path- nor chain-preserving constraint.

At first glance, path-preserving constraints seem to be more general than chain-
preserving constraints, but Fig. 1(a,b) show that they are in fact incomparable.

We show the class of path-preserving constraints is also tractable by establishing its
connection with CRC constraints.

We have the following simple results.

Lemma 5. Suppose δxy and δyx are path-preserving (tree-preserving) w.r.t. tree do-
mains Tx and Ty . Let t be a subtree of Tx and δ′xy and δ′yx the restrictions of δxy and
δyx to t. Then both δ′xy and δ′yx are path-preserving (tree-preserving).



Lemma 6. Suppose δxy is nonempty and path-preserving (tree-preserving) w.r.t. tree
domains Tx and Ty . If v ∈ Ty has no support in Tx under δyx, then all supported nodes
of Ty are in the same branch of v. That is, every node in any other branch of v is not
supported under δyx.

Proof. Suppose a, b are two supported nodes in Ty . There exist u1, u2 in Tx s.t. u1 ∈
δyx(a) and u2 ∈ δyx(b). By δyx = δ−1xy , we have a ∈ δxy(u1) and b ∈ δxy(u2). Hence
a, b ∈ δxy(πu1,u2

). Since δxy is path-preserving (tree-preserving), δxy(πu1,u2
) is a path

(tree) in Ty . If a, b are in two different branches of v, then πa,b must pass v and hence
we must have v ∈ δxy(πu1,u2). This is impossible as v has no support. ut

It is worth noting that this lemma does not require δyx to be path- or tree-preserving.
The following result then follows directly.

Proposition 3. Let ∆ be a path-preserving (tree-preserving) constraint network over
tree domains Tx (x ∈ V ). If no inconsistency is detected, then∆ remains path-preserving
(tree-preserving) after enforcing arc-consistency.

Proof. Enforcing arc-consistency on ∆ only removes values which have no support
under some constraints. For any y ∈ V , if v is an unsupported value in Ty , then, by
Lemma 6, every supported value of Ty is located in the same branch of v. Deleting all
these unsupported values from Ty , we get a subtree t of Ty . Applying Lemma 5, the
restricted constraint network to t remains path-preserving (tree-preserving). ut

Definition 8. Let T be a tree. A path π in T is maximal if there exists no path π′ in T
that strictly contains π.

We need three additional lemmas to prove the main result.

Lemma 7. Suppose δxy and δyx are arc-consistent and path-preserving w.r.t. tree do-
mains Tx and Ty . If π is a maximal path in Tx, then δxy(π) is a maximal path in Ty .

Lemma 8. Suppose δxy and δyx are arc-consistent and path-preserving w.r.t. Tx and
Ty . Assume a is a node in Tx with deg(a) > 2. Then there exists a unique node b ∈ Ty
s.t. (a, b) ∈ δxy . Moreover, deg(a) = deg(b).

Proof. Suppose π = a0a1...ak is a maximal path in Tx and π∗ = b0b1...bl is its image
under δxy in Ty . W.l.o.g. we assume k, l ≥ 1. Suppose ai is a node in π s.t. deg(ai) > 2
and a′ 6∈ π is another node in Tx s.t. {ai, a′} is an edge in Tx. Suppose δxy(ai) =
[bj , bj′ ] and j′ > j.

Because π is a maximal path and π∗ is its image, we know δxy(a′) ∩ π∗ = ∅.
Consider the edge {a′, ai}. Since δxy({a′, ai}) is a path in Ty , there exists a node b′ ∈
δxy(a′) s.t. either {b′, bj} or {b′, bj′} is an edge in Ty . Suppose w.l.o.g. {b′, bj′} is in
Ty . Note that π∗ = [b0, bl] is contained in the union of δxy([a′, a0]) and δxy([a′, ak]). In
particular, bl is in either δxy([a′, a0]) or δxy([a′, ak]). Let us assume bl ∈ δxy([a′, a0]).
Then bl, bj , bj′ , b′ (which are not on any path) are contained in the path δxy([a′, a0]), a
contradiction. Therefore, our assumption that δxy(ai) = [bj , bj′ ] and j′ > j is incorrect.
That is, the image of ai under δxy is a singleton, say, {bj}. We next show deg(bj) =
deg(ai).



Because δxy(ai) = {bj}, the image of each neighbor of ai in Tx must contain a
neighbor of bj , as δxy is path-preserving. Moreover, two different neighbors a′i, a

′′
i of

ai cannot map to the same neighbor b′j of bj . This is because the image of b′j under δyx,
which is a path in Tx, contains a′i and a′′i , and hence also contains ai. This contradicts
the assumption δxy(ai) = {bj}. This shows that deg(ai) = deg(bj). ut

Definition 9. Let T be a tree. A path π from a to a∗ in T is called an irreducible perfect
path (ip-path) if (i) every node on path π has degree 1 or 2; and (ii) any neighbour of a
(or a∗) that is not on π has degree 3 or more.

Let Fx = {a ∈ Tx : deg(a) > 2} and Fy = {b ∈ Ty : deg(b) > 2}. Then δxy ,
when restricted to Fx, is a bijection from Fx to Fy . Removing all edges incident to a
node in Fx, we obtain a set of pairwise disjoint paths in Tx. These paths are precisely
the ip-paths of Tx. Write Px for this set. Then δxy induces a bijection from Px to Py .

Lemma 9. Suppose ∆ is an arc-consistent and path-preserving constraint network
over tree domains Tx (x ∈ V ). Fix a variable x ∈ V and let Px = {π1

x, ..., π
l
x}

be the set of ip-paths in Tx. Then, for every y 6= x, the set of ip-paths in Ty is
{δxy(π1

x), ..., δxy(πl
x)}. Write ∆i for the restriction of ∆ to πi

x. Then each ∆i is a
CRC constraint network and ∆ is consistent iff at least one ∆i is consistent.

Thus the class of path-preserving constraints is tractable.

Theorem 3. Let ∆ be a path-preserving constraint network. If no inconsistency is de-
tected, then enforcing arc- and path-consistency determines the consistency of ∆ and
transforms ∆ into a globally consistent network.

The proof is analogous to that of Theorem 2. Lemma 9 suggests that we can use the
variable elimination algorithm for CRC constraints [19] to more efficiently solve path-
preserving constraints.

5 Tree-Preserving Constraints

It is easy to see that every arc-consistent chain- or path-preserving constraint is tree-
preserving, but Fig. 1(c) shows that the other direction is not always true.

In this section, we show that the class of tree-preserving constraints is tractable.
Given a tree-preserving constraint network ∆, we show that, when enforcing arc- and
path-consistency on ∆, in each step, the network remains tree-preserving. Hence, en-
forcing arc- and path-consistency on ∆ will transform it to an equivalent globally con-
sistent network if no inconsistency is detected. Moreover, we show that the partial path-
consistency algorithm (PPC) of [2] is applicable to tree-preserving constraint networks.
PPC is more efficient than path-consistency algorithm for large sparse constraints.

5.1 Enforcing Arc- and Path-Consistency Preserves Tree-Preserving

Unlike CRC and chain-preserving constraints, removing a value from a domain may
change the tree-preserving property of a network. Instead, we need to remove a ‘trunk’
from the tree domain or just keep one branch.



Definition 10. Suppose a 6= b are two nodes of a tree T that are not neighbors. The
trunk between a, b, written Mab, is defined as the connected component of T \ {a, b}
which contains all internal nodes of πa,b (see Fig.2). The M-contraction of T by Ma,b,
denoted by T 	Ma,b, is the tree obtained by removing nodes in Ma,b and adding an
edge {a, b} to T .

Fig. 2. Mab is a trunk of tree T .

Lemma 10. Suppose δxy and δyx are arc-consistent and tree-preserving w.r.t. tree do-
mains Tx and Ty . Suppose a, b are two nodes in Tx s.t. δxy(a)∪δxy(b) is not connected
in Ty . Then there exist r, s ∈ Ty s.t. r ∈ δxy(a), s ∈ δxy(b), and δyx(Mr,s) ⊆Ma,b. Let
T ∗y be the domain obtained by deleting from Ty all nodes v s.t. δyx(v) ⊆Ma,b. Then T ∗y
becomes a tree if we add the edge {r, s}. Moreover, δxy and δyx remain arc-consistent
and tree-preserving when restricted to Tx 	Ma,b and T ∗y .

Proof. Choose r ∈ δxy(a) and s ∈ δxy(b) such that the path πr,s from r to s in Ty
is a shortest one among {πr′,s′ : r′ ∈ δxy(a), s′ ∈ δxy(b)}. In particular, we have
πr,s ∩ (δxy(a) ∪ δxy(b)) = {r, s}. We assert that the image of every node v in Mr,s

under δyx is contained in Ma,b. Suppose otherwise and there exists u in Tx \Ma,b s.t.
(u, v) ∈ δxy . Assume that u is in the same connected component as a. Since the subtree
δyx(πv,s) contains u and b, it also contains a. This implies that there is a node v′ on πv,s
which is in δxy(a). This is impossible as v ∈Mr,s and δxy(a) ∩ πr,s = {r}. Therefore
δyx(v) ⊆Ma,b for any v ∈Mr,s. Hence δyx(Mr,s) ⊆Ma,b holds.

It is clear that, when restricted to Tx	Ma,b and Ty	Mr,s, δxy({a, b}) is connected
and so is δyx({r, s}). For any other edge {a′, b′} in Tx 	Ma,b, by δyx(Mr,s) ⊆Ma,b,
δxy({a′, b′}) ∩Mr,s = ∅ and the image of {a′, b′} is unchanged (hence connected)
after the M-contraction of Ty . This shows that δxy is consecutive when restricted to
Tx 	Ma,b. Furthermore, since every node in Tx 	Ma,b is supported in Ty 	Mr,s, we
know δxy is also tree-preserving when restricted to Tx 	Ma,b.

It is possible that there is a node v ∈ Ty 	Mr,s s.t. δyx(v) ⊆ Ma,b. We assert that
any v like this has at most one branch in Ty \Mr,s s.t. there is a node v′ in the branch
which is supported under δyx by a node in Tx \Ma,b. Because δxy is tree-preserving
when restricted to Tx 	Ma,b, this follows immediately from Lemma 6. This implies
that, if we remove all these nodes v s.t. δyx(v) ⊆ Ma,b from Ty 	Mr,s, the domain
is still connected. As a consequence, the two constraints remain arc-consistent and tree
preserving when restricted to Tx 	Ma,b and T ∗y . ut

In general, we have



Lemma 11. Let ∆ be an arc-consistent and tree-preserving constraint network over
tree domains Tx (x ∈ V ). Suppose x ∈ V and Ma,b is a trunk in Tx. When restricted to
Tx	Ma,b and enforcing arc-consistency, ∆ remains tree-preserving if we modify each
Ty (y ∈ V ) by deleting all unsupported nodes and adding some edges.

Proof (Sketch). The result follows from Lemmas 10 and 5. One issue we need to take
care of is how two trunks interact. Suppose x, y, z are three different variables and M ,
M ′ are trunks to be contracted from Tx and Ty respectively. Applying Lemma 10 to
the constraints between x and z and, separately, to the constraints between y and z,
we get two different trunks, say Ma,b and Mc,d, to be contracted from the same tree
domain Tz . Can we do this (i.e. applying Lemma 10) one by one? Does the order of
the contractions matter? To answer these questions, we need to know what is exactly
the union of two trunks. There are in essence ten configurations as shown in Fig. 3. The
union of two trunks can be the whole tree, a branch, a trunk, or two disjoint trunks. If
the union is the whole tree, then the network is inconsistent; if it is a branch, then we
can remove it directly; if it is a trunk or two disjoint trunks, then we can use Lemma 10
to contract them one by one in either order. ut

Fig. 3. Possible configurations of trunks Ma,b and Mc,d.

Lemma 12. Assume δxy and δ′xy are two arc-consistent and tree-preserving constraints
w.r.t. trees Tx and Ty . Let δ∗xy = δxy ∩ δ′xy . Suppose u ∈ Tx and δxy(u)∩ δ′xy(u) = ∅.
Then the supported values of δ∗xy in Tx are in at most two branches of u.

Proof. Suppose u1, u2, u3 are three supported values of δ∗xy in Tx that are in three
different branches of u. Take wi ∈ δxy(ui) ∩ δ′xy(ui). For each i, we have either wi 6∈
δxy(u) or wi 6∈ δ′xy(u). Recall that πwi,wj denotes the unique path πwi,wj that connects
wi to wj (1 ≤ i 6= j ≤ 3). There are two subcases. (1) One node is on the path that



connects the other two. Suppose w.l.o.g. w3 is between w1 and w2. If w3 6∈ δxy(u),
then there exist v1 ∈ πw1,w3

and v2 ∈ πw3,w2
s.t. v1, v2 ∈ δxy(u). This is because the

image of πw1,w3
and the image of πw3,w2

(under δyx) both contain u. That is, v1, v2 ∈
δxy(u) but w3 6∈ δxy(u). Since δxy(u) is a subtree and w3 is on the path πv1,v2 , this is
impossible. The case when w3 6∈ δ′xy(u) is analogous. (2) The three nodes are in three
different branches of a node w. In this case, we note there exists a node between any
path πwi,wj

which is a support of u under δxy . It is easy to see that w itself is a support
of u under δxy . Similarly, we can show w is also a support of u under δ′xy . Since both
subcases lead to a contradiction, we know the supported values of δ∗xy are in at most
two branches of u. ut

Actually, this lemma shows

Corollary 1. Assume δxy and δ′xy are two arc-consistent and tree-preserving constraints
w.r.t. trees Tx and Ty . Then those unsupported values of δxy ∩ δ′xy in Tx are in a unique
set of pairwise disjoint branches and trunks.

Similar to Lemma 10, we have

Lemma 13. Suppose δxy and δ′xy are arc-consistent and tree-preserving constraints
w.r.t. trees Tx and Ty and so are δyx and δ′yx. Let δ∗xy = δxy ∩ δ′xy . Assume {u, v} is an
edge in Tx s.t. δ∗xy(u) ∪ δ∗xy(v) is disconnected in Ty . Then there exist r ∈ δ∗xy(u) and
s ∈ δ∗xy(v) s.t. every node in Mr,s is unsupported under δ∗yx.

Proof. Write Tr = δ∗xy(u) and Ts = δ∗xy(v). Clearly, Tr and Ts are nonempty subtrees
of Ty . Since they are disconnected, there exist r ∈ Tr, s ∈ Ts s.t. πr,s ∩ (Tr ∪ Ts) =
{r, s} (see Fig. 4 for an illustration). Write A = δxy(u), B = δxy(v), C = δ′xy(u) and
D = δ′xy(v). We show every node in Mr,s is not supported under δ∗yx.

Suppose w is an arbitrary internal node on πr,s. We first show w is not supported
under δ∗yx. Note w ∈ A ∪ B, w ∈ C ∪ D, w 6∈ A ∩ C, and w 6∈ B ∩ D. There are
two cases according to whether w ∈ A. If w ∈ A, then we have w 6∈ C, w ∈ D, and
w 6∈ B. If w 6∈ A, then we have w ∈ B, w 6∈ D, and w ∈ C. Suppose w.l.o.g. w ∈ A.
By w ∈ A = δxy(u), we have u ∈ δyx(w); by w 6∈ B = δxy(v), we have v 6∈ δyx(w).
Similarly, we have u 6∈ δ′yx(w) and v ∈ δ′yx(w). Thus subtree δ′yx(w) is disjoint from
subtree δyx(w). This shows δ∗yx(w) = ∅ and hence w is not supported under δ∗yx.

Second, suppose w1 is an arbitrary node in Mr,s s.t. w1 is in a different branch of w
to r and s, i.e. πw,w1 ∩ (Tr ∪ Ts) = ∅. We show w1 is not supported under δ∗yx either.

Again, we assume w ∈ A. In this case, we have u ∈ δyx(w) ⊆ δyx(πw,w1
) and

v ∈ δ′yx(w) ⊆ δ′yx(πw,w1
). As πw,w1

∩ (Tr ∪ Ts) = ∅, we have πw,w1
∩ Tr =

πw,w1 ∩ A ∩ C = ∅. As πw,w1 ∩ A 6= ∅ and A ∩ C 6= ∅, by Lemma 1, we must
have πw,w1 ∩ δ′xy(u) = ∅. This shows u 6∈ δ′yx(πw,w1). Similarly, we can show v 6∈
δyx(πw,w1

). Thus subtree δ′yx(πw,w1
) is disjoint from subtree δyx(πw,w1

) and, hence,
δ∗yx(πw,w1

) = ∅. This proves that w1 is not supported under δ∗yx either.
In summary, every node in Mr,s is unsupported. ut

Proposition 4. [18] Assume δxz and δzy are two tree-preserving constraints w.r.t. trees
Tx, Ty , and Tz . Then their composition δxz ◦ δzy is tree-preserving.



Fig. 4. Illustration of proof of Lemma 13.

At last, we give the main result of this section.

Theorem 4. Let ∆ be a tree-preserving constraint network. If no inconsistency is de-
tected, then enforcing arc- and path-consistency determines the consistency of ∆ and
transforms ∆ into a globally consistent network.

Proof. If we can show that ∆ is still tree-preserving after enforcing arc and path-
consistency, then by Theorem 1 the new network is globally consistent if no incon-
sistency is detected.

By Proposition 3, ∆ remains tree-preserving after enforcing arc-consistency. To
enforce path-consistency on ∆, we need to call the following updating rule

δxy ← δxy ∩ (δxz ◦ δzy) (2)

for x, y, z ∈ V until the network is stable.
Suppose ∆ is arc-consistent and tree-preserving w.r.t. trees Tx for x ∈ V before

applying (2). Note that if δ∗ = δxy∩(δxz◦δzy) (as well as its converse) is arc-consistent,
then δ∗(u) is nonempty for any node u in Tx. By Corollary 1, no branches or trunks need
to be pruned in either Tx or Ty . Furthermore, by Lemma 13, δ∗(u)∪ δ∗(v) is connected
for every edge {u, v} in Tx as there are no unsupported nodes in Ty under the converse
of δ∗. Therefore δ∗ is arc-consistent and consecutive, hence, tree-preserving.

If δ∗ is not arc consistent, then we delete all unsupported values from Tx and Ty
and enforce arc-consistency on ∆. If no inconsistency is detected then we have an
updated arc-consistent and tree-preserving network by Lemma 11. Still write ∆ for
this network and recompute δ∗ = δxy ∩ (δxz ◦ δzy) and repeat the above procedure
until either inconsistency is detected or δ∗ is arc-consistent. Note that, after enforcing
arc-consistency, the composition δxz ◦ δzy may have changed.

Once arc-consistency of δ∗ is achieved, we update δxy with δ∗ and continue the
process of enforcing path-consistency until ∆ is path-consistent or an inconsistency is
detected. ut

5.2 Partial Path-Consistency

The partial path-consistency (PPC) algorithm was first proposed by Bliek and Sam-
Haroud [2]. The idea is to enforce path consistency on sparse graphs by triangulat-
ing instead of completing them. Bliek and Sam-Haroud demonstrated that, as far as



CRC constraints are concerned, the pruning capacity of path consistency on triangu-
lated graphs and their completion are identical on the common edges.

An undirected graph G = (V,E) is triangulated or chordal if every cycle of length
greater than 3 has a chord, i.e. an edge connecting two non-consecutive vertices of the
cycle. For a constraint network ∆ = {viδijvj : 1 ≤ i, j ≤ n} over V = {v1, ..., vn},
the constraint graph of ∆ is the undirected graph G(∆) = (V,E(∆)), for which we
have (vi, vj) ∈ E(∆) iff δij is not a universal constraint. Given a constraint network
∆ and a graph G = (V,E), we say ∆ is partial path-consistent w.r.t. G iff for any
1 ≤ i, j, k ≤ n with (vi, vj), (vj , vk), (vi, vk) ∈ E we have δik ⊆ δij ◦ δjk [2].

Theorem 5. Let ∆ be a tree-preserving constraint network. Suppose G = (V,E) is a
chordal graph such that E(∆) ⊆ E. Then enforcing partial path-consistency on G is
equivalent to enforcing path-consistency on the completion of G, in the sense that the
relations computed for the constraints in G are identical.

Proof. The proof is similar to the one given for CRC constraints [2, Theorem 3]. This
is because, (i) when enforcing arc- and path-consistency on a tree-preserving constraint
network, in each step, we obtain a new tree-preserving constraint network; and (ii) path-
consistent tree convex constraint networks are globally consistent. ut

Remark 1. Note that our definition and results of tree-preserving constraints can be
straightforwardly extended to domains with acyclic graph structures (which are con-
nected or not). We call such a structure a forest domain. Given a tree-preserving con-
straint network ∆ over forest domains F1, ..., Fn of variables v1, ..., vn. Suppose Fi

consists of trees ti,1, ..., ti,ki . Note that the image of each tree, say ti,1, of Fi under
constraint Rij is a subtree t of Fj . Assume t is contained in the tree tj,s of forest Fj .
Then the image of tj,s under constraint Rji is a subtree of ti,1. This establishes, for any
1 ≤ i 6= j ≤ n, a 1-1 correspondence between trees in Fi and trees in Fj if the image
of each tree is nonempty. In this way, the consistency of∆ is reduced to the consistency
of several parallel tree-preserving networks over tree domains.

6 Tree-Preserving Constraints and the Scene Labelling Problem

The scene labelling problem [10] is a classification problem where all edges in a line-
drawing picture have to be assigned a label describing them. The scene labelling prob-
lem is NP-complete in general. This is true even in the case of the trihedral scenes, i.e.
scenes where no four planes share a point [12].

Labels used in the scene labelling problem are listed as follows:

‘+’ The edge is convex which has both of its corresponding planes visible;
‘−’ The edge is concave which has both of its corresponding planes visible;
‘→’ Only one plane associated with the edge is visible, and when one moves in the

direction indicated by the arrow, the pair of associated planes is to the right.

In the case of trihedral scenes, there are only four basic ways in which three plane
surfaces can come together at a vertex [10]. A vertex projects in the picture into a ‘V ’,
‘W ’, ‘Y ’ or ‘T ’-junction (each of these junction-types may appear with an arbitrary



Fig. 5. Possible labelled line configurations of a junction in a picture and their corresponding
forest structures.

rotation in a given picture). A complete list of the labelled line configurations that are
possible in the vicinity of a node in a picture is given in Fig. 5.

In this section, we show that (i) every instance of the trihedral scene labelling prob-
lem can be modelled by a tree convex constraint network; (ii) a large subclass of the
trihedral scene labelling problem can be modelled by tree-preserving constraints; (iii)
there exists a scene labelling instance which can be modelled by tree-preserving con-
straints but not by chain- or CRC constraints.

A CSP for the scene labelling problem can be formulated as follows. Each junction
in the line-drawing picture is a variable. The domains of the vertices are the possible
configurations as shown in Fig. 5. The constraints between variables are simply that, if
two variables share an edge, then the edge must be labeled the same at both ends.

Proposition 5. Every instance of the trihedral scene labelling problem can be modelled
by a tree convex constraint network. Furthermore, there are only 39 possible configu-
rations of two neighbouring nodes in 2D projected pictures of 3D trihedral scenes, and
29 out of these can be modelled by tree-preserving constraints.

Proof. The complete list of these configurations and their corresponding tree convex
or tree-preserving constraints is attached as an appendix. Note that we do not consider
T-junctions in line drawing pictures since they decompose into unary constraints. ut

As a consequence, we know that these 29 configurations of the scene labelling prob-
lem with 2D line-drawing pictures can be solved by the path-consistency algorithm in
polynomial time. Moreover, since it is NP-hard to decide if a trihedral scene labelling
instance is consistent, we have the following corollary.

Corollary 2. The consistency problem of tree convex constraint networks is NP-complete.

We next give a scene labelling instance which can be modelled by tree-preserving
constraints but not by chain-preserving or CRC constraints. Consider the line drawing
in the left of the following figure and the constraints for the drawing listed in the right.
One can easily verify that all constraints are tree-preserving w.r.t. the forest structures
listed in Fig. 5, but, for example, δ21 is not chain-preserving for the forest structures
illustrated in Fig. 5 and δ25 is not CRC.



7 Further Discussion and Conclusion

In this paper, when formulating a CSP, we allow different variables have different tree
domains. Feder and Vardi [7] and many other authors (see e.g. [11,1]) also considered
CSPs which have a common domain D for all variables. These CSPs are called one-
sorted in [3]. For one-sorted tree-preserving CSPs, we could also define a majority
operator [11] under which the set of tree-preserving constraints is closed. This implies
that the class of one-sorted tree-preserving CSPs has bounded strict width [7] and hence
tractable. Indeed, such a majority operator ρ is defined as follows: for any three nodes
a, b, c in a tree domain T , define ρ(a, b, c) as the node d which is the intersection of
paths πa,b, πa,c, and πb,c. Following [3], it is straightforward to extend this result to
multi-sorted tree-preserving CSPs.

In this paper, we identified two new tractable subclasses of tree convex constraint
which are called path- and tree-preserving constraints, and proved that a chain- or
path-preserving constraint network is in essence the disjoint union of several indepen-
dent CRC constraint networks, and hence (re-)established the tractability of these con-
straints. More importantly, we proved that when enforcing arc- and path-consistency on
a tree-preserving constraint network, in each step, the network remains tree-preserving.
This implies that enforcing arc- and path-consistency will change a tree-preserving con-
straint network into a globally consistent constraint network. This also implies that the
efficient partial path-consistent algorithm for large sparse networks is applicable for
tree-preserving constraint network. As an application, we showed that a large class of
the trihedral scene labelling problem can be modelled by tree-preserving constraints.
This shows that tree-preserving constraints are useful in real world applications.

Acknowledgments

We sincerely thank the anonymous reviewers of CP-15 and IJCAI-15 for their very
helpful comments. The majority operator was first pointed out to us by two reviewers



of IJCAI-15. This work was partially supported by ARC (FT0990811, DP120103758,
DP120104159) and NSFC (61228305).

References

1. Barto, L., Kozik, M.: Constraint satisfaction problems solvable by local consistency methods.
Journal of ACM 61(1), 3:1–3:19 (2014)

2. Bliek, C., Sam-Haroud, D.: Path consistency on triangulated constraint graphs. In: IJCAI-99.
pp. 456–461 (1999)

3. Bulatov, A.A., Jeavons, P.: An algebraic approach to multi-sorted constraints. In: CP 2003.
pp. 183–198 (2003)

4. Conitzer, V., Derryberry, J., Sandholm, T.: Combinatorial auctions with structured item
graphs. In: AAAI’04. pp. 212–218 (2004)

5. Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artificial Intelligence 49(1-3),
61–95 (1991)

6. Deville, Y., Barette, O., Hentenryck, P.V.: Constraint satisfaction over connected row convex
constraints. Artificial Intelligence 109(1-2), 243–271 (1999)

7. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic snp and constraint
satisfaction: A study through datalog and group theory. SIAM Journal on Computing 28(1),
57–104 (1998)

8. Freuder, E.C.: Synthesizing constraint expressions. Communications of the ACM 21(11),
958–966 (1978)

9. Freuder, E.C.: A sufficient condition for backtrack-free search. Journal of the ACM 29(1),
24–32 (1982)

10. Huffman, D.A.: Impossible objects as nonsense sentences. Machine Intelligence 6(1), 295–
323 (1971)

11. Jeavons, P., Cohen, D.A., Cooper, M.C.: Constraints, consistency and closure. Artificial In-
telligence 101(1-2), 251–265 (1998)

12. Kirousis, L.M., Papadimitriou, C.H.: The complexity of recognizing polyhedral scenes. In:
FOCS 1985. pp. 175–185 (1985)

13. Kumar, T.K.S.: Simple randomized algorithms for tractable row and tree convex constraints.
In: AAAI’06. pp. 74–79 (2006)

14. Li, S., Liu, W., Wang, S.: Qualitative constraint satisfaction problems: An extended frame-
work with landmarks. Artificial Intelligence 201, 32–58 (2013)

15. Maruyama, H.: Structural disambiguation with constraint propagation. In: ACL 1990. pp.
31–38 (1990)

16. Montanari, U.: Networks of constraints: Fundamental properties and applications to picture
processing. Information Sciences 7, 95–132 (1974)

17. Van Beek, P., Dechter, R.: On the minimality and global consistency of row-convex constraint
networks. Journal of the ACM 42(3), 543–561 (1995)

18. Zhang, Y., Freuder, E.C.: Properties of tree convex constraints. Artificial Intelligence 172(12-
13), 1605–1612 (2008)

19. Zhang, Y., Marisetti, S.: Solving connected row convex constraints by variable elimination.
Artificial Intelligence 173(12), 1204–1219 (2009)

20. Zhang, Y., Yap, R.H.C.: Consistency and set intersection. In: IJCAI-03. pp. 263–270 (2003)


	On Tree-Preserving Constraints

