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Abstract 

Recovering economically valuable rubidium (Rb) from natural resources is challenged due to 

its low concentration and limited selectivity of extracting agents. Equilibrium and kinetic 

studies were conducted on the sorptive removal of Rb at low concentration (5 mg/L) using a 

commercial and a laboratory prepared potassium cobalt hexacyanoferrate (KCoFC). These 

laboratory and commercial KCoFCs exhibited similar characteristics in terms of chemical 

composition, surface morphology (scanning electron microscopy) and crystal structure (X-ray 

diffraction peaks). KCoFC exhibited a higher sorption capacity for Rb (Langmuir maximum 

sorption 96.2 mg/g) and cesium (Cs) (Langmuir maximum sorption 60.6 mg/g) compared to 

other metals such as lithium (Li), sodium (Na) and calcium (Ca) (sorption capacity < 2 mg/g). 

KCoFC sorption capacity for Rb was affected only when Cs was present at twice the 

concentration of Rb, while the influence of other metals (Li, Na, and Ca) was minimal even at 

high concentrations. High Rb sorption capacity was due to the exchange of Rb for K inside the 

crystal lattice and strong sorption on the sorbent surface. These were evident from the data on 

K release during Rb sorption and reduced negative zeta potential at the sorbent surface in the 

mailto:Saravanamuth.Vigneswaran@uts.edu.au


2 
 

presence of Rb, respectively. Kinetic sorption of Rb was satisfactorily described by the pseudo-

second order model with intraparticle diffusion and exchange of Rb with structural K acting as 

major rate limiting steps. Up to 80% desorption of Rb was achieved with 0.1 M KCl. Overall, 

the results established the superior selectivity of KCoFC for Rb sorption.  
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Highlights 

 Potassium cobalt hexacyanoferrate (KCoFC) had high sorption capacity for Rb 

 Rb was selectively sorbed by KCoFC in the presence of other alkali metals  

 Langmuir sorption capacity was higher for Rb than Cs 

 K release from KCoFC lattice was highest for Rb sorption among the alkali metals 

 Intra-particle diffusion and lattice K release controlled Rb sorption kinetics 

 

1. Introduction 

In the last few decades attention has been focused on extracting rubidium (Rb) due to 

its application in many fields of science and technology. Rb is used in fibre optic 

telecommunication systems, semiconductor technology and night-vision equipment [1,2]. In 

recent years, new and more efficient techniques have been established in optical and laser 

application with the usage of warm Rb vapour [3,4]. Although considerable Rb mineral 

resources are available, it is much more difficult to extract Rb than other alkali metals [2]. The 

application potential coupled with the mineral extraction challenge has increased the economic 

value of Rb. The price of Rb is much higher (€7856.64/kg) in comparison to lithium (Li) 

(€1.22/kg) and potassium (K) (€0.11/kg) [5].  

This has led to the development of new methods for the extraction of Rb from resources 

such as oilfield water, mining industry, ores with low Rb content, seawater and salt lakes [2,6-

8]. Potential methods of alkali metal extraction from natural resources include evaporation, 
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precipitation, use of emulsion membranes and liquid–liquid extraction techniques [9,10]. 

Nevertheless, the effectiveness of recovering trace metals with these methods are challenged in 

natural resources by the low concentration of the target metals, the limited selectivity of the 

extracting agents, and the presence of other constituents. In this regard, inorganic ion-exchange 

sorbents offer a practical approach in that they have the capacity to selectively extract low 

concentration metals from mixed solutions [7].   

A number of diverse inorganic sorbents have been used for selective alkali metal 

sorption including Prussian blue [11], potassium metal hexacyanoferrate [12], zeolite [13], 

titanium dioxide [14] and ammonium molybdophosphate [15]. Most of these studies have 

focused on the removal of radioactive cesium (Cs) in nuclear waste brine. Cs and Rb have 

similar physico-chemical properties and on this basis, a few studies have examined the prospect 

of Rb extraction by sorbents [5,16]. These studies have highlighted the high Rb sorption 

capacity of potassium metal hexacyanoferrate. However, we still lack a detailed understanding 

of: firstly, the mechanism and kinetics of Rb sorption by potassium metal hexacyanoferrate; 

and secondly, the effect of the presence of other alkali metals on Rb sorption. Moreover, these 

studies were conducted using high concentrations of the target alkali metal in the 20 to >500 

mg/L range. The concentration of the target metal is an important factor in establishing the 

effective performance of a sorbent. As Rb is present in a relatively low concentration (<1.0 

mg/L) in natural resources such as seawater, experiments at high concentration levels may not 

reflect the performance of the sorbent in a practical scenario. Further, apart from the sorption 

performance, desorption capacity is an important factor in establishing the viability of a sorbent 

if the target metal has to be recovered in concentrated form in solutions. This aspect has not 

been discussed thus far for Rb sorption with potassium metal hexacyanoferrate. 

Hence, the objective of this study was to establish the selective affinity of potassium 

cobalt hexacyanoferrate (KCoFC) for Rb sorption. The specific objectives were to: (1) 

synthesise KCoFC in the laboratory (KCoFC(L)) and compare its properties and characteristics 
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with a commercial KCoFC sorbent (KCoFC(C)) in terms of chemical composition, crystal 

structure, surface area and pore size distribution, surface charge characteristics, and efficiency 

of Rb sorption; (2) determine the effect of pH and co-existing alkali metal ions on Rb sorption; 

(3) model the equilibrium and kinetics of Rb sorption; (4) determine the mechanism of Rb 

sorption; and (5) investigate the desorption of Rb using different acid, alkaline, and salt 

solutions.   

 

2. Material and methods  

2.1.  Materials 

2.1.1.  Commercial sorbent (KCoFC(C)) 

KCoFC(C) also known as CsTreat was supplied by Fortum Engineering Ltd, (Finland). 

This sorbent consisted of dark brown-black granules ranging in size from 0.25 to 0.85 mm [17]. 

The granules were ground to particle sizes of 0.25 to 0.45 mm for this study.  

 

2.1.2.  Laboratory sorbent (KCoFC(L)) 

KCoFC(L) was prepared in the laboratory by adding 1 volume of 0.5 M potassium 

ferrocyanide trihydrate (K4Fe(CN)6·3H2O) to 2.4 volumes of 0.3 M cobalt nitrate hexahydrate 

(Co(NO3)2·6H2O) as described by Prout et al. [18]. The mixture was stirred for 1 h at room 

temperature, followed by centrifuging and washing with deionised water. The concentrated 

mixture was dried at 115oC for 24 h. The dried granules were ground to a particle size of 0.25 

to 0.45 mm, washed again with deionised water and then dried.   

 

2.1.3.  Solutions 

Stock solutions of Rb, Cs, Li, K, Na and Ca were prepared by dissolving RbCl, CsCl, 

LiCl, KCl, NaCl and CaCl2, respectively, in deionised water. All reagents were of analytical 

grade (Sigma-Aldrich) and were used without further purification.  
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2.2.  Sorbent characterisation  

2.2.1.  Chemical analysis 

Samples of KCoFC (0.05 g) were decomposed in 1 mL of concentrated H2SO4 by 

heating at 200°C for 5 h. 10 mL of 0.1 M H2SO4 was added to the residue, and diluted to 50 

mL with deionised water as per the procedure of Nilchi et al. [19]. Concentrations of K, iron 

(Fe) and cobalt (Co) in the aqueous samples were measured after filtration through a 1.2 µm 

syringe membrane filter using Microwave Plasma - Atomic Emission Spectroscopy (MP-AES) 

(Agilent 4100). The procedure was carried out in triplicate and the average results are reported 

in this study. The deviation between the replicated values was < 10%. 

 

2.2.2.  SEM-EDX analysis 

The morphology and detection of elements on the KCoFC before and after Rb sorption 

was carried out with scanning electron microscopy (SEM) coupled with Energy Dispersive X-

ray spectrometry (EDX) operated at 15 kV (Zeiss Supra 55VP Field Emission). 

 

2.2.3.  Powder X-ray diffraction analysis (XRD) 

XRD data (on powders) were collected on a Siemens D5000 diffractometer operating 

with CuKa radiation and a rotating sample stage. The samples were scanned at room 

temperature in the 2ϴ angular range of 20–110°. 

 

2.2.4. Surface area and pore volume  

Nitrogen adsorption-desorption on KCoFC(C) and KCoFC(L) was determined at 77 K 

using the nano POROSITY (Mirae SI, Korea) adsorption analyser.  Approximately 0.1 g of 

freeze-dried sample was used for the analysis following an overnight degassing at 80⁰C under 

vacuum. The specific surface area was calculated using the standard Brunauer–Emmett–Teller 
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(BET) method. The total pore volume (Vtot) was determined from the nitrogen adsorption at a 

relative pressure of about p/p0 ≈ 0.99. Average pore diameter was calculated using the equation, 

4Vtot/ SBET.   

 

2.2.5.  pH and zeta potential  

To investigate the effect of pH and zeta potential on sorption, suspensions of 1 g/L 

KCoFC sorbents in different solutions (100 mL) were agitated for 12 h in a flat shaker at a 

shaking speed of 120 rpm at room temperature (24  ± 1ºC). The pH values of the feed solution 

were set in the 3 to 10 range by adjusting the initial pH using 0.1 M HCl and 0.1 M NaOH.  The 

initial and final pHs at the end of the sorption period were measured using a HQ40d portable 

pH Meter. To maintain a constant pH, pH was adjusted to its initial value after 4 and 8 h for all 

sorption experiments. The zeta potential was measured using a Zetasizer nano instrument (Nano 

ZS Zen3600, Malvern, UK) on the suspensions. Measurements were done in triplicate to 

minimise undesirable biases (with differences between replicates always being less than 5%). 

 

2.3.  Sorption experiments 

In view of the low concentrations of Rb and Cs in natural resources, and in order to 

reliably measure the metals concentrations utilising analytical instruments, sorption 

experiments were carried out at a maximum initial concentration of 5 mg/L for Rb and Cs. 

However, higher concentrations of Li, Na, and Ca were used as these metals had very low 

sorption capacity at low concentrations. All experiments were performed in a set of glass flasks 

containing 100 mL of metal solutions and different doses of sorbents agitated in a flat shaker at 

a shaking speed of 120 rpm at room temperature (24 ± 1oC). The experiments were duplicated 

and the average values were recorded for data analysis. The difference between duplicate values 

was within ±2%. The concentrations of Rb, Li, Na and Ca in the supernatants were measured 
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using MP-AES. The Cs concentration was measured using ICS-MS (PerkinElmer® NexION® 

300). 

 

2.3.1.  Sorption isotherms 

Equilibrium sorption experiments were conducted with different doses of sorbent 

(KCoFC) ranging from 0.02 to 0.20 g/L at pH 7.0 ± 0.5. The suspensions were agitated for 24 

h to reach the sorption equilibrium. The supernatant solution was examined using MP-AES 

analysis after filtration through a 1.2 µm syringe membrane filter. The sorption amount at 

equilibrium, qe (mg/g), was calculated using Eq. (1): 

 

 𝑞𝑒 =
(𝐶0 − 𝐶𝑒). 𝑉

𝑀
 (1) 

where, C0 and Ce are the initial and equilibrium concentration of ion in the bulk solution (mg/L), 

V is volume of solution (L) and M is mass of sorbent (g).  

 

The sorption data were modelled according to Langmuir (Eq. 2) and Freundlich isotherms (Eq. 

3) as follows.  

 

 𝑞𝑒 =
𝑄𝑚𝑎𝑥𝐾𝐿𝐶𝑒

1 + 𝐾𝐿𝐶𝑒
 (2) 

 𝑞𝑒 = 𝐾𝑓𝐶𝑒
1/𝑛

 

 𝑞𝑒 = 𝐾𝑓𝐶𝑒
1/𝑛

 

(3) 

where Qmax is the maximum sorption capacity (mg/g), KL is the Langmuir binding constant, 

which is related to the energy of sorption (L/mg), Kf is the Freundlich constant representing the 
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sorption capacity (mg/g)( L/mg)1/n and 1/n is a constant inversely related to the sorptive energy 

between the sorbent and the sorbate (unit-less). 

 

2.3.2.  Sorption kinetics 

Sorption kinetics experiments for Rb and Cs were conducted by agitating KCoFC at a 

dose of 0.05 g/L with 5 mg/L of Rb and Cs in 0.1 L solution. Samples of the agitated 

suspensions were taken at different time intervals up to 48 h, filtered, and the filtrate analysed 

for Rb and Cs. The sorption amount (qt) at time t was calculated using Eq. (4): 

 

 𝑞𝑡 =
(𝐶0 − 𝐶𝑡). 𝑉

𝑀
 (4) 

where, C0 and Ct are the initial and final concentrations of metal at time t (mg/L). 

The sorption data was modelled using pseudo-first order (PFO) and pseudo-second 

order kinetics (PSO) as described in (Eq. 5) and (Eq. 6) [20]. 

 

ln( 𝑞𝑒 − 𝑞𝑡)  = ln 𝑞𝑒 −   𝑘1𝑡                  (5) 

𝑡

 𝑞𝑡
=  

1

 𝑘2𝑞𝑒
2

  +   
1

 𝑞𝑒
𝑡 (6) 

where qt (mg/g) is the adsorption capacity at time t (min), and k1 (1/min) and k2 (g/mg min) are 

the pseudo-first order and pseudo-second order rate constants, respectively. 

The Weber-Morris diffusion model (Eq. 7) was also used to describe the kinetic data 

[21]: 

 

 𝑞𝑡 = 𝑘𝑖𝑡1/2 + 𝐶         (7) 

where ki (mg/g min0.5) is the intra-particle diffusion rate constant and the intercept C represents 

the boundary layer thickness. 
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2.4.  Desorption 

Initially Rb was sorbed onto KCoFC by shaking 0.1 g/L dose of the sorbent with Rb at 

a concentration of 5 mg/L. Upon saturation of the sorbent with Rb, the sorbent was filtered and 

dried at room temperature. The amount of Rb sorbed was determined as explained previously. 

The Rb in the sorbent was then desorbed using 0.1 M of HNO3, KOH, KCl, NaCl, HCl, or 

NaOH. Desorption was carried out by shaking the Rb-saturated KCoFC with 50 mL of the 

reagents in a flat shaker at a shaking speed of 120 rpm for 30 min. The desorbed solutions were 

analysed for Rb concentration with MP-AES. 

 

3.  Results and discussion 

3.1.  Characteristics of KCoFC 

3.1.1.  Chemical decomposition analysis  

The chemical decomposition analysis showed that both KCoFC(L) and KCoFC(C) had 

reasonably similar chemical composition (Table 1). For KCoFC(L), the K/Fe atomic ratio was 

2.4 and Co/Fe atomic ratio was 1.6, while the corresponding ratios were 2.3 and 1.8, for 

KCoFC(C). Previous studies have reported a similar composition for hexacyanoferrate sorbents 

[19,22]. For instance, Mardan et al. [22] found the stoichiometric composition of a potassium 

cobalt hexacyanoferrate to be K2.42Co1.74 Fe(CN)6.  
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Table 1. Chemical composition of KCoFC 

  Before Rb sorption After Rb sorption 

  K Fe Co K Fe Co 

KCoFC(L) mg/g 127.8 ± 3.1 77.1 ± 4.1 130.3 ± 2.3 69.3 ± 2.7 71.3 ± 3.2 114.4 ± 5.4 

 wt% 12.8 7.7 13.0 6.9 7.1 11.4 

 mmol/g 3.3 1.4 2.2 1.8 1.4 1.9 

KCoFC(C) mg/g 137.4 ± 2.3 85.8 ± 3.1 157.7 ± 0.9 69.6 ± 3.7 83.3 ± 2.3 128.7 ± 1.5 

 wt% 13.7 8.6 15.8 7.0 8.3 12.9 

 mmol/g 3.5 1.5 2.7 1.8 1.5 2.2 

 

3.1.2.  SEM-EDX analysis  

The SEM images showed that KCoFC(L) and KCoFC(C) had a similar appearance, i.e. 

a porous and rough morphology before Rb sorption (Fig. 1a). After Rb sorption, no significant 

morphological changes were observed on the KCoFC sorbents (Fig. 1b). 

The EDX emission pattern revealed the presence of K, Fe, and Co peaks in the samples 

representing the main metals of the KCoFC. The semi-qualitative element analysis showed that 

for KCoFC(L), the atomic ratio for K/Fe was 1.2 while for Co/Fe it was 1.4. Similarly, for 

KCoFC(C), the corresponding ratios were 1.0 and 1.5, respectively. Both the EDX and chemical 

decomposition analysis indicated a good match for the atomic ratio of Co/Fe (1.4 and 1.5 for 

EDX vs 1.6 and 1.8 for chemical decomposition). On the other hand, the K/Fe ratio for the EDX 

analysis was much lower (K/Fe 1.0-1.2) compared to the chemical decomposition analysis 

(K/Fe 2.4). This could be due to the limitation of EDX emission in capturing K that is located 

in the body/centre of the cubic caged KCoFC structure, in comparison to Fe and Co which are 

primarily located at the corners of the structure [23]. The low K/Fe atomic ratio of 1.0-1.2 
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obtained was consistent with a recent study reporting a K/Fe atomic ratio of 1.23 for potassium 

nickel hexacyanoferrate using EDX analysis [24].  

Upon Rb sorption, a peak of Rb in the energy zone of 1.7 keV was observed in the EDX 

spectra with a reduction of K peak intensity, suggesting the sorption of Rb with the exchange 

of K (Fig. 1b). Consistent with this, for both KCoFC(C) and KCoFC(L) a slight reduction in 

K/Fe ratio was detected following Rb sorption while no difference was observed for the Co/Fe 

ratio. The chemical composition analysis (Table 1) was able to show a clear reduction of K/Fe 

ratio upon Rb sorption from 2.3 - 2.4  to 1.2 -1.3 with minimal change of Co/Fe. 
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(a) 

 

 

KCoFC(L) % atomic 

ratio  

K/Fe 1.2 

Co/Fe 1.4 

 

 

 

KCoFC(C) % atomic 

ratio  

K/Fe 1.0 

Co/Fe 1.5 
 

  

KCoFC(C) KCoFC(L) 

(b) 

 

 

KCoFC(L)  

with Rb 

% atomic 

ratio  

K/Fe 1.0 

Co/Fe 1.4 

 

 

 

KCoFC(C)  

with Rb 

% atomic 

ratio  

K/Fe 0.97 

Co/Fe 1.4 
 

  

KCoFC(C) KCoFC(L) 

Fig. 1.  SEM-EDS analysis of KCoFC(C) and KCoFC(L) (a) original (b) after Rb sorption.  
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3.1.3.  Powder X-ray diffraction (XRD) analysis 

The XRD composition showed the same diffraction peaks for both the lab and 

commercial sorbent, confirming the similarity in crystal structure (Fig. 2). In this respect, 

previous studies on KCoFC sorbent, reported that main diffraction lines for KCoFC to be 2θ = 

17.72, 25.24, 36.08, 40.56, 42.8, 52.2 and 58.64º [12, 25]. The corresponding sharp peaks were 

detected in this XDR analysis, verifying the positions of the main diffraction lines for both 

KCoFC(C) and KCoFC(L).  

 

 

Fig. 2. XRD peaks of KCOFC(L) and KCoFC(C).  

 

3.1.4.  Surface area and pore volume 

The surface area of KCoFC(L) was 55.4 m2/g with a total pore volume of 0.26 cm3/g 

while the average pore diameter was 18.8 nm. On the other hand, KCoFC(C) showed higher 

values for all these parameters (surface area 72.1 m2/g, total pore volume 0.37 cm3/g, pore 

diameter 20.5 nm) in comparison to KCoFC(L). This could be attributed to the difference in 

mixing and drying of the sorbent during commercial production. The respective average pore 

diameters of 18.8 and 20.5 nm for the two KCoFC indicate that these materials consist mainly 

of mesopores (2 – 50 nm). 
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3.2.  Influence of pH on the sorption of Rb  

The pH of the aqueous solution is an important controlling parameter in the sorption 

process because it influences the surface charge on the sorbent. To study the influence of pH, 

experiments were conducted between pH 3 to 10. Rb sorption capacity increased up to pH 7- 

8 and then declined as pH increased (Fig. 3). The maximum sorption capacity of Rb was 

achieved at a pH range of 7 to 8.  

 

 

Fig. 3. Influence of pH on Rb sorption (Co = 5 mg/L, KCoFC dosage = 0.05 mg/L).  

 

The increased sorption was mainly due to an increase in the negative surface charge on 

the sorbent as indicated by the zeta potential trend (Fig. 4). Increased negative charge on the 

sorbent is expected to increase the sorption of positively charged ions such as Rb by 

electrostatic adsorption (outer sphere complexation). The lower Rb sorption at low pH is also 

due to the competition of H with Rb for sorption sites in the highly acidic solution where the 

concentration of H is high. At high pH (above 8), the presence of increased concentration of 

Na (arising from pH adjustment with NaOH) most likely competed with Rb sorption, thus 

reducing Rb sorption capacity. Since the maximum sorption capacity of Rb was obtained at a 

final pH range of 7 to 8, all further experiments were carried out at pH 7.0 ± 0.5.  
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Fig. 4. Zeta potential trend as a function of pH for alkali metals (1 x10-4 M) and DI water 

(KCoFC dosage = 0.1 g/L). 

 

-40.0

-35.0

-30.0

-25.0

-20.0

-15.0

-10.0

-5.0

0.0

5.0

2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Z
et

a
 p

o
te

n
ti

a
l 

(m
V

)

pH

CsCl RbCl NaCl

KCl LiCl DI water



16 
 

Table 2. Hydrated and unhydrated ionic radius of alkali metals  

Alkali metal Hydrated ionic radius, Å [5] Unhydrated ionic radius, Å  [23] 

Cs 2.26 - 2.28 1.68 

Rb 2.28 1.48 

K 2.32 - 3.31 1.33 

Na 2.76 - 3.60 0.95 

Li 3.40 - 4.70 0.60 

 

 

3.3.  Rb and Cs sorption capacity 

Both KCoFC(L) and KCoFC(C) sorbents showed much higher sorption capacity for Rb 

and Cs than Li, Na and Ca at all equilibrium solution concentration of the metals (Fig. 5). As 

both KCoFC(C) and KCoFC(L) sorbents showed similar characteristics (SEM-EDX, chemical 

composition, XRD), a similar sorption capacity would be expected for both sorbents. However, 

a slightly higher sorption capacity was observed with KCoFC(C) compared to KCoFC(L). This 

could be attributed to the higher surface area and pore volume of the KCoFC(C).  

The sorption data were modelled using Langmuir and Freundlich equations. The 

sorption data for Li, Na, and Ca did not satisfactorily fit to these models. However, the data for 

Rb and Cs fitted well to both the models with the fit being better for the Langmuir model (R2 

= 0.92 to 0.98) than for the Freundlich model (R2 = 0.73 to 0.93) (Fig. 5, Table 3). Similar 

observations were reported by Petersková et al. [5] for Rb and Cs sorption on potassium 

hexacyanoferrate sorbent. 
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(a) (b) 

Fig. 5. Sorption capacity of (a) KCoFC(C) (b) KCoFC(L) with Rb (), Cs (), Na(), Li 

() and Ca () (  ̶  ̶  ̶  Langmuir model; ----- Freundlich model) (Co of Rb and Cs = 5 mg/L, 

Co of Ca, Na and Li = 20 mg/L, final pH 7 ± 0.5). 

 

Table 3. Langmuir and Freundlich models parameters at final pH 7.0 ± 0.5. 

Metal 

  

Sorbent 

  

Langmuir Freundlich 

Qmax 

 (mg/g) 

KL 

(L/mg) 

R2 n KF  

(mg/g)(L/mg)1/n 

R2 

Rb KCoFC(C) 100.1 3.7 0.98 1.7 71.4 0.86 

  KCoFC(L) 96.2 1.2  0.95 1.8 48.2 0.86 

Cs KCoFC(C) 75.8 5.9 0.92 2.6 62.6  0.73 

  KCoFC(L) 60.9 1.0 0.96  1.5 32.2  0.93 

 

In the Langmuir model, the value of RL as calculated from the formula, RL = 1/(1+Cm 

KL) (where Cm is the maximum initial concentration of sorbate), indicates the favourability of 

the sorption process, such as unfavourable (RL > 1), favourable (0 < RL < 1) or irreversible (RL 
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= 0) [20]. The calculated RL values for Rb and Cs data were in the 0.04 to 0.25 range, indicating 

that the sorption process is favourable for both these metals.  

Langmuir model fits to data showed that for Rb, a Qmax of 96.2 to 100.1 mg/g (1.13.to 

1.17 mmole/g) was achieved for both the lab and commercial KCoFC. Comparatively, a lower 

Qmax was achieved for Cs at 60.9 to 75.8 mg/g (0.46 to 0.57 mmole/g) (Table 3). Previous 

studies on Rb and Cs sorption with commercial KCoFC (CsTreat) reported a similar pattern of 

relatively higher Rb sorption compared to Cs sorption [5,6,23]. For instance, Petersková et al. 

[5] reported a Qmax of 46.73 mg/g for Rb sorption and a Qmax of 32.36 mg/g for Cs sorption 

with a commercial KCoFC at pH 7.8 and equilibrium metal concentrations of 5-80 mg/L. 

The capacity of alkali metal sorption on sorbents is generally in the order of Cs > Rb > 

K > Na > Li based on the hydrated radius of the ions (Table 2). The smaller the hydrated ionic 

radius, the closer the ion can reach the sorbent surface, and therefore the stronger the sorption. 

Based on the hydrated ionic radius, Cs should exhibit similar or higher sorption capacity 

compared to Rb. Conversely, a relatively higher sorption of Rb was observed in this study as 

well as in previous research. Lehto et al. [23] associated this phenomenon to the similar sizes 

of the KCoFC cavities within the lattice (1.47 Å) and the unhydrated Rb radius (1.48 Å) 

compared to the larger unhydrated Cs radius (1.61 Å). Therefore, Rb was able to achieve a 

higher penetration into the crystal lattices, displacing the K in the lattices, hence exhibiting a 

higher sorption capacity.  

The occurrence of lattice ion exchange was evident as K was released with the sorption 

of Rb and Cs (Table 4). At equilibrium, the corresponding amount of K released was higher 

for Rb than for Cs, confirming the higher penetration of Rb into the KCoFC crystal lattice. 

Prout et al. [18] described this exchange reaction utilising the following equation: 
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K2[CoFe(CN)6] + 2 Rb+  Rb2[CoFe(CN)8] + 2 K+        (8) 

It is important to highlight that an additional amount of K release was detected (1.05- 

1.39 mmol/g) relative to the amount of Cs and Rb sorbed (Table 4). Previous studies related 

the excess fraction of K released to the dissolution of K from the sorbent in aqueous solution 

[23]. In line with this, the blank test with DI water showed 0.40 ± 0.19 mmol/g K release (Table 

4). Upon subtracting the soluble K released from the total amount of K released when Rb and 

Cs were sorbed, the ratios of Rb and Cs sorbed to K released (mmoles) were 0.92 and 1.09, 

respectively. This indicates that there was stoichiometric electrochemical balance in the 

exchange process.   

 

Table 4. Alkali metals sorption on KCoFC(L) and the corresponding amounts of K, Co and 

Fe released  

Alkali 

metal 

Equilibrium metal 

concentration (mg/L) 

Metal sorbed 

(mmol/g) 

K released 

(mmol/g) 

Co released 

(mmol/g) 

Fe released 

(mmol/g) 

Rb 2.74 0.91 ± 0.11 1.39 ± 0.25 0.07 ± 0.05 0.05 ± 0.02 

Cs  2.92 0.71 ± 0.09 1.05 ± 0.42 0.05 ± 0.02 0.04 ± 0.02 

Na 4.81 0.14 ± 0.09 0.51 ± 0.38 0.06 ± 0.03 0.05 ± 0.01 

Li 3.01 0.17 ± 0.08 0.58 ± 0.29 0.04 ± 0.02 0.05 ± 0.02 

DI (blank)  -- 0.40 ± 0.19 0.02 ± 0.03 0.03 ± 0.01 

 

During the Rb and Cs sorption process very little Co and Fe were released, which 

indicated that Rb and Cs were not exchanging with Co and Fe in the crystal lattice (Table 4). 

This is because Co and Fe are transitional metal cations bridged through cyano (CN) groups in 

the lattice structure which cannot be exchanged with the alkali metals Rb and Cs [26]. Loos-
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Neskovic et al. [26] reported that the cyano groups bridged to Fe and Cu in K2[CuFe(CN)6] 

provided negative charges which were balanced by the positively charged K in the body centre 

of the lattice. 

 

3.3.1.   KCoFC sorption capacity with other alkali metals 

While Rb and Cs exhibited high sorption capacity on KCoFC, other metals such as Li, 

Na and Ca remained mostly unchanged in the initial solutions without having any appreciable 

sorption (Fig. 5). The difference in the sorptivity between the metals can be explained on the 

basis of the relative size of the target ions and the pores or cavities of the sorbent as presented 

in Table 2. The amounts of Na and Li sorbed were much lower than those of Rb and Cs because 

of their lower degree of ion exchange with lattice K as seen from the smaller amounts of K 

released when they were sorbed (Table 4). This lower degree of ion exchange is due to the 

smaller unhydrated ionic radius of Na and Li (Table 2). Most of the K released during the 

sorption of Li and Na was due to the release of water soluble K in the sorbent. Another reason 

for the lower sorption of Li and Na than Rb and Cs is that these metals were more strongly 

hydrated and therefore bind more weakly to the KCoFC surface (Table 2). The zeta potential 

data on KCoFC supports this surface sorption difference between the metals. The negative zeta 

potential in the presence of monovalent metals increased in the order of the degree of ion 

hydration (Li > Na > K > Rb > Cs) (Fig. 4). The less hydrated monovalent cations (Rb, Cs) 

bind more strongly to the KCoFC surface resulting in relatively lower negativity of the zeta 

potential (-12 to -23 compared to -27 to -33 for Li, Na, K at pH 7).  

 

3.4.  Rb sorption kinetics  

Kinetics of sorption governs the uptake rate of sorbates and is therefore an important 

aspect in assessing the sorbent’s characteristics. The kinetic results of KCoFC(L) displayed an 



21 
 

increased sorption capacity of Rb with contact time (Fig. 6). A maximum sorption of around 

63% was achieved within 15 h. In correspondence with the sorption of Rb, K release was 

detected over the entire duration of sorption (Fig. 6). The number of mmoles of K released at 

any time was equivalent to the number of moles of Rb sorbed (additional K released from 

sorbent dissociation in aqueous solution was offset by the blank DI correction as presented in 

Table 4). The majority of K released occurred when Rb exchanged with K inside the KCoFC 

lattice. 

 

 

Fig. 6. Rb sorbed and K released as a function of time (Co = 5 mg/L, KCoFC dosage = 0.05 

g/L, pH 7). 

 

 The sorption kinetics data was analysed using different kinetic models. The results 

showed that the data fitted slightly better to PSO model than to PFO model with R2 values of 

0.97 and 0.92, respectively (Fig. 7). Furthermore, for the PFO model, the qe value of 63.4 mg/g 

derived from the model differed from the experimental qe value of 56.6 mg/g. On the other 

hand, for the PSO model, the qe value of 55.5 mg/g derived from the model agreed better with 

the experimental value. Therefore the kinetics data is better described by the PSO model. Better 
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description of the data by PSO suggested that the sorption of Rb is mainly controlled by 

chemical process [20] which depends on the concentration of Rb in solution and the number of 

sorption sites on KCoFC that were unoccupied by Rb.  

 

 
 

Fig.7. Kinetic model fit for experimental data of Rb sorption on KCoFC(L) (Rb experimental 

data (■),  ̶  ̶  ̶  PFO; -----PSO) (Co = 5 mg/L, KCoFC dose 0.05 g/L, pH 7).  

. 

Generally, kinetic models describe the whole sorption process but the actual rate 

limiting steps are not provided in detail. The transportation of Rb from the bulk solution to the 

KCoFC surface can be described by: (1) bulk diffusion from the external solution to the film 

surrounding the KCoFC particle (bulk diffusion)  (2) diffusion of Rb through the film 

surrounding the KCoFC particles (film diffusion); (3) diffusion of Rb through the hydrated 

pores of the KCoFC particle (intraparticle diffusion); and (4) chemical exchange reaction of 

Rb at the internal particle surface and exchange with structural K (chemical reaction). Bulk 

diffusion is negligible in determining the limiting rate because of enough agitation in batch 

experiments which does not allow any concentration gradients to build-up. Intraparticle 

diffusion is highly likely because the particles are mesoporous. In this study, the Weber and 

Morris intraparticle diffusion model was used to represent the intraparticle diffusion trend with 
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time for KCoFC [20,21]. According to Weber and Morris [21], if intraparticle diffusion is the 

rate limiting step in the sorption process, the plot of qt versus t0.5 would be a straight line that 

passes through the origin. In this study, the experimental data showed two linear portions (Fig. 

8). The first linear portion from 5 min up to 4 h can be attributed to the transport by intraparticle 

diffusion of Rb through the pores and channels This is followed by a slow step where Rb 

exchanged with the structural K that is located in the body/centre of the cubic caged KCoFC 

[Table 4, Fig. 6] and the reduced rate of intraparticle diffusion resulting from the low Rb 

concentration in solution [27]. As the entire plot was not linear and did not pass through the 

origin, film diffusion, intra-particle diffusion, and exchange with structural K appeared to have 

occurred simultaneously during the sorption process. However, as film diffusion is faster than 

intraparticle diffusion, it would have been mostly completed within the first 5 min before most 

of the intraparticle diffusion operated. Intraparticle diffusion and exchange of Rb with 

structural K appear to be the major rate controlling steps. 

 

 

Fig. 8. Intraparticle diffusion kinetics of Rb (Co = 5 mg/L, KCoFC dose 0.05 g/L, pH 7). 

The results of the kinetic study clearly demonstrated that Rb was first adsorbed on to 

the surface of the KCoFC prior to the K ion exchange reaction within the crystal lattice as 
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indicated by previous studies [23,28]. In line with this, as shown in the zeta potential trend 

(Fig. 4), the negativity of the surface potential/charge of KCoFC declined in the presence of 

Rb, verifying the strong surface sorption of Rb. At the same time, K was released over time 

when Rb was sorbed as shown in Fig. 6, confirming that ion exchange occurred between Rb in 

solution and K in the sorbent lattice. 

 

3.5.  Effect of competing ions on Rb sorption 

An important factor that influences the performance of a sorbent for a target metal is 

the selective sorption of the metal in the presence of competitor ions. In order to verify the 

selectivity of KCoFC(L) for Rb, the sorption capacity of Rb was evaluated in the presence of 

other competitor monovalent alkali metals (Cs, Li, Na, K) as well as the divalent metal, Ca at 

a range of concentrations (Fig. 9). All experiments were conducted with an initial Rb 

concentration of 5 mg/L and sorbent dosage of 0.05 g/L while the competitor ions concentration 

increased from 5 to 20 mg/L.  
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Fig. 9. Effect of coexisting alkali metals and Ca on Rb sorption on KCoFC(L) (KCoFC dose 

0.05 g/L, initial Rb concentration 5 mg/L, pH 7).          

 

The results showed that when Rb and Cs were present together at the same 

concentration (5 mg/L), the individual Rb and Cs sorption capacities of 49.9 mg/g and 40.1 

mg/g, decreased slightly by 7-12%. This indicated that KCoFC has a high selectivity for both 

Cs and Rb, and therefore was only slightly affected by each other’s co-ion effect. Naturally, at 

higher Cs concentration (10 mg/L), the Rb sorption reduced further by 25-29%. However, in 

many situations such as in seawater, the Cs concentration (0.0005 mg/L) is much lower than 

Rb concentration (0.12 mg/L) and therefore Cs is not expected to affect the sorption of Rb by 

KCoFC [6]. 

Comparatively, Rb sorption was minimally affected by the presence of alkali metals, 

Li, Na, and K and divalent alkaline earth metal, Ca at concentrations of 5 to 20 mg/L (Fig. 9). 

At a concentration of 20 mg/L of the other metals, the Rb sorption capacity was reduced only 
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by 10-15% and the sorption of Li, Na, K, and Ca was less than 2 mg/g. Therefore, Rb sorption 

on KCoFC was only influenced by the presence of Cs at a higher concentration while the 

influence of other metals (Li, Na, K, Ca) was minimal.  

 

3.6. Rb desorption capacity 

At a concentration of 0.1 M of desorption agent, the percentage of Rb desorption 

declined in the order of KCl (74.0%), KOH (47.3%), NaOH (46.5%), NaCl (10.5%), HCl 

(1.75%), and HNO3 (0.75%) (Fig. 10). Percentage desorption with H2O was the lowest (0.4%). 

Desorbing agent with K was more efficient than with Na in desorbing Rb because of the closer 

unhydrated ionic radius of K and Rb than Na and Rb (Table 2), thus K was able to effectively 

exchange with sorbed Rb inside the KCoFC lattice. At a higher concentration of KCl (1.0 M), 

98-100% of Rb desorption from KCoFC was achieved. 
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Fig. 10. Rb desorption with 0.1 M desorbing reagents (after sorption at Co = 5 mg/L, KCoFC 

dose 0.1 g/L).                                                                                          

 

4. Conclusions 

The affinity of KCoFC sorbent for Rb was evaluated using a laboratory prepared 

KCoFC (KCoFC(L)). Detailed characterisation (chemical composition, SEM-EDX and XRD) 

of KCoFC(L) established its similarity to the commercial KCoFC. The major findings for the 

Rb sorption characteristics of KCoFC(L) are as follows: 

 Rb sorption increased from pH 3 to 7 and remained the same at pH 7 to 8, in accordance 

with the increase of zeta potential negativity.  

 Sorption capacity of alkali metals and alkaline earth metal Ca on KCoFC followed the 

decreasing order Rb > Cs > Li, Na, Ca. The higher sorption capacity of Rb compared 

to the other metals had two explanations. Firstly, it is due to greater surface sorption on 

the KCoFC as a result of its lower hydrated ionic radii. This was supported by the 

observation that the negative zeta potential of KCoFC was lower for Rb than for Li, Na 

and Ca. Secondly, Rb made a greater penetration into the crystal lattice to replace 

structural K in the body centre of KCoFC than other metals including Cs. Rb released 
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the largest amount of K, followed by Cs due to Rb and K sharing similar unhydrated 

ionic radius. Sorption data for Rb and Cs at pH 7.0 ± 0.5 satisfactorily fitted to the 

Langmuir sorption model. A higher Langmuir maximum sorption capacity of 96.2 mg/g 

was achieved with Rb compared to 60.6 mg/g for Cs.  

 The Rb sorption kinetics data fitted satisfactorily to PSO model with intraparticle 

diffusion and exchange of Rb with structural K acting as major rate limiting steps.  

 The presence of co-existing elements such as Li, Na and Ca only minimally influenced 

Rb sorption, thereby indicating the selective sorption of KCoFC for Rb. Only at higher 

concentrations did Cs reduce the Rb sorption capacity.  

 A high desorption capacity (78- 80%) of Rb was able to be achieved with 0.1 M KCl. 

Up to 100% desorption was possible with 1.0 M KCl.   
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