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Despite aggressive antibiotic therapy, bronchopulmonary
colonization by Pseudomonas aeruginosa causes persistent
morbidity and mortality in cystic fibrosis (CF). Chronic
P. aeruginosa infection in the CF lung is associated with struc-
tured, antibiotic-tolerant bacterial aggregates known as bio-
films. We have demonstrated the effects of non-bactericidal,
low-dose nitric oxide (NO), a signaling molecule that
induces biofilm dispersal, as a novel adjunctive therapy for
P. aeruginosa biofilm infection in CF in an ex vivo model and
a proof-of-concept double-blind clinical trial. Submicromolar
NO concentrations alone caused disruption of biofilms within
ex vivo CF sputum and a statistically significant decrease in
ex vivo biofilm tolerance to tobramycin and tobramycin com-
bined with ceftazidime. In the 12-patient randomized clinical
trial, 10 ppm NO inhalation caused significant reduction in
P. aeruginosa biofilm aggregates compared with placebo across
7 days of treatment. Our results suggest a benefit of using low-
dose NO as adjunctive therapy to enhance the efficacy of
antibiotics used to treat acute P. aeruginosa exacerbations in
CF. Strategies to induce the disruption of biofilms have the
potential to overcome biofilm-associated antibiotic tolerance
in CF and other biofilm-related diseases.
18These authors contributed equally to this work.
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INTRODUCTION
Cystic fibrosis (CF) is the most common lethal, hereditary disease in
Caucasian populations, with a United Kingdom and United States
2104 Molecular Therapy Vol. 25 No 9 September 2017 ª 2017 The Au
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incidence of approximately 1 in 2,500 live births and an esti-
mated worldwide prevalence of 70,000.1,2 Long-term morbidity
and mortality are primarily associated with the effects of chronic
Pseudomonas aeruginosa lung infection and the persistence of
P. aeruginosa biofilms.3,4 Bacteria in biofilms are enclosed in a
self-produced biopolymeric matrix and display up to 1,000-fold
higher tolerance to antibiotic challenge than their single-cell, plank-
tonic (free living) counterparts.5 Biofilms also exhibit resistance to
phagocytosis and other components of the host’s innate and adap-
tive immune system.6 Biofilm survival mechanisms include imped-
ance of antibiotic diffusion through the biofilm matrix,7 altered
growth or metabolic rates of bacterial subpopulations within
the biofilm,8,9 and physiological,8 biochemical,10 and genetic11,12

changes. In addition, sub-inhibitory levels of aminoglycoside antibi-
otics can enhance biofilm formation under laboratory conditions.13

Biofilms can be firmly attached to tissue but can also exist in the
protected phenotype as aggregates in the mucus of the CF lung.14
thors.
tivecommons.org/licenses/by/4.0/).
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Figure 1. Role of NO in Disrupting Antibiotic Tolerance Mechanisms Associated with the Biofilm Structure

(1) Biofilm tolerance mechanisms include reduced antibiotic diffusion, release of protective enzymes capable of destroying or inactivating antibiotics in the biofilm matrix,

and formation of physiologically distinct bacterial subpopulations (e.g., persister cells) resulting from nutrient and oxygen gradients. (2) Low-dose NO diffuses into the

biofilm and interacts with cell receptors that upregulate cellular phosphodiesterases (PDEs), which accelerate c-di-GMP degradation. This prevents c-di-GMP from

interacting with proteins at the transcriptional, translational, or post-translational level and leads to cell surface and physiological changes associated with dispersal and

motility (red circle inset). (3) Dispersal is accompanied by reversion of the bacteria to a planktonic phenotype that renders them more susceptible to antibiotic-mediated

killing.18,19
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Biofilms are extremely difficult to eradicate using conventional
therapeutic regimes.15 New approaches targeting chronic biofilm
infections are needed for more effective treatment of P. aeruginosa
in CF and other biofilm-related diseases.16

In vivo, bacteria often transition between planktonic and biofilm
lifestyles. Given the correct environmental cues, biofilm bacteria
undergo coordinated dispersal and reversion to the planktonic
form.17 We identified a role for the signaling molecule nitric oxide
(NO) in the dispersal of P. aeruginosa biofilms18,19 (Figure 1). At
nanomolar concentrations, NO mediates dispersal by increasing
bacterial phosphodiesterase activity with a consequent reduction
of the intracellular second messenger and biofilm regulator
cyclic-di-guanosine monophosphate (c-di-GMP).18,19 Here we
report the effects of non-bactericidal, low-dose NO on clinical
pseudomonal biofilms ex vivo in the laboratory using conventional
and molecular microbiological methods. We have also extended
our laboratory findings to a proof-of-concept clinical trial in
humans, demonstrating a significant direct effect on pseudomonal
biofilm load in CF patients treated with NO gas plus conven-
tional intravenous antibiotic therapy compared with intravenous
antibiotics alone.
RESULTS
Nitric Oxide Induces P. aeruginosa Biofilm Dispersal in Human

CF Sputum Samples

NO-induced dispersal of P. aeruginosa biofilms was measured
directly in expectorated sputum samples from five CF patients using
fluorescence in situ hybridization (FISH). A significant reduction in
mean biofilm thickness was observed upon treatment with 450 nM
NO (generated from the spontaneous NO donor sodium nitroprus-
side [SNP]; Materials andMethods), and P. aeruginosa biofilmmicro-
colonies (aggregates typically �15 mm in diameter) were visibly
disrupted by NO in five of five patient samples. Figure 2A shows
representative experiments from three different patients: sample
1 (p = 0.003), sample 2 (p = 0.029), and sample 3 (p = 0.029).

Nitric Oxide-Mediated Dispersal of CF P. aeruginosa Isolates

Occurs within 5–10 hr

Addition of NO (in the form of the NO donor SNP) to 12 biofilm-
forming P. aeruginosa clinical isolates from CF sputum samples
consistently caused dispersal, leading to steep increases in the optical
density (OD; turbidity) of planktonic bacterial suspensions over-
lying biofilms after 5 hr (Figure 2B). The increase in OD correlated
with a decrease in biofilm biomass from surfaces of plate wells, as
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Figure 2. NO Disperses P. aeruginosa Biofilms In Vitro and In Cystic Fibrosis Sputum

(A) Direct measurement of NO-induced P. aeruginosa biofilm dispersal in expectorated CF sputum samples. Image analysis shows a significant reduction in mean

P. aeruginosa biofilm thickness following treatment of CF sputum samples from three different patients (samples 1, 2, and 3) with 450 nM NO compared with buffer alone

(untreated) (*p = 0.02, representing a statistically significant difference between datamedians). P. aeruginosawas identified using fluorescence in situ hybridization (FISH) with

both aCy3-labeledP. aeruginosa-specific 16S rRNA probe (green) and aCy5-labeled eubacterial 16S probe (red). Confocal laser-scanningmicroscopy (CLSM) images show

a reduction of P. aeruginosa (yellow because of hybridization with both probes) in biofilms. Images show horizontal xy (top-down view) sections, and flanking images show

vertical z (side view) CSLM sections of untreated (left) and NO-treated (right) CF sputum samples. Scale bars, 25 mm. (B) Nitric oxide (NO) disperses in vitro biofilms grown from

biofilm-formingP. aeruginosaCF clinical isolates. Dispersal of biofilm bacteria into the planktonic phase (measured bymeanODof overlying planktonic suspensions) following

treatment of a clinicalP. aeruginosa biofilm isolatewith low-dose NO (9 pM to 4.5 mM) derived from the spontaneous NOdonor SNP. The depicted recordings are from a single

isolate and representative of qualitatively identical data from 12 P. aeruginosa isolates studied. (C) Biofilm dispersal is NO-dependent. Mean ODmeasurements of planktonic

bacteria following 15-hr treatment of P. aeruginosa biofilms with SNP alone, SNP in the presence of the NO scavenger PTIO, or with potassium ferricyanide alone (PFc).

*p = 0.02, representing a statistically significant difference between datamedians). Data are from three experiments with fourwells per experiment. (D) Dispersal causes biofilm

detachment from the base of tissue culture plate wells, indicated by loss of fluorescence after NO treatment, compared with untreated controls. Residual biofilms were

fluorescently labeled with the nucleic acid probe Syto9. The scale indicates fluorescence intensity, with red corresponding to the highest concentration of surface-attached

P. aeruginosa and blue-purple corresponding to the fewest remaining attached bacteria. (E) NO induces dispersal of P. aeruginosa biofilms in vitro. Representative CSLM

images indicate reducedP. aeruginosa in biofilms fromCF isolates followingNO treatment comparedwith untreated biofilms. Each image shows horizontal xy (top-down view)

CLSM sections (square), and flanking images show vertical z (side view) CLSM sections after staining biofilms with the BacLight Live (green)/Dead (red) kit. Scale bars, 25 mm.
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determined by fluorometric measurements and confocal microscopy,
confirming the dispersal effect of NO (Figures 2D and 2E). Biofilm
dispersal was confirmed to be NO-specific using the NO scavenger
2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (PTIO),
which reduced the dispersal of P. aeruginosa induced by SNP
(p = 0.002) to levels similar to the control treatment (Figure 2C). Treat-
ment of biofilmswith potassium ferricyanide (as a control forNO-inde-
pendent breakdownproducts of SNP) had no dispersal effect compared
with untreated biofilms (p = 0.394; Figure 2C). Dispersal was observed
at NO concentrations as low as 450 pM, peaking at 450 nM (Figure 2B),
with higher concentrations of NO (4.5 mM) showing reduced efficacy
for biofilm dispersal (Figure 2B). NO at a concentration of 450 nM
dispersed all 12 biofilm-forming CF clinical isolates tested.

Nitric Oxide Potentiates Antibiotics to Disrupt and Kill Clinical

P. aeruginosa Biofilms

P. aeruginosa clinical isolate biofilms treated with the antibiotic tobra-
mycin alone or with tobramycin/ceftazidime combinations were
compared with biofilms treated with NO alone, a combination of
2106 Molecular Therapy Vol. 25 No 9 September 2017
NO and tobramycin, or a combination of NO, tobramycin, and cefta-
zidime (Figure 3). Remarkably, the biomass and thickness of the
P. aeruginosa biofilm increased substantially following antibiotic
treatments in the absence of NO. Compared with untreated biofilms,
an increase in biofilm biomass and biofilm thickness was observed
following tobramycin treatment alone (biofilm biomass: 243%
increase compared to control, p = 0.028, Figure 3B; mean biofilm
thickness: 199% increase compared with control, p = 0.065, Figure 3C)
and the tobramycin/ceftazidime combination (biofilm biomass: 155%
increase compared with control, p = 0.04, Figure 3B; mean biofilm
thickness: 174% increase compared with control, p = 0.04, Figure 3C).
Viability staining demonstrated that predominantly live (green) cells
remained within the core of the biofilm structures (Figure 3A).
Although biofilm bacteria tolerated the antibiotic treatments at the
concentrations used (10 mM), free-living bacteria within the plank-
tonic phase remained susceptible (Figure 3D).

Adjunctive NO used in combination with 5 mgml�1 tobramycin (with
or without ceftazidime) demonstrated a pronounced and significant



Figure 3. Antibiotic Efficacy against P. aeruginosa Clinical Isolate Biofilms Is Enhanced in the Presence of Low-Dose NO

(A) Representative CLSM images showing surface-attachedP. aeruginosa following treatment with buffer alone (untreated), NO alone, MBC antibiotics (5 mgml�1 tobramycin

with or without 5 mgml�1 ceftazadime), or antibiotics combined with NO. Images show horizontal xy (top-down view) sections, and flanking images show vertical z (side view)

CSLM sections. Biofilms were stained with the BacLight Live (green)/Dead (red) kit to indicate viable cells. Scale bars, 25 mm. (B and C) Image analysis of CLSM images of

residual P. aeruginosa biofilms with adjunctive NO shows a reduction inmean total biomass (B) and biofilm thickness (C) following treatment with antibiotics (tobramycin alone

and tobramycin [Tob]/ceftazidime [Ceft] combined), indicating that NO treatment reduces the amount of remaining biofilm bacteria (error bars represent SEM of five different

microscopic fields). An increase in biofilm biomass and biofilm thickness is shown following tobramycin treatment alone (biofilm biomass: 243% increase compared with

control, p = 0.028, B; mean biofilm thickness: 199% increase compared with control, p = 0.065, C) and the tobramycin/ceftazidime combination (biofilm biomass: 155%

increase compared with control, p = 0.04, B;mean biofilm thickness: 174% increase compared with control, p = 0.04, C). (D) Viable P. aeruginosa in the dispersed population

(planktonic suspension), determined by colony-forming unit (CFU) counts of P. aeruginosa following antibiotic treatment of biofilms with or without NO, indicate that

combined NO treatment leads to killing of the bacteria released from the biofilm.
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reduction in P. aeruginosa mean biofilm biomass and thickness
compared with both untreated biofilms and biofilms treated with
antibiotics in the absence of NO (p = 0.001) (Figures 3B and 3C).
Residual surface-attached biofilms observed by CSLM appeared as
only a thin monolayer, indicating that the majority of the remaining
surface-attached P. aeruginosa had been killed, as shown in Figure 3A
by increased red fluorescent staining with propidium iodide. In addi-
tion, there was amarked reduction in viable planktonic cells following
adjunctive NO treatments (Figure 3D), demonstrating that bacteria
released from biofilms during NO-induced dispersal are killed in
the planktonic phase by the combined antibiotic treatment.
A Proof-of-Concept Randomized Trial Demonstrates that

Low-Dose Nitric Oxide Adjunctive Therapy Reduces Detectable

P. aeruginosa Biofilm in Patients without Increasing Planktonic

Bacterial Loads

12 patients were randomized to receive either low-dose NO inhala-
tion or placebo (CONSORT diagram; Figure 4). Adjunctive NO
used in combination with tobramycin and ceftazidime demon-
strated a significant reduction in the key primary microbiological
endpoint, P. aeruginosa biofilm aggregates. This is shown in aggre-
gates both over 20 cells in size and in those over 10 cells in size
compared with those receiving placebo with antibiotics over the
Molecular Therapy Vol. 25 No 9 September 2017 2107
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Figure 4. Clinical Study CONSORT Diagram Depicting the Flow of Patients through the Study

For patients to be randomized, they had to be admitted during pulmonary exacerbation to receive trial therapy concurrently with i.v. antibiotics.
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7 days of treatment (generalized estimating equations [GEE] anal-
ysis, p = 0.031 and p = 0.029, respectively, for days 5 and 7; Fig-
ure 5). The data suggested less P. aeruginosa biofilm, as quantified
by both the number and volume of aggregates greater than 20 or
10 cells in the NO group compared with placebo through day 7
while on NO therapy. This reduction was not fully maintained after
treatment was stopped; pseudomonal biofilm was detected in treat-
ment group samples at a time point of 10–13 days following the
cessation of NO therapy (study period days 5 through 20; Table 1
and Figure 5). See Materials and Methods for the rationale
regarding cluster size selection. Other important secondary end-
points are shown in Table 2. From an individual participant safety
2108 Molecular Therapy Vol. 25 No 9 September 2017
perspective, there was no evidence that biofilm dispersal increased
the amount of viable P. aeruginosa detected in planktonic phase
by colony-forming units (CFUs). qPCR, indicative of total viable
P. aeruginosa cells,20 did not demonstrate a difference between
groups because of the small numbers and large variation between
individuals. There were also no adverse clinical safety signals
(FEV1, forced vital capacity [FVC], quality of life score) in the treat-
ment group compared with those treated with placebo. Baseline
clinical data are shown in Table 3, baseline laboratory data and
study adverse effects are shown in Tables S1 and S2, and individual
patient data for the primary outcome (FISH) and one clinical
parameter (FEV1) are shown in Table S3.



Figure 5. Reduction in P. aeruginosa Biofilm with

NO Adjunctive Therapy

Shown are representative FISH confocal images from a

CF patient being treated with NO adjunctive to conven-

tional antimicrobial agents (ceftazadime and tobramycin)

compared with a patient on antibiotics alone (n = 6 in both

the NO and placebo groups). Almost no P. aeruginosa

biofilms were detectable in the treatment group

compared with placebo. At follow-up, 10–13 days after

NO adjunctive treatment stopped, pseudomonal biofilm

was detected in sputum, having been reduced while

on NO. Scale bars, 25 mm. The central panels show xy

plan views of merged image stacks (total biofilm detected

in 3D imaging), and the rectangular z axis side panels

show representative single side views of the biofilm.59
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Circulating NO Metabolites Change Little during Low-Dose NO

Inhalation in CF Patients

Plasma nitrate (NO3
�) concentrations tended to increase in response

to delivery of low-dose NO, but these changes did not reach statistical
significance (p > 0.05). Plasma levels of nitrite (NO2

�) and total nitro-
sation products (RXNO) paradoxically decreased during NO inhala-
tion, although this was also not significant. With the exception of
unusually high nitrite levels in erythrocytes compared with plasma
values, there was also no obvious effect of inhaled NO on NO metab-
olite status in these blood cells, which is surprising given that
nitrosylhemoglobin (NO-heme) is the most sensitive marker of NO
availability in vivo, and nitrate is the final oxidation product of
NO21 (thus, both might be expected to be elevated following pro-
longed NO inhalation). Direct NO measurement in sputum was
impractical because of the short half-life of NO in relation to the
time taken for the probe to equilibrate in individual sputum samples
(data not shown). Overall, determination of a comprehensive panel of
NO metabolites suggested that low-dose inhaled NO does not signif-
icantly affect circulating NO metabolites in CF (Figure S1).

DISCUSSION
Targeted therapy to address biofilm infection, rather than using
conventional antibiotics alone, represents a potential paradigm
shift in the treatment of chronic pseudomonal infection in cystic
fibrosis. Our experiments show that adjunctive NO can disrupt
P. aeruginosa biofilms and suggest a novel approach to the challenge
of managing persistent Pseudomonas biofilm infection in CF patients.

The importance of the biofilm phenotype in promoting P. aeruginosa
survival and persistence within the lower respiratory tract is well
established.4,22 However, there are currently no clinically recognized
therapeutic approaches for eradicating established biofilm-associated
P. aeruginosa respiratory infections. New treatment strategies for
bacterial biofilms are a critical unmet need.23–25

Our approach was to design a clinical diagnostic platform that could
be used to detect changes in Pseudomonas biofilm from patients with
CF. We used FISH as a primary technique to identify biofilm in
clinical samples, as recommended by the European Society of Clinical
Microbiology and Infectious Diseases (ESCMID) guidelines for the
diagnosis and treatment of biofilm infections.25 We first used
ex vivo samples from CF patients to establish the diagnostic platform.
We tested P. aeruginosa clinical isolates growing in biofilms and used
FISH to follow the effects of NO on aggregate size in these biofilms.
We designed the proof-of-concept clinical study to determine
whether changes in the size of Pseudomonas biofilm aggregates taken
from patients who had been given low-dose NO could be detected
during and following treatment regimes.

Ex vivo studies demonstrated that low concentrations of NO
(<500 nM) significantly reduced the amount of P. aeruginosa biofilm
aggregates in CF sputum, potentiating the effect of the aminoglyco-
side antibiotic tobramycin alone and in combination with the third-
generation cephalosporin ceftazidime.

In addition, our results suggest that adjunctive low-dose NO might
prevent a previously reported potential biofilm-enhancing effect of
aminoglycoside treatment.13 Our ex vivo data show that treatment
of CF P. aeruginosa biofilms with clinically relevant concentrations
of tobramycin can lead to increased biofilm growth. Bacteria in
biofilms within the CF lung are likely to be exposed to sub-inhibitory
concentrations of antibiotics because of poor penetration or diffusion
gradients through the biofilm.26 Such sub-inhibitory antibiotic
concentrations may explain the apparently paradoxical increase in
biofilm thickness we observed despite increased cell death. It is
possible that initially low antibiotic concentrations within the biofilm
induce bacterial growth and/or extracellular matrix production, fol-
lowed by increased cell death as the antimicrobial concentration
increases because of diffusion into the biofilm. An alternative expla-
nation for the increased biofilm thickness might be enhanced cell
lysis, which has been shown to contribute to P. aeruginosa extracel-
lular matrix production.27 Importantly, irrespective of mechanism,
the observed enhancement of P. aeruginosa biofilm growth in the
presence of tobramycin was completely eliminated in the presence
of 450 nM adjunctive NO. Nitric oxide potentiated the effect of tobra-
mycin alone, and ceftazidime and tobramycin in combination, by
dispersing P. aeruginosa biofilms and facilitating the killing of
dispersed bacteria.
Molecular Therapy Vol. 25 No 9 September 2017 2109
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Table 1. Primary Outcome Results Showing Mean Differences between the NO or Placebo Groups of Change from Baseline

Change from Baseline, Mean (SD) Treatment Effect: Mean Difference (95% CI), p Value

Day 5 7 10 20 Intervention Period (Days 5 and 7) Study Period (Days 5, 7, 10, and 20)

FISH: Ln Number of Aggregates > 20 Cells

Placebo 0.11 (2.38) 0.35 (1.44) 0.38 (2.32) NA
3.49 (0.32, 6.67) p = 0.031 1.35 (�0.58, 3.7) p = 0.170

NO �4.33 (5.11) �2.19 (3.93) 0.98 (1.83) NA

FISH: Ln Volume of Aggregates > 20 Cells

Placebo �0.16 (2.51) �0.03 (1.54) 0.21 (2.20) NA
4.47 (�0.40,8.98) p = 0.052 2.35 (0.08, 4.63) p = 0.043

NO �6.10 (7.50) �3.03 (5.88) 0.97 (2.02) NA

FISH: Ln Number of Aggregates > 10 Cells

Placebo 0.28 (2.09) 0.26 (1.52) 0.20 (2.04) NA
2.44 (0.25, 4.62) p = 0.029 1.09 (�0.54, 2.72) p = 0.118

NO �1.46 (1.08) �2.71 (4.56) 1.10 (1.19) NA

FISH: Ln Volume of Aggregates > 10 Cells

Placebo 0.08 (2.33) 0.05 (1.50) �2.47 (2.12) NA
2.68 (-.052, 5.41) p = 0.055 1.27 (�0.62, 3.16) p = 0.188

NO �1.75 (1.14) �3.37 (6.34) 1.07 (1.50) NA

CI, confidence interval; Ln, natural logarithm; NA, not analyzed.
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The proof-of-concept clinical study demonstrated a significant direct
effect on pseudomonal biofilm (as measured by a reduction in
P. aeruginosa aggregate load) in CF patients treated with NO gas
plus conventional intravenous (i.v.) antibiotic therapy compared
with i.v. antibiotics alone. The effect was not sustained following
the end of NO therapy in this group of adult patients with long-
term chronic disease. In this small study, we did not detect any side
effects as a result of this treatment strategy. All changes in the clinical
parameters measured favored NO treatment, and there was no evi-
dence that NO treatment caused an increase in overall bacterial
load or the severity of acute exacerbations. We saw no treatment
effects suggestive of NO induced vasodilatation (i.e., no increase in
oxygen saturation during treatment) and no adverse effects during
the weaning period at the end of each day’s NO therapy that might
have been indicative of rebound pulmonary hypertension. Our study
measured clinical parameters to ensure safety but not clinical efficacy,
which will be the subject of future large clinical trials.

Previous studies have shown that P. aeruginosa cells can be killed
directly by high doses of NO.28 This might be the result of several
possible toxic effects of NO on bacteria at high concentrations,
including direct modification of membrane proteins, DNA cleavage,
and lipid peroxidation through mechanisms of both nitrosative and
oxidative stress.29–31 The use of high-dose NO in this way has poten-
tial cytotoxic and other adverse clinical effects32 and is associated with
considerable cost. Despite this, recent trials of high-dose 160-ppm
inhaled NO in CF did not demonstrate any adverse safety signals.33,34

In terms of biofilm growth, which has not been measured in previous
clinical trials, high levels of NOmight result in increased nitrate levels
in CF sputum that may support growth of P. aeruginosa by meta-
bolism based on anaerobic denitrification.35,36 Our previous in vitro
studies have shown that higher concentrations of NO can stim-
ulate biofilm formation.18 These studies agree with another report
suggesting that higher-dose NOmay, in fact, enhance aminoglycoside
2110 Molecular Therapy Vol. 25 No 9 September 2017
tolerance by blocking energy-dependent phases of drug uptake.37 The
low-dose, signal-relevant concentrations of NO we used in the proof-
of-concept clinical trial reported here are approximately three orders
of magnitude lower than those shown to inhibit drug uptake and
did not inhibit tobramycin efficacy against dispersed (planktonic)
or biofilm P. aeruginosa bacteria.

The rationale for our approach using NO to treat P. aeruginosa infec-
tion was to exploit our discovery that low-dose NO (10 ppm,
assumed to translate into submicromolar concentrations locally)
mediates biofilm dispersal through increased bacterial phosphodies-
terase activity and an associated decrease in c-di-GMP levels.19

We have previously shown that low-dose NO can increase the
motility of P. aeruginosa cells in vitro18 and proposed that this
increased motility promotes biofilm dispersal. In contrast, and in
the context of CF sputum, other studies have shown that
P. aeruginosa isolates are frequently non-motile38 and that sputum
can repress P. aeruginosa flagellar activity and motility.39,40 Cyclic-
di-GMP binds to a broad range of effector components that control
the physiology, development, stability, cell adhesiveness, and motility
of the biofilm phenotype. Factors other than motility could therefore
be responsible for biofilm disruption and a reduction in tolerance to
antibiotic treatment. Further studies are required to understand the
specific c-di-GMP effectors responsible for NO-mediated disruption
of biofilms within CF sputum.

Chronic CF infections are often associated with multiple bacterial
pathogens and complex microbial communities.41,42 Genes that
modulate c-di-GMP turnover are widely distributed in bacteria, and
NO-mediated dispersal has now been observed across a number of
species, including many pathogenic organisms.43,44 NO-mediated
alteration of intracellular c-di-GMP levels is therefore an impor-
tant new potential target to control multispecies bacterial commu-
nities in CF. NO might also be of benefit in treating younger CF



Table 2. Microbiological and Clinical Safety Monitoring Showing Mean Differences between the NO or Placebo Groups of Change from Baseline

Change from Baseline, Mean (SD) Treatment Effect, Mean (95% CI), p Value

Day 5 7 10 20 Intervention Period (Days 5 and 7)
Total Study Period (Days 5, 7, 10,
and 20)

Ln CFU

Placebo �1.62 (2.34) �2 (3.77) �0.89 (4.08) NA
�0.19 (�2.95, 2.56) p = 0.891 0.03 (�2.53, 2.59) p = 0.980

NO �1.97 (2.20) �1.25 (2.76) �1.30 (1.64) NA

Ln qPCR

Placebo �2.16 (1.73) �4.33 (2.44) �4.32 (1.92) NA
�0.47 (�1.91, 0.97) p = 0.519 �0.37 (�1.44, 0.71) p = 0.504

NO �1.86 (1.60) �3.67 (1.81) �3.09 (1.74) NA

Day 5 7 10 20 Intervention Period (Day 7 Only) Study Period (Day 20 Only)

FEV1

Placebo NA 6.67 (4.46) 9.00 (2.52) 6.17 (3.49)
�8.93 (�25.3, 7.42) p = 0.248 1.95 (�7.31, 11.20) p = 0.645

NO NA 15.6 (17.2) 5.01 (14.2) 4.22 (9.35)

FVC

Placebo NA 4.83 (6.74) 9.17 (5.46) 6.33 (4.46)
�11.6 (�30.7, 8.42) p = 0.229 8.03 (�4.10, 20.2) p = 0.168

NO NA 16.0 (20.1) 3.75 (14.6) �1.70 (12.3)
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patients after initial infection with P. aeruginosa. Used under these
circumstances, it might increase the effectiveness of eradication
therapy and delay the onset of chronic biofilm infection with this
organism.

Our clinical trial data appear to differ from the reported effects of
inhaled NO on circulating NO metabolite levels in infants with
pulmonary hypertension,45 where a clear increase in NO metabolite
levels was reported to occur with twice the concentration of inhaled
NO used in our study. There is a paucity of information on circulating
levels of NO metabolites in CF. Nevertheless, our observations are in
general agreement with the notion that NO concentrations are lower
in the exhaled breath of CF patients, whereas systemic NO production
does not appear to be compromised.46 Possible mechanisms for this
include accelerated degradation as a result of increased oxidative
stress in epithelial cells, increased NO consumption by bacterial bio-
films, or impaired gas exchange as a result of mucus obstruction. All
of these factors would be expected to prevent exogenous inhaled NO
to reach the systemic circulation, limiting its effects to the site of
administration.

The main limitation of the clinical component of our study is the
small sample number and between-patient variation in clinical and
microbiological parameters. This has made formal statistical analyses
difficult, but we were able to incorporate repeated measurements over
time to improve power. Variability in the qPCR results between the
NO and placebo groups was probably due to sample heterogeneity
in chronically infected patients. Despite these limitations, FISH image
analysis data demonstrate a treatment effect and provide a proof of
concept for our low-dose NO approach. Similarly, our analysis
of the changes in systemic NO status following low-dose NO inhala-
tion is likely compounded by inter-individual differences in NO
processing. However, the lack of an observed rise in blood nitrate
and NO-heme levels are consistent with well-documented perturba-
tions in NO production and handling in CF patients.47,48

Our study has demonstrated the potential for the use of low-dose NO
to enhance antibiotic treatment of biofilm infections. Although the
practical challenges in delivering inhaled NO gas to CF patients
were considerable, future novel NO donor antibiotics might prove
to be a more feasible approach to targeting biofilms.49 Biofilm-related
chronic infections are responsible for at least half a million deaths per
year at an estimated cost of over $94 billion in the United States
alone.16 More effective anti-biofilm therapies are needed to address
this significant unmet need.

MATERIALS AND METHODS
CF Sputum Collection and P. aeruginosa Isolation

Sputum samples50,51 from 72 patients with CF (median age at
informed consent, 21 years; range, 17–62; United Kingdom National
Health Service [NHS] Research Ethics Reference 08/H0502/126) were
obtained by CF physiotherapist-assisted sample expectoration. For
isolation of P. aeruginosa from sputa, samples were digested using
Mucolyse (Pro-Lab Diagnostics) containing dithiothreitol and phos-
phate buffer for 15 min at 37�C, followed by culture on P. aeruginosa-
specific cetrimide agar (Sigma-Aldrich). Multiplex PCR was used
to confirm P. aeruginosa as described previously.52 Because
P. aeruginosa colonization of the CF lung often consists of multiple
clonal lineages,53 colony sweeps (sterile loops drawn across a
confluent streak of bacterial growth on cetrimide agar) were used in
preference to single-colony isolates for routine subculture and biofilm
growth of P. aeruginosa.
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Table 3. Baseline Clinical Characteristics of Groups

Treatment Group n Mean SD

Age (years)
A 6 30.0 13.99

B 6 29.3 15.60

Height (cm)
A 6 162.8 9.45

B 6 166.0 9.27

Weight (kg)
A 6 56.4 9.61

B 6 63.0 8.32

Heart rate (bpm)
A 6 89.3 18.62

B 6 91.2 17.19

Systolic blood pressure (mmHg)
A 6 107.3 13.84

B 6 121.0 14.97

Diastolic blood pressure (mmHg)
A 6 64.2 9.37

B 6 75.8 13.73

Oxygen saturation (% in air)
A 6 95.2 2.23

B 6 95.2 3.25

Respiratory rate (per minute)
A 6 20.0 1.10

B 6 18.5 2.17

Temperature (�C)
A 5 36.8 .31

B 6 36.9 .48

FEV1 % of predicted (l)
A 6 40.2 20.14

B 6 45.7 18.28

FVC % of predicted (l)
A 6 54.4 17.60

B 6 71.5 21.11

Average exhaled NO levels (ppb)
A 6 12.7 9.46

B 6 9.3 8.86

A, NO group; B, placebo group.
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Nitric Oxide-Mediated Dispersal of Clinical P. aeruginosa

Isolates

We first evaluated the ability of NO at different doses to disperse clin-
ical isolates of P. aeruginosa biofilms in vitro and within sputum from
CF patients. Biofilm-forming P. aeruginosa clinical isolates (n = 12)
were inoculated using overnight cultures grown in M9 minimal
medium (20 mL per liter of 20% glucose, 2 mL per liter of 1 M
MgSO4, and 100 mL per liter of 1 M CaCl2). Overnight cultures
were diluted to give OD readings corresponding to 106 cells/mL,
and 200 mL aliquots were inoculated into a 96-well plate and incu-
bated at 37�C for 24 hr. The medium was aspirated and replaced
with fresh M9 medium with or without increasing concentrations
of the NO donor SNP (concentration range, 9 pM to 4.5 mM; Sigma
Aldrich). The concentration of NO produced by SNP was calculated
using an NO microsensor (Unisense) and calibrated over a range of
250 nM to 10 mM using previously published methods.54 Based on
the measured linear relationship between micromolar concentration
of SNP producing nanomolar concentrations of NO (where
y = 0.9022x; R2 = 0.9617, n = 6 data points), NO concentrations
were calculated to be nearly 1,000-fold less than the starting concen-
tration of SNP, resulting in approximately 450 nM NO generated
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from 500 mM SNP. To confirm that the effects were specific to NO,
the assays were also carried out with SNP (500 mM) in the presence
of 5 mM of the NO scavenger carboxy-PTIO (Sigma-Aldrich). M9
medium containing 500 mM potassium ferricyanide (Sigma-Aldrich),
used to generate breakdown products of SNP,55,56 was also used as a
control. Optical density measurements of the supernatant containing
planktonic cells were made using a BMG Labtech Omega plate reader
(620 nm and chamber temperature of 37�C) over 24 hr, with
measurements taken every 15 min. Experiments were repeated three
times with four replicates for each experiment.

Nitric Oxide-Mediated Dispersal of P. aeruginosa Biofilms in CF

Sputum and Antibiotic Sensitivity Testing

The use of FISH to identify microbial biofilms in situ is recommended
in the ESCMID guidelines for the diagnosis and treatment of biofilm
infections.25 Expectorated sputum samples (n = 5) were divided in
half (v/v) and treated for 15 hr with either Hank’s balanced salt solu-
tion (HBSS, Sigma-Aldrich) alone or HBSS containing 450 nM NO
(i.e., 500 mM SNP). Samples were fixed in freshly prepared 4% para-
formaldehyde in PBS at 4�C and washed with PBS and PBS-ethanol
(1:1 v/v), and 20-mL drops of sputum were spotted onto poly-L-lysine
(PLL)-coated slides and left to dry overnight. P. aeruginosa detection
was performed using FISH with the following 16S ribosomal probe
sequences: PseaerA, 50-GGTAACCGTCCCCCTTGC-30, specific for
P. aeruginosa,57 labeled with Cy3; EUB338, 50- GCTGCCTCCC
GTAG GAGT-30 (domain bacteria),58 labeled with Cy5 (Integrated
DNA Technologies). Hybridization conditions for FISH were opti-
mized and stringently evaluated in vitro to ensure the specificity of
the PseaerA probe. We independently confirmed the previously
reported optimal hybridization conditions for the specificity of the
Pseaer probe for P. aeruginosa.57,59 Hybridization with the sample
was carried out using 20% formamide, and a 2-hr incubation
at 46�C was followed by washing for 15 min at 48�C in pre-warmed
wash buffer as described previously.57,60 Coverslips were placed on
samples and imaged using an inverted DMI600 SP5 confocal laser-
scanning microscope (CLSM, Leica Microsystems). Control experi-
ments with both positive and negative controls demonstrated that
low concentrations of NO in the concentration range used for our
studies did not interfere with the eubacterial or species-specific
FISH signal for P. aeruginosa, including no fluorescence quenching
in the presence of NO (Figure S2).

P. aeruginosa biofilms were examined for antibiotic sensitivity using
adjunctive treatment of 450 nM NO with or without the aminogly-
coside tobramycin. The antibiotic was added alone or in combina-
tion with the cephalosporin ceftazidime (both antibiotics at the
minimum bactericidal concentrations [MBCs] to induce killing of
planktonic cells, determined to be 5 mg ml�1). Biofilms were grown
from colony sweeps as described above in culture plates (MatTek),
and treatment was carried out for 15 hr at 37�C. Ceftazidime is not
used alone to treat CF exacerbations because of the emergence of
resistant bacterial strains and so was used only in combination
with tobramycin in this study. Viable bacterial cell counts were
determined on cetrimide agar, and residual surface bound biofilms
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were examined using a CLSM and the Baclight Live/Dead viability
stain (Invitrogen).

Proof-of-Concept Randomized Clinical Trial

We subsequently conducted a randomized, participant- and outcome
assessor-blind, placebo-controlled proof-of-concept study of inhaled
NO gas in hospitalized participants aged 12 and above with CF and
chronic Pseudomonas colonization between August 2011 and
September 2012 (UK NHS REC 11/H0502/7, EudraCT 2010-
023529-39, ClinicalTrials.gov NCT02295566) (CONSORT diagram;
Figure 4).

Study Design and Placebo

The design for the proof of concept was randomized and placebo-
controlled, where participants and primary outcome assessors were
blind to the treatment group. Participants randomized to the placebo
arm of the trial received medical air (BOC) or a medical air/oxygen
blend according to clinical need (determined by oxygen saturation
monitoring according to standard clinical practice). This was admin-
istered through a nasal cannula in the same manner as the NO so that
participants did not know whether they received the trial treatment or
placebo, including pre-defined sham weaning procedures.

Sample Size and End of Study

The primary aim of this study was to gain evidence that NO could
reduce the proportion of aggregated bacteria in biofilms (with regard
to reduction in surface area and reduction in average colony size) in
the sputum of participants treated with NO. To demonstrate that
treatment with NO is better than the control, we calculated the sample
size required to achieve a 90% probability of observing the correct
ordering (consistent with a treatment effect) of the proportion of
bacteria in biofilms for each group (estimated by taking into account
the results observed from the laboratory experiments).61 It was esti-
mated that the proportion of bacteria in biofilms with regard to sur-
face area (as a measure of aggregate size) would be 0.7 for placebo and
0.4 for patientrs treated with NO. A sample size of ten participants in
each treatment group would have been sufficient to determine that
the NO treatment arm is superior to the control group (by reducing
the proportion of biofilm bacteria) with 90% probability, assuming a
change from 0.7 to 0.4. It was recognized that this study would have a
limited ability to detect important but rare treatment-related adverse
events that would need to be identified in a future larger randomized
control trial (RCT). The study was ended at the end of the funding
period, when six participants had been recruited to each group. The
data were analyzed according to the statistical plan despite the
lower-than-expected recruitment.

Inclusion and Exclusion Criteria

Adolescents and young adults with cystic fibrosis were eligible for
inclusion when aged 12 or above and colonized with P. aeruginosa,
confirmed bymicrobiological assessment of sputum samples. Patients
were excluded for colonization with Burkholderia cepacia; known
hypersensitivity to the antibiotics used in the study; other known con-
traindications to the antibiotics to be used in the study, including
known aminoglycoside-related hearing/renal damage; patients
requiring non-invasive ventilation; patients who had a pneumo-
thorax; patients who were admitted for specific treatment of nontu-
berculous mycobacteria; patients who could not tolerate a nasal can-
nula (e.g., those who could not breathe through the nose); patients
who had nasal polyposis, causing significant blockage of the nasal pas-
sages; adolescents not Gillick-competent (and therefore not able to
give their own assent in addition to parental consent); patients not
likely to survive the time period of the study washout period
(4 months from enrolment); treatment with an investigational drug
or device within the last 3 months prior to enrolment; patients who
were pregnant (a pregnancy test was carried out for females 11 years
of age and older); and immediate families of investigators or site
personnel directly affiliated with the study. Immediate family was
defined as child or sibling, whether biological or legally adopted.

Study Intervention and Randomization

Nitric oxide gas (10 ppm; INOmax, 400 ppmmol/mol inhalation gas;
INO Therapeutics), delivered via INOvent (Ikaria, supplied by INO
Therapeutics), or identically delivered placebo (air or air/oxygen
mix) was administered via nasal cannula to 12 participants admitted
for i.v. antibiotics to treat pulmonary exacerbations. The study inter-
vention was administered by inhalation via nasal cannula for 8 hr
overnight for the first 5–7 days of i.v. antibiotic therapy. This dose
was based on extrapolation from in vitro work, also informed by
the low dose used in hypoxic respiratory failure associated with evi-
dence of pulmonary hypertension in preterm infants. Electrochemical
measurement of NO gas released in solution by approximately
500 mM SNP was measured to be around 390 nM NO,19 which is
equivalent to 390 nmol/L, giving 8.7 mL/L or 8.7 ppm (not taking
into account any adjustment because of the environmental tempera-
ture). Participants and medical and laboratory staff were blinded to
treatment allocation. Block randomization with block lengths 2 and
4 was undertaken via an online randomization service in a 1:1 ratio
to ensure concealment of treatment allocation. Participants were
monitored closely by a research nurse during the overnight study
intervention period, and monitoring and safety data were collected.

Clinical Study Outcomes

The primary outcome was the between-group difference in propor-
tion of bacteria in biofilms (as determined by direct visualization of
the biofilm by FISH57–60 and image analysis). Secondary outcomes
were between-group differences in CFUs and qPCR20; measures to
assess safety, including lung function (FEV1 and FVC); and health-
related quality of life assessment (CFQ-UK)62.

Determination of Nitric Oxide in Sputum

We attempted to determine the free NO concentrations in expecto-
rated sputum samples following inhaled NO therapy by using a NO
electrochemical probe (Unisense NO microsensor, glass sensor
NO-10). However, because of difficulties in equilibrating and calibrat-
ing the probe within CF sputum and insufficient volumes of sputum
produced by patients to carry out NO measurements alongside FISH
and molecular analyses, these data are not presented.
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Image Analysis

For the ex vivo experiments, quantification of P. aeruginosa biofilm
thickness and biomass wasmade from3DCSLM stacks using the freely
available COMSTAT63 software. To avoid subjectivity in the selection
of sample regions, treatment groups were blinded to the researchers
carrying out the sample analysis. To specifically avoid subjective
bias, sample areas selected for study were chosen in a predetermined
pattern. Means and SD were calculated from five random fields of
view per treatment group. For clinical trial samples, FIJI (http://
fiji.sc/) 3D object counter software was used to analyze and quantify
P. aeruginosa “biovolume” analysis of confocal stacks. The range of
volumes of a single P. aeruginosa cell from the literature64 (0.16–
3.67 mm3) was used to filter fluorescently labeled objects in the stacks
into the following groups: noise (all objects below single-cell size, esti-
mated as less than 0.16 mm3); single cells; clusters (aggregates) over
10 cells in volume; and clusters over 20 cells in volume.After threshold-
ing, the volume of a P. aeruginosa cell was assessed using the 3D object
counter and compared with literature values for concordance. The 3D
object counter was then used to record all objects in each sample, and
the results for each of the ten image stacks per samplewere collated into
databases and grouped for analysis. For the primary analysis, aggre-
gated cell clusters containing both more than 20 cells and more than
10 cells in size were selected because all patients had microcolonies
over this size at baseline, so changes could be seen over the time course
of the study. There were not enough clusters of more than 40 cells to
analyze; however, because the 20-cell-sized microcolonies were esti-
mated using the upper limit of a Pseudomonas aeruginosa (PA) cell
size based on literature values (3.67 mm3), aggregates of more than
20 cells by our definition were likely to contain more than 20 cells.

Measurement of Nitric Oxide Metabolites in the Blood

Venous blood was collected in EDTA tubes 1 and 7 hr after starting
inhaled NO/placebo therapy on day 1 and immediately separated into
plasma and blood cells by centrifugation for 10min at 800� g; aliquots
of plasma and red blood cell (RBC) pellets were snap-frozen in liquid
nitrogen and stored at�80�C until analysis. NOmetabolite concentra-
tions in the plasma and RBC lysate were quantified immediately after
thawing of frozen samples in the presence of excess N-ethylmaleimide
(in PBS, 10 mM final concentration) as described previously.65–67

Briefly, nitrite and nitratewere quantified simultaneously via high-pres-
sure liquid ion chromatography (ENO-20, Eicom) with post-column
Griess diazotization following on-line reduction of nitrate to nitrite.
Total nitrosation products (including low-molecular-weight S-nitroso-
thiols, N-nitrosamines, and nitrosated proteins) were measured using
group-specific de-nitrosation/reduction and subsequent liberation of
NO, detected using gas phase chemiluminescence (CLD77am sp, Eco-
physics). NO-heme concentrations were quantified by injection of RBC
lysate into an oxidizing reaction solution (ferricyanide in PBS),67 and
generatedNOwasquantifiedby gas phase chemiluminescence as above.

Statistical Analysis

Data for the laboratory study were compared using a Mann-Whitney
rank sum test for non-normally distributed data. For the clinical
study, an intention-to-treat analysis was undertaken.
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For all outcomes, the change from baseline to endpoint was calcu-
lated. The primary outcome (FISH, the number and volume of aggre-
gates >20 cells) and microbiological and clinical safety outcomes
(CFUs and qPCR) were analyzed on the natural log scale.

The mean difference of the treatment effect between arms during the
intervention period (days 5 and 7) and total study period (days 5, 7,
10, and 20) was estimated by conducting linear regression using the
method of GEE68 to account for longitudinal dependence (where
study time points were available). Residuals were examined to assess
model assumptions. Analyses were performed in Stata software,
version 11.
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